
STATISTICAL MACHINE LEARNING (WS2020)
SEMINAR 5

Assignment 1. Prove that the family of univariate normal distributions N (µ, σ) with
density

pµ,σ(x) =
1√
2πσ

e−
(x−µ)2

2σ2

is an exponential family

pη(x) = exp
[
〈φ(x), η〉 − A(η)

]
with sufficient statistic φ(x) =

[
x
x2

]
. Deduce a formula expressing the natural parame-

ter vector η in terms of µ and σ.

Assignment 2. The probability density function of a Laplace distribution (aka double
exponential distribution) with location parameter µ and scale b is given by

p(x | µ, b) = 1

b
exp
(
−|x− µ|

b

)
.

Find the maximum likelihood estimates of the location parameter and the scale param-
eter given an i.i.d. sample T m = {xi ∈ R | i = 1, . . . ,m}.
Assignment 3. Consider the family of multivariate normal distributions N (µ, V ) with
density

pµ,V (x) =
1

(2π)n/2|V |1/2
exp
[
−1

2
(x− µ)TV −1(x− µ)

]
,

where |V | denotes the determinant of the matrix V . It is parametrised by the mean
µ ∈ Rn and the symmetric covariance matrix V . Given i.i.d. training data T m = {xj ∈
Rn | j = 1, . . . ,m}, we want to estimate the parameters µ and V by MLE.
a) Show that the log-likelihood of the training data is given by

L(µ, V, T m) = ET m
[
−1

2
(x− µ)TV −1(x− µ)

]
+

1

2
log|V −1|+ c.

b) Compute the gradient w.r.t. µ and prove that the MLE estimate for it is given by
µ∗ = ET m [x].
c) Compute the gradient w.r.t. V −1. Use the fact that

∂

∂A
log|A| = A−T

holds for any invertible symmetric matrixA. Prove that the MLE estimate for V is given
by

V ∗ = ET m
[
(x− µ∗)(x− µ)T

]
.
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Assignment 4. Consider the binary logistic regression model

p(y | x) = ey〈w,x〉

2 cosh 〈w, x〉
,

where x ∈ Rn is a feature vector and y = ±1 is the object class. The model is
parametrised by the vector w ∈ Rn. Given an i.i.d. training set T m = {(xj, yj) |
j = 1, . . . ,m}, we want to estimate the unknown parameter vector w of the model by
maximising the conditional log-likelihood

L(w, T m) =ET m
[
log(p(y | x))

]
=

=ET m
[
y 〈w, x〉 − log cosh 〈w, x〉

]
− log 2→ max

w

Prove that the objective function is concave in w by computing its second derivative
(matrix) and showing that it is negative semi-definite.

Assignment 5. The Kullback-Leibler divergence for probability densities p(x) and q(x)
is defined by

DKL(p ‖ q) =
∫ ∞
−∞

p(x) log
p(x)

q(x)
dx.

Compute the KL-divergence for two univariate normal distributionsN (µ, σ) andN (µ̃, σ̃).


