Assignment 1.

a) Let X be a discrete random variable taking values $x \in \{1, \ldots, K\}$. Compute the Kullback-Leibler divergence $D_{KL}(q(x) \| p(x))$ for the following distributions: $p(x)$ is uniform and $q_k(x) = \delta(x,k)$, where $\delta(.,.)$ denotes the Kronecker symbol.

b) Let $X \in \mathbb{R}$ be a real valued random variable. Consider the following two distributions: $p(x)$ is a normal distribution with zero mean and unit variance and $q_\alpha(x)$ is uniform on the interval $|x - \alpha| < \epsilon$. Compute their Kullback-Leibler divergence in the limit $\epsilon \to 0$.

Assignment 2. Let $X \in \mathbb{R}^n$ be a random vector with discrete valued components.

a) Assume that the two distributions $p(x)$ and $q(x)$ factorise w.r.t. the components of x, i.e. $p(x) = \prod_{i=1}^n p_i(x_i)$ and similarly $q(x) = \prod_{i=1}^n q_i(x_i)$. Prove that their KL-divergence is the sum of the KL-divergences of the marginal distributions, i.e.

$$D_{KL}(q(x) \| p(x)) = \sum_{i=1}^n D_{KL}(q_i(x_i) \| p_i(x_i)).$$

b) Let us now assume that $p(x)$ is an arbitrary distribution, and we want to approximate it by the factorising distribution q that has minimal KL-divergence $D_{KL}(p(x) \| q(x))$. Prove that the optimum is attained if the factors $q_i(x_i)$ coincide with the marginal probabilities of $p(x)$.

Assignment 3. Consider the block-coordinate ascent for the lower bound of the log-likelihood (in the EM algorithm)

$$L_B(\theta, \alpha, T^m) = \frac{1}{m} \sum_{i=1}^m \sum_{y \in \mathcal{Y}} \alpha_i(y) \log p_\theta(x_i, y) - \frac{1}{m} \sum_{i=1}^m \sum_{y \in \mathcal{Y}} \alpha_i(y) \log \alpha_i(y).$$

The E-step requires to maximise it w.r.t. α-s for fixed θ.

a) Show that the maximisation decomposes into independent maximisation tasks of the type

$$\sum_{y \in \mathcal{Y}} \alpha(y) \log p_\theta(x^i, y) - \sum_{y \in \mathcal{Y}} \alpha(y) \log \alpha(y) \to \max_{\alpha}$$

s.t. $\sum_{y \in \mathcal{Y}} \alpha(y) = 1$ and $\alpha(y) \geq 0 \ \forall y \in \mathcal{Y}$.
b) Prove that the function

\[g(x) = \begin{cases}
 x \log x & \text{if } x > 0, \\
 0 & \text{if } x = 0 \\
 \infty & \text{otherwise}
\end{cases} \]

is convex for \(x > 0 \) and implicitly accounts for the constraint \(x \geq 0 \). Conclude that the optimisation task in a) is convex.

c) Analyse the Lagrange dual of this task and deduce the solution \(\alpha^*(y) = p_\theta(y \mid x^i) \).

Assignment 4. Consider the following probabilistic model for real valued sequences \(\mathbf{x} = (x_1, \ldots, x_n) \), \(x_i \in \mathbb{R} \) of fixed length \(n \). Each sequence is a combination of a leading part \(i \leq k \) and a trailing part \(i > k \). The boundary \(k = 1, \ldots, n \) is random with some categorical distribution \(\pi \in \mathbb{R}_+^n \), \(\sum_k \pi_k = 1 \). The values \(x_i \), in the leading and trailing part are statistically independent and distributed with some probability density function \(p_1(x) \) and \(p_2(x) \) respectively. Altogether the distribution for pairs \((\mathbf{x}, k) \) reads

\[p(\mathbf{x}, k) = \pi_k \prod_{i=1}^k p_1(x_i) \prod_{j=k+1}^n p_2(x_j). \]

(1)

The densities \(p_1 \) and \(p_2 \) are known. Given an i.i.d. sample of sequences \(\mathcal{T}^m = \{\mathbf{x}^\ell \in \mathbb{R}^n \mid \ell = 1, \ldots, m\} \), the task is to estimate the unknown boundary distribution \(\pi \) by the EM-algorithm.

a) The E-step of the algorithm requires to compute the values of auxiliary variables \(\alpha_{\ell}^{(t)}(k) = p(k \mid \mathbf{x}^\ell) \) for each example \(\mathbf{x}^\ell \) given the current estimate \(\pi^{(t)} \) of the boundary distribution. Give a formula for computing these values from model (1).

b) The M-step requires to solve the optimisation problem

\[\frac{1}{m} \sum_{\ell=1}^m \sum_{k=1}^n \alpha_{\ell}^{(t)}(k) \log p(\mathbf{x}^\ell, k) \to \max. \]

Substitute the model (1) and solve the optimisation task.