Statistical Machine Learning (BE4M33SSU) Lecture 10: Markov Random Fields

Czech Technical University in Prague

- Markov Random Fields & Gibbs Random Fields
- Approximated Inference for MRFs
- (Generative) Parameter learning for MRFs

Motivation: Two Examples from Computer Vision

Example 1 (Image segmentation)

Recall the segmentation model used in the EM-Algorithm lab, where $x: D \to \mathbb{R}^3$ denotes an image and $s: D \to K$ denotes its segmentation (K - set of segment labels)

$$p(s) = \prod_{i \in D} p(s_i) = \frac{1}{Z(u)} \exp \sum_{i \in D} u_i(s_i) \quad \text{and} \quad p(\boldsymbol{x} \mid \boldsymbol{s}) = \prod_{i \in D} p(x_i \mid s_i)$$

This model is pixelwise independent and, consequently, so is the inference.

We want to take into account that:

- neighbouring pixels belong more often than not to the same segment,
- the segment boundaries are in most places smooth, . . .

We may consider e.g. a prior model for segmentations

$$p(s) = \frac{1}{Z(u)} \exp\left[\sum_{i \in D} u_i(s_i) + \sum_{\{i,j\} \in E} u_{ij}(s_i, s_j)\right],$$

where E are edges connecting neighbouring pixels in D.

Motivation: Two Examples from Computer Vision

Example 2 (Motion Flow)

Given two (consecutive) images $x, x' : D \to \mathbb{R}^3$ from a video, determine the motion flow, i.e. find a displacement vector v_i for each pixel $i \in D$.

- lacktriangle projections of the same 3D points look similar in x and x'.
- ◆ 3D points projected onto neighbouring image pixels move more often than not coherently.
- Assume a discriminative model $p(\boldsymbol{v} \mid \boldsymbol{x}, \boldsymbol{x}')$ since the method does not intend to model the image appearance.

$$p(\mathbf{v} \mid \mathbf{x}, \mathbf{x}') = \frac{1}{Z(\mathbf{x}, \mathbf{x}')} \exp \left[-\sum_{i \in D} ||\mathbf{x}_i - \mathbf{x}'_{i+v_i}||^2 - \alpha \sum_{\{i, j\} \in E} ||v_i - v_j||^2 \right]$$

Such models can be generalised for stereo cameras and combined with segmentation approaches.

m p

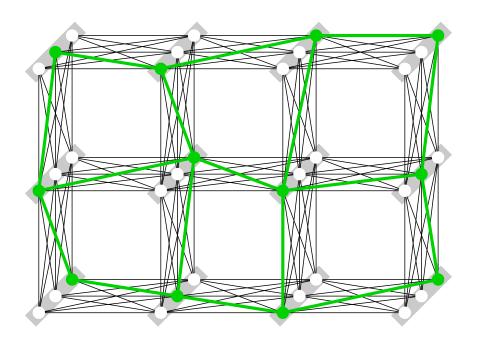
Markov Random Fields & Gibbs Random Fields

4/11

Let (V, E) denote an undirected graph and let $S = \{S_i \mid i \in V\}$ be a field of random variables indexed by the nodes of the graph and taking values from a finite set K.

Definition 1 A joint probability distribution p(s) is a Gibbs Random Field on the graph (V, E) if it factorises over the the nodes and edges, i.e.

$$p(\mathbf{s}) = \frac{1}{Z(u)} \exp\left[\sum_{i \in V} u_i(s_i) + \sum_{\{i,j\} \in E} u_{ij}(s_i, s_j)\right].$$



Remark 1 This can be generalised to Gibbs random fields on hypergraphs.

Markov Random Fields & Gibbs Random Fields

5/11

Definition 2 A probability distribution p(s) is a Markov Random Field w.r.t. graph (V,E) if

$$p(\boldsymbol{s}_A, \boldsymbol{s}_B \mid \boldsymbol{s}_C) = p(\boldsymbol{s}_A \mid \boldsymbol{s}_C) p(\boldsymbol{s}_B \mid \boldsymbol{s}_C)$$

holds for any subsets $A, B \subset V$ and a separating set C.

Theorem 1 (Hammersley, Clifford, 1971)

If the distribution p(s) is an MRF w.r.t. graph (V,E) and strictly positive, then it is a GRF on the hypergraph defined by all cliques of (V,E) and vice versa.

Remark 2 The following tasks for MRFs / GRFs are NP-complete

- Computing the most probable labelling $s^* \in \arg \max_{s \in K^V} p(s)$.
- Computing the normalisation constant

$$Z(u) = \sum_{\mathbf{s} \in K^V} \exp \left[\sum_{i \in V} u_i(s_i) + \sum_{\{i,j\} \in E} u_{ij}(s_i, s_j) \right].$$

The same holds for computing marginal probabilities of p(s).

