STATISTICAL MACHINE LEARNING (WS2020) SEMINAR 5

Assignment 1. Prove that the family of univariate normal distributions $\mathcal{N}(\mu, \sigma)$ with density

$$p_{\mu,\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

is an exponential family

$$p_{\eta}(x) = \exp[\langle \phi(x), \eta \rangle - A(\eta)]$$

with sufficient statistic $\phi(x) = \begin{bmatrix} x \\ x^2 \end{bmatrix}$. Deduce a formula expressing the natural parameter vector η in terms of μ and σ .

Assignment 2. The probability density function of a Laplace distribution (aka double exponential distribution) with location parameter μ and scale b is given by

$$p(x \mid \mu, b) = \frac{1}{b} \exp\left(-\frac{|x - \mu|}{b}\right).$$

Find the maximum likelihood estimates of the location parameter and the scale parameter given an i.i.d. sample $\mathcal{T}^m = \{x_i \in \mathbb{R} \mid i = 1, \dots, m\}$.

Assignment 3. Consider the family of multivariate normal distributions $\mathcal{N}(\mu, V)$ with density

$$p_{\mu,V}(x) = \frac{1}{(2\pi)^{n/2}|V|^{1/2}} \exp\left[-\frac{1}{2}(x-\mu)^T V^{-1}(x-\mu)\right],$$

where |V| denotes the determinant of the matrix V. It is parametrised by the mean $\mu \in \mathbb{R}^n$ and the symmetric covariance matrix V. Given i.i.d. training data $\mathcal{T}^m = \{x^j \in \mathbb{R}^n \mid j=1,\ldots,m\}$, we want to estimate the parameters μ and V by MLE.

a) Show that the log-likelihood of the training data is given by

$$L(\mu, V, \mathcal{T}^m) = \mathbb{E}_{\mathcal{T}^m} \left[-\frac{1}{2} (x - \mu)^T V^{-1} (x - \mu) \right] + \frac{1}{2} \log |V^{-1}| + c.$$

- **b)** Compute the gradient w.r.t. μ and prove that the MLE estimate for it is given by $\mu^* = \mathbb{E}_{\mathcal{T}^m}[x]$.
- c) Compute the gradient w.r.t. V^{-1} . Use the fact that

$$\frac{\partial}{\partial A}\log|A| = A^{-T}$$

holds for any invertible symmetric matrix A. Prove that the MLE estimate for V is given by

$$V^* = \mathbb{E}_{\mathcal{T}^m} \left[(x - \mu^*)(x - \mu)^T \right].$$

Assignment 4. Consider the binary logistic regression model

$$p(y \mid x) = \frac{e^{y\langle w, x \rangle}}{2 \cosh \langle w, x \rangle},$$

where $x \in \mathbb{R}^n$ is a feature vector and $y = \pm 1$ is the object class. The model is parametrised by the vector $w \in \mathbb{R}^n$. Given an i.i.d. training set $\mathcal{T}^m = \{(x^j, y^j) \mid j = 1, \ldots, m\}$, we want to estimate the unknown parameter vector w of the model by maximising the conditional log-likelihood

$$L(w, \mathcal{T}^m) = \mathbb{E}_{\mathcal{T}^m} \left[\log(p(y \mid x)) \right] =$$

$$= \mathbb{E}_{\mathcal{T}^m} \left[y \langle w, x \rangle - \log \cosh \langle w, x \rangle \right] - \log 2 \to \max_{w}$$

Prove that the objective function is concave in w by computing its second derivative (matrix) and showing that it is negative semi-definite.

Assignment 5. The Kullback-Leibler divergence for probability densities p(x) and q(x) is defined by

$$D_{KL}(p \parallel q) = \int_{-\infty}^{\infty} p(x) \log \frac{p(x)}{q(x)} dx.$$

Compute the KL-divergence for two univariate normal distributions $\mathcal{N}(\mu, \sigma)$ and $\mathcal{N}(\tilde{\mu}, \tilde{\sigma})$.