STATISTICAL MACHINE LEARNING (WS2020) SEMINAR 5

Assignment 1. Prove that the family of univariate normal distributions $\mathcal{N}(\mu, \sigma)$ with density

$$
p_{\mu, \sigma}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

is an exponential family

$$
p_{\eta}(x)=\exp [\langle\phi(x), \eta\rangle-A(\eta)]
$$

with sufficient statistic $\phi(x)=\left[\begin{array}{c}x \\ x^{2}\end{array}\right]$. Deduce a formula expressing the natural parameter vector η in terms of μ and σ.

Assignment 2. The probability density function of a Laplace distribution (aka double exponential distribution) with location parameter μ and scale b is given by

$$
p(x \mid \mu, b)=\frac{1}{b} \exp \left(-\frac{|x-\mu|}{b}\right) .
$$

Find the maximum likelihood estimates of the location parameter and the scale parameter given an i.i.d. sample $\mathcal{T}^{m}=\left\{x_{i} \in \mathbb{R} \mid i=1, \ldots, m\right\}$.
Assignment 3. Consider the family of multivariate normal distributions $\mathcal{N}(\mu, V)$ with density

$$
p_{\mu, V}(x)=\frac{1}{(2 \pi)^{n / 2}|V|^{1 / 2}} \exp \left[-\frac{1}{2}(x-\mu)^{T} V^{-1}(x-\mu)\right],
$$

where $|V|$ denotes the determinant of the matrix V. It is parametrised by the mean $\mu \in \mathbb{R}^{n}$ and the symmetric covariance matrix V. Given i.i.d. training data $\mathcal{T}^{m}=\left\{x^{j} \in\right.$ $\left.\mathbb{R}^{n} \mid j=1, \ldots, m\right\}$, we want to estimate the parameters μ and V by MLE.
a) Show that the log-likelihood of the training data is given by

$$
L\left(\mu, V, \mathcal{T}^{m}\right)=\mathbb{E}_{\mathcal{T}^{m}}\left[-\frac{1}{2}(x-\mu)^{T} V^{-1}(x-\mu)\right]+\frac{1}{2} \log \left|V^{-1}\right|+c .
$$

b) Compute the gradient w.r.t. μ and prove that the MLE estimate for it is given by $\mu^{*}=\mathbb{E}_{\mathcal{T}^{m}}[x]$.
c) Compute the gradient w.r.t. V^{-1}. Use the fact that

$$
\frac{\partial}{\partial A} \log |A|=A^{-T}
$$

holds for any invertible symmetric matrix A. Prove that the MLE estimate for V is given by

$$
V^{*}=\mathbb{E}_{\mathcal{T}^{m}}\left[\left(x-\mu^{*}\right)(x-\mu)^{T}\right]
$$

Assignment 4. Consider the binary logistic regression model

$$
p(y \mid x)=\frac{e^{y\langle w, x\rangle}}{2 \cosh \langle w, x\rangle},
$$

where $x \in \mathbb{R}^{n}$ is a feature vector and $y= \pm 1$ is the object class. The model is parametrised by the vector $w \in \mathbb{R}^{n}$. Given an i.i.d. training set $\mathcal{T}^{m}=\left\{\left(x^{j}, y^{j}\right) \mid\right.$ $j=1, \ldots, m\}$, we want to estimate the unknown parameter vector w of the model by maximising the conditional log-likelihood

$$
\begin{aligned}
L\left(w, \mathcal{T}^{m}\right) & =\mathbb{E}_{\mathcal{T}^{m}}[\log (p(y \mid x))]= \\
& =\mathbb{E}_{\mathcal{T}^{m}}[y\langle w, x\rangle-\log \cosh \langle w, x\rangle]-\log 2 \rightarrow \max _{w}
\end{aligned}
$$

Prove that the objective function is concave in w by computing its second derivative (matrix) and showing that it is negative semi-definite.

Assignment 5. The Kullback-Leibler divergence for probability densities $p(x)$ and $q(x)$ is defined by

$$
D_{K L}(p \| q)=\int_{-\infty}^{\infty} p(x) \log \frac{p(x)}{q(x)} d x .
$$

Compute the KL-divergence for two univariate normal distributions $\mathcal{N}(\mu, \sigma)$ and $\mathcal{N}(\tilde{\mu}, \tilde{\sigma})$.