Computing the most probable labelling, MRFs with boolean variables

6/11

Consider $\log p(s)$, replace $u \to -u$. The task reads then

$$\sum_{i \in V} u_i(s_i) + \sum_{\{i,j\} \in E} u_{ij}(s_i, s_j) \to \min_{\mathbf{s} \in K^V}$$

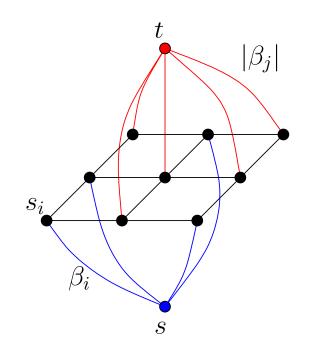
If the variables s_i , $i \in V$ are boolean: the functions u_i , u_{ij} can be written as polynomials in the variables $s_i = 0, 1$, and, by re-defining the unary functions u_i if necessary, the task reads as

$$s^* = \underset{s \in K^V}{\operatorname{arg \, min}} \sum_{\{i,j\} \in E} \alpha_{ij} |s_i - s_j| + \sum_{i \in V} \beta_i s_i$$

$$= \underset{s \in K^V}{\operatorname{arg \, min}} \sum_{\{i,j\} \in E} \alpha_{ij} |s_i - s_j| + \sum_{i \in V_+} \beta_i s_i + \sum_{i \in V_-} |\beta_i| (1 - s_i),$$

where $V_+ = \{i \in V \mid \beta_i \geqslant 0\}$ and $V_- = V \setminus V_+$. This is a **MinCut-problem!**

7/11



- If all edge weights are non-negative, i.e. $\alpha_{ij} \ge 0$, $\forall \{i,j\} \in E$: the task can be solved via MinCut MaxFlow duality,
- If some of the α -s are negative: apply approximation algorithms, e.g. relax the discrete variables to $s_i \in [0,1]$, consider an LP-relaxation of the task and solve the LP task e.g. by Tree-Reweighted Message Passing (Kolmogorov, 2006)
- If the variables s_i are multivalued, and all pairwise functions $u_{ij}(s_i, s_j)$ are submodular: the task can be reduced to a task with boolean variables and solved by via MinCut MaxFlow duality.

Computing the most probable labelling (general case)

If the problem is not submodular \Rightarrow resort to approximation algorithms, e.g.

Move making algorithms:

Construct a sequence of labellings $s^{(t)}$ with decreasing values of the objective function $u(s^{(i)})$:

lacktriangle Define neighbourhoods $\mathcal{N}(\boldsymbol{s}) \subset K^V$ such that the task

$$\underset{\boldsymbol{s} \in \mathcal{N}(\boldsymbol{s}')}{\operatorname{arg\,min}} \sum_{\{i,j\} \in E} u_{ij}(s_i, s_j) + \sum_{i \in V} u_i(s_i)$$

is tractable for every s'.

Iterate

$$s^{(t+1)} \in \underset{s \in \mathcal{N}(s^{(t)})}{\operatorname{arg min}} \sum_{\{i,j\} \in E} u_{ij}(s_i, s_j) + \sum_{i \in V} u_i(s_i)$$

until no further improvement possible.

Computing the most probable labelling (general case)

 α -Expansions (Boykov et al., 2001)

lacktriangle Define the neighbourhoods by choosing a label $\alpha \in K$ and setting

$$\mathcal{N}_{\alpha}(s) = \{ s' \in K^V \mid s_i' = \alpha \text{ if } s_i' \neq s_i \}.$$

Notice that $|\mathcal{N}_{\alpha}(s)| = 2^{V}$.

The task

$$\underset{\boldsymbol{s} \in \mathcal{N}_{\alpha}(\boldsymbol{s}')}{\operatorname{arg\,min}} \sum_{\{i,j\} \in E} u_{ij}(s_i, s_j) + \sum_{i \in V} u_i(s_i)$$

can be encoded as labelling problem with boolean variables.

It can be solved by MinCut-MaxFlow if

$$u_{ij}(k,k') + u_{ij}(\alpha,\alpha) \leqslant u_{ij}(\alpha,k') + u_{ij}(k,\alpha)$$

holds for all pairwise functions u_{ij} and all $k, k' \in K$.

Learning parameters of MRFs

Learning task: Given i.i.d. training data $\mathcal{T}^m = \{s^\ell \in K^V \mid \ell = 1, ..., m\}$, estimate the parameters u_i , u_{ij} of the MRF.

The maximum likelihood estimator reads

$$\log p_u(\mathcal{T}^m) = \frac{1}{m} \sum_{\ell=1}^m \left[\sum_{\{i,j\} \in E} u_{ij}(s_i^{\ell}, s_j^{\ell}) + \sum_{i \in V} u_i(s_i^{\ell}) \right] - \log Z(u) \to \max_{u_i, u_{ij}}.$$

It is intractable: the objective function is concave in u, but we can compute neither $\log Z(u)$ nor its gradient (in polynomial time).

We may use the **pseudo-likelihood** estimator (Besag, 1975) instead. It is based on the following observation

- lacktriangle Let \mathcal{N}_i denote the neighbouring nodes of $i \in V$.
- We can compute the conditional distributions

$$p(s_i \mid s_{V \setminus i}) \stackrel{!}{=} p(s_i \mid s_{\mathcal{N}_i}) \sim e^{u_i(s_i)} \prod_{j \in \mathcal{N}_i} e^{u_{ij}(s_i, s_j)}$$

Learning parameters of MRFs

The pseudo-likelihood of an single example $s \in \mathcal{T}^m$ is defined by

$$\begin{split} L_p(u) &= \sum_{i \in V} \log p_u(s_i \mid s_{\mathcal{N}_i}) \\ &= 2 \sum_{\{i,j\} \in E} u_{ij}(s_i, s_j) + \sum_{i \in V} u_i(s_i) - \sum_{i \in V} \log \sum_{s_i \in K} \exp \left[u_i(s_i) + \sum_{j \in \mathcal{N}_i} u_{ij}(s_i, s_j) \right] \end{split}$$

The pseudo-likelihood estimator is

- lack a concave function of the parameters u,
- lacktriangle tractable, i.e. both $L_p(u,\mathcal{T}^m)$ and its gradient are easy to compute,
- consistent.