
STATISTICAL MACHINE LEARNING (WS2019)
SEMINAR 4

Assignment 1. Let us consider the space of linear classifiers mapping x ∈ Rn to
{−1,+1}, that is

H =
{
h(x;w, b) = sign(〈w,x〉+ b) | (w, b) ∈ (Rd × R)

}
.

Show that the VC dimension ofH is n+ 1.

Hint: The proof has two steps:

(1) Show that the VC dimension is at least n + 1 by constructing n + 1 points that
are shatted byH.

(2) Show that the VC dimension is less than n + 2 by proving that n + 2 points
cannot be shattered byH.

The step 1 should be easy. If you find step 2 difficult, skip it for sake of the other
assignments.

Assignment 2. Let T m = {(xi, yi) ∈ Rn × {−1,+1} | i = 1, . . . ,m} be a training
set of linearly separable examples. The SVM algorithm for linearly separable examples
finds parameters (w∗, b∗) ∈ Rn+1 of a linear classifier

h(x;w∗, b∗) = sign(〈w∗,x〉+ b∗)

by solving a convex quadratic program

(w∗, b∗) ∈ Argmin
(w,b)∈Rn+1

1

2
‖w‖2 s.t. 〈w,xi〉+ b ≥ 1 , i ∈ I+

〈w,xi〉+ b ≤ −1 , i ∈ I−
(1)

where I+ = {i ∈ {1, . . . ,m} | yi = +1} and I− = {i ∈ {1, . . . ,m} | yi = −1} are
indices of examples of the positive and the negative class, respectively.

a) For a given (w, b) ∈ Rn+1 such that w 6= 0, we can define so called margin

d(w, b) = min
i∈{1,...,m}

yi(〈w,xi〉+ b)

‖w‖

which is a signed distance between the hyperplane 〈w,x〉 + b = 0 and the closest ex-
amples in T m. Show that the hyperplane 〈w∗, x〉+ b∗ = 0 found by SVM algorithm (1)
maximizes the margin, i.e. it holds that

d(w∗, b∗) = max
w∈Rn\{0}

b∈R

d(w, b) . (2)

1
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Hint: Note that the maximization of d(w, b) does not have a unique solution. You may
fix the score mini∈{1,...,m}(y

i(〈w,xi〉+ b)) to 1 and then show that maxw 6=0,b d(w, b) is
equaivalent to (1).

b) How can you compute the value of the maximal margin d(w∗, b∗) from the solution
(w∗, b∗) ?

Assignment 3. Assume we are given a training set of examples T m = {(xi, yi) ∈
(X × {+1,−1}) | i = 1, . . . ,m} which is known to be linearly separable with respect
to a feature map φ : X → Rn. In this case, we can find parameters (w, b) ∈ Rn+1 of a
linear classifier h(x;w, b) = sign(〈φ(x),w〉 + b) which has zero training error by the
Perceptron algorithm:

(1) w ← 0, b← 0
(2) Find an example (xu, yu) ∈ T m whose label is incorrectly predicted by the

current classifier, that is h(xu;w, b) 6= yu.
(3) If all examples are classified correctly exit the algorithm. Otherwise update the

parameters by

w ← w + yuφ(xu) and b← b+ yu

and go to Step 2.
Assume that you cannot evaluate the feature map φ(x) because it is either unknown
or its evaluation is expensive. However, you know how to cheaply evaluate a kernel
function k : X × X → R such that k(x, x′) = 〈φ(x),φ(x′)〉, ∀x, x′ ∈ X . Show that
you can still use the Perceptron algorithm to find a linear classifier with zero training
error and that you can evaluate this classifier on any x ∈ X .

Assignment 4. Let the input observation be a vector x ∈ Rd. Let us consider a feature
map φq : Rd → Rn, n = dq, whose entries are all possible q-th degree ordered products
of the entries of x. For example, if x = (x1, x2, x3)

T ∈ R3 and q = 2 then

φq(x) =



x1x1

x2x1

x3x1

x1x2

x2x2

x3x2

x1x3

x2x3

x3x3


a) Show that for any x,x′ ∈ Rd we can compute the dot product between φq(x) and
φq(x

′) as
〈φq(x),φq(x

′)〉 = 〈x,x′〉q ,
that is, as the dot product of the original vectors x and x′ powered to q.
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b) Consider a slightly different feature map φ′ : Rd → Rd(d+1)/2 whose entries are

φ′(x) = ( x2
1,
√
2x1x2,

√
2x1x3, . . . ,

√
2x1xd,

x2
2,

√
2x2x3, . . . ,

√
2x2xd,

...
x2
d )T ,

so that the features correspond to all possible products of unordered pairs of entries
from x, and the products of different entries are multiplied by a constant factor

√
2. For

example, if x = (x1, x2, x3)
T ∈ R3 then

φ′(x) = (x2
1,
√
2x1x2,

√
2x1x3, x

2
2,
√
2x2x3, x

2
3)

T .

This feature map defines a kernel k(x,x′) = 〈φ′(x),φ′(x′)〉 referred to as the homo-
geneous polynomial kernel of degree 2. Show that the kernel value equals to the square
of the dot product of the input vectors, that is prove the identity

k(x,x′) = 〈φ′(x),φ′(x′)〉 = 〈x,x′〉2 , ∀x,x′ ∈ Rd .

Hint: Exploit the relation between φ(x) and φ′(x).


