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� Markov Random Fields & Gibbs Random Fields

� Approximated Inference for MRFs

� (Generative) Parameter learning for MRFs
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Motivation: Two Examples from Computer Vision

Example 1 (Image segmentation)

Recall the segmentation model used in the EM-Algorithm lab, where x : D→ R3 denotes an
image and s : D→K denotes its segmentation (K – set of segment labels)

p(s) =
∏
i∈D

p(si) =
1

Z(u)
exp

∑
i∈D

ui(si) and p(x | s) =
∏
i∈D

p(xi | si)

This model is pixelwise independent and, consequently, so is the inference.

We want to take into account that:

� neighbouring pixels belong more often than not to the same segment,

� the segment boundaries are in most places smooth, . . .

We may consider e.g. a prior model for segmentations

p(s) =
1

Z(u)
exp
[∑
i∈D

ui(si)+
∑
{i,j}∈E

uij(si,sj)
]
,

where E are edges connecting neighbouring pixels in D.
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Motivation: Two Examples from Computer Vision

Example 2 (Motion Flow)

Given two (consecutive) images x,x′ : D→ R3 from a video, determine the motion flow,
i.e. find a displacement vector vi for each pixel i ∈D.

� projections of the same 3D points look similar in x and x′.

� 3D points projected onto neighbouring image pixels move more often than not
coherently.

� Assume a discriminative model p(v | x,x′) since the method does not intend to model
the image appearance.

p(v | x,x′) = 1

Z(x,x′)
exp
[
−
∑
i∈D

‖xi−x′i+vi‖
2−α

∑
{i,j}∈E

‖vi−vj‖2
]

Such models can be generalised for stereo cameras and combined with segmentation
approaches.
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Markov Random Fields & Gibbs Random Fields

Let (V,E) denote an undirected graph and let S = {Si | i ∈ V } be a field of random
variables indexed by the nodes of the graph and taking values from a finite set K.

Definition 1 A joint probability distribution p(s) is a Gibbs Random Field on the graph
(V,E) if it factorises over the the nodes and edges, i.e.

p(s) =
1

Z(u)
exp
[∑
i∈V

ui(si)+
∑
{i,j}∈E

uij(si,sj)
]
.

Remark 1 This can be generalised to Gibbs random fields on hypergraphs.
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Markov Random Fields & Gibbs Random Fields

Definition 2 A probability distribution p(s) is a Markov Random Field w.r.t. graph (V,E) if

p(sA,sB | sC) = p(sA | sC)p(sB | sC)

holds for any subsets A,B ⊂ V and a separating set C.

Theorem 1 (Hammersley, Clifford, 1971)
If the distribution p(s) is an MRF w.r.t. graph (V,E) and strictly positive, then it is a GRF
on the hypergraph defined by all cliques of (V,E) and vice versa.

Remark 2 The following tasks for MRFs / GRFs are NP-complete

� Computing the most probable labelling s∗ ∈ argmax
s∈KV

p(s).

� Computing the normalisation constant

Z(u) =
∑

s∈KV

exp
[∑
i∈V

ui(si)+
∑
{i,j}∈E

uij(si,sj)
]
.

The same holds for computing marginal probabilities of p(s).
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Computing the most probable labelling, MRFs with boolean
variables

Consider logp(s), replace u→−u. The task reads then∑
i∈V

ui(si)+
∑
{i,j}∈E

uij(si,sj)→ min
s∈KV

If the variables si, i ∈ V are boolean: the functions ui, uij can be written as polynomials in
the variables si = 0,1, and, by re-defining the unary functions ui if necessary, the task reads
as

s∗ = argmin
s∈KV

∑
{i,j}∈E

αij|si−sj| +
∑
i∈V

βisi

= argmin
s∈KV

∑
{i,j}∈E

αij|si−sj| +
∑
i∈V+

βisi+
∑
i∈V−

|βi|(1−si),

where V+ = {i ∈ V | βi > 0} and V− = V \V+. This is a MinCut-problem!

http://cmp.felk.cvut.cz
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Computing the most probable labelling, MRFs with boolean
variables

t

si

s

βi

|βj|

� If all edge weights are non-negative, i.e. αij > 0, ∀{i, j} ∈E: the task can be solved via
MinCut – MaxFlow duality,

� If some of the α-s are negative: apply approximation algorithms, e.g. relax the discrete
variables to si ∈ [0,1], consider an LP-relaxation of the task and solve the LP task
e.g. by Tree-Reweighted Message Passing (Kolmogorov, 2006)

� If the variables si are multivalued, and all pairwise functions uij(si,sj) are submodular:
the task can be reduced to a task with boolean variables and solved by via MinCut –
MaxFlow duality.
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Computing the most probable labelling (general case)

u(s) =
∑
i∈V

ui(si)+
∑
{i,j}∈E

uij(si,sj)→ min
s∈KV

If the problem is not submodular ⇒ resort to approximation algorithms, e.g.

Move making algorithms:

Construct a sequence of labellings s(t) with decreasing values of the objective function
u(s(i)):

� Define neighbourhoods N (s)⊂KV such that the task

argmin
s∈N (s′)

∑
{i,j}∈E

uij(si,sj) +
∑
i∈V

ui(si)

is tractable for every s′.

� Iterate
s(t+1) ∈ argmin

s∈N (s(t))

∑
{i,j}∈E

uij(si,sj) +
∑
i∈V

ui(si)

until no further improvement possible.
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Computing the most probable labelling (general case)

α-Expansions (Boykov et al., 2001)

� Define the neighbourhoods by choosing a label α ∈K and setting

Nα(s) =
{

s′ ∈KV
∣∣ s′i = α if s′i 6= si

}
.

Notice that |Nα(s)|= 2V .

� The task
argmin
s∈Nα(s′)

∑
{i,j}∈E

uij(si,sj) +
∑
i∈V

ui(si)

can be encoded as labelling problem with boolean variables.

� It can be solved by MinCut-MaxFlow if

uij(k,k
′)+uij(α,α)6 uij(α,k

′)+uij(k,α)

holds for all pairwise functions uij and all k,k′ ∈K.
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Learning parameters of MRFs

Learning task: Given i.i.d. training data T m = {s` ∈KV | `= 1, . . . ,m}, estimate the
parameters ui, uij of the MRF.

The maximum likelihood estimator reads

logpu(T m) =
1

m

m∑
`=1

[ ∑
{i,j}∈E

uij(s
`
i,s

`
j) +

∑
i∈V

ui(s
`
i)
]
− logZ(u)→ max

ui,uij
.

It is intractable: the objective function is concave in u, but we can compute neither logZ(u)
nor its gradient (in polynomial time).

We may use the pseudo-likelihood estimator (Besag, 1975) instead. It is based on the
following observation

� Let Ni denote the neighbouring nodes of i ∈ V .

� We can compute the conditional distributions

p(si | sV \i)
!
= p(si | sNi)∼ e

ui(si)
∏
j∈Ni

euij(si,sj)

http://cmp.felk.cvut.cz
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Learning parameters of MRFs

The pseudo-likelihood of an single example s ∈ T m is defined by

Lp(u) =
∑
i∈V

logpu(si | sNi)

= 2
∑
{i,j}∈E

uij(si,sj)+
∑
i∈V

ui(si)−
∑
i∈V

log
∑
si∈K

exp
[
ui(si)+

∑
j∈Ni

uij(si,sj)
]

The pseudo-likelihood estimator is

� a concave function of the parameters u,

� tractable, i.e. both Lp(u,T m) and its gradient are easy to compute,

� consistent.
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