
STATISTICAL MACHINE LEARNING (WS2018)
SEMINAR 6

Assignment 1. Consider the block-coordinate ascent for Minka’s lower bound of the
log-likelihood (in the EM algorithm)

LB(θ, α, T m) =
1

m

m∑
i=1

∑
y∈Y

αi(y) log pθ(x
i, y)− 1

m

m∑
i=1

∑
y∈Y

αi(y) logαi(y).

The E-step requires to maximise it w.r.t. α-s for fixed θ.
a) Show that the maximisation decomposes into independent maximisation tasks of the
type ∑

y∈Y

α(y) log pθ(x
i, y)−

∑
y∈Y

α(y) logα(y)→ max
α

s.t.
∑
y∈Y

α(y) = 1 and α(y) > 0 ∀y ∈ Y

b) Prove that the function

g(x) =


x log x if x > 0,

0 if x = 0

∞ otherwise

is convex for x > 0 and implicitly accounts for the constraint x > 0. Conclude that the
optimisation task in a) is convex.
c) Analyse the Lagrange dual of this task and deduce the solution α∗(y) = pθ(y | xi).

Assignment 2. Let us consider a Markov chain model for sequences s = (s1, . . . , sn)
of length n with states si ∈ K from a finite set K. Its joint probability distribution is
given by

p(s) = p(s1)
n∏
i=2

p(si | si−1).

The conditional probabilities p(si | si−1) and the marginal probability p(s1) for the first
element are known.

LetA ⊂ K be a subset of states and letA = An denote the set of all sequences swith
si ∈ A for all i = 1, . . . , n. Find an efficient algorithm for computing the probability
p(A) of the event A.

Assignment 3. Consider the same Markov model as in the previous assignment. You
are given its most probable sequence s∗ ∈ argmaxs∈Kn p(s). The task is to find the
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most probable sequence s differing from s∗ in all positions, i.e. si 6= s∗i ∀i = 1, . . . , n.
Give an algorithm for solving this task.

Assignment 4. (Gambler’s ruin) Consider a random walk on the setL = {0, 1, 2, . . . , a}
starting in some point x ∈ L. The position jumps by either±1 in each time period (with
equal probabilities). The walk ends if either of the boundary states 0, a is hit. Compute
the probability u(x) to finish in state a if the process starts in state x.
Hints:

(1) What are the values of u(0) and of u(a)?
(2) Find a difference equation for u(x), 0 < x < a by relating it with u(x− 1) and

u(x+ 1).
(3) Translate the difference equation into a relation between the successive differ-

ences u(x+ 1)− u(x) and u(x)− u(x− 1).
(4) Deduce that the solution is a linear function of x and find its coefficients from

the boundary conditions u(0) and u(a).

Assignment 5. Let X be a set of observations, Y = {+1,−1} a set of hidden states and
h : X → Y a linear two-class classifier defined as

h(x;w, b) = sign(〈w,φ(x)〉+ b) (1)

where w ∈ Rn, b ∈ R are parameters and φ : X → Rn is a feature map. Show that (1)
can be re-written in the following equivalent form

h(x;θ) = argmax
y∈Y

〈θ,φ′(x, y)〉

where φ′ : X × Y → Rn+1 and θ ∈ Rn+1. Write the explicit form of φ′(x, y) and θ.

Assignment 6. Consider a linear classifier h : X → Y assigning inputs x ∈ X to classes
Y = {1, . . . , Y } based on the rule

h(x;w1, . . . ,wY , b1, . . . , bY ) = argmax
y∈Y

(〈φ(x),wy〉+ by) (2)

where φ : X → Rn is a feature map and (wy ∈ Rn, by ∈ R), y ∈ Y , are parameters.

a) Let T m = {(xj, yj) ∈ (X × Y) | j = 1, . . . ,m} be a set of training examples. De-
scribe a variant of the Perceptron algorithm which finds the parameters (wy ∈ Rn, by ∈
R), y ∈ Y , such that the classifier (2) predicts all examples from T m correctly provided
such parameters exist.

b) Assume that you cannot evaluate the feature map φ(x) explicitly, however, you can
evaluate a kernel function k : X × X → R such that k(x, x′) = 〈φ(x),φ(x′)〉, ∀x, x′ ∈
X . Show that you can still use the Perceptron algorithm to find a linear classifier with
zero training error and that you can evaluate this classifier on any x ∈ X .

Hint: Note that the parameter vectorswy, y ∈ Y , can be in each iteration of the Percep-
tron algorithm expressed as a linear combination of the inputs φ(xj), j ∈ {1, . . . ,m}.


