When do we need generative learning?

Parametric distribution families

Maximum Likelihood Estimator and its properties
1. When do we need generative learning?

Discriminative learning: \(p(x,y) \) unknown

- define a hypothesis class \(H \) of predictors \(h: \mathcal{X} \to \mathcal{Y} \) and fix a loss \(\ell(y, y') \)
- given a training set \(\mathcal{T}^m \), learn \(h_m: \mathcal{X} \to \mathcal{Y} \) by empirical risk minimisation.

Cases when this is not sufficient:

- we need the uncertainty of the prediction \(h_m(x) \)
- semi-supervised learning, i.e. only a part of the training data is annotated
- the statistical relation between \(x \) and \(y \) depends on some *latent variables* \(z \), e.g. \(p(x, y, z) = p(x | z, y)p(z)p(y) \), but we never see \(z \) in the training data.
- we want to learn models that can generate realistic data \(x \)
1. When do we need generative learning?

Generative learning:

- prior knowledge/assumption: define a parametric family of distributions $p_\theta(x, y), \theta \in \Theta$
- given training data T^m, estimate the unknown parameter $\theta_m = e(T^m)$.
- Then predict hidden states by

 $$h(x) = \arg\min_{y \in \mathcal{Y}} \sum_{y' \in \mathcal{Y}} p_{\theta_m}(y' \mid x) \ell(y', y).$$

- the uncertainty of the prediction can be obtained from $p_{\theta_m}(y \mid x)$,
- data can be generated from $p_{\theta_m}(x \mid y)$.
- semi-supervised learning possible e.g. by Expectation Maximisation algorithm
2. Parametric distribution families

Parametric distribution family: A set of distributions for a r.v. X with common structure and specified by parameter values.

Example 1. The family of multivariate normal distributions $\mathcal{N}(\mu, V)$ on \mathbb{R}^n

$$p_{\mu,V}(x) = \frac{1}{(2\pi)^{n/2}|V|^{1/2}} \exp\left[-\frac{1}{2}(x - \mu)^T V^{-1} (x - \mu) \right]$$

parametrised by the vector $\mu \in \mathbb{R}^n$ and a positive (semi) definite $n \times n$ matrix V.

Example 2. The family of Poisson distributions on $x \in \mathbb{N}$ with probability mass

$$p(x = k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

parametrised by $\lambda \in \mathbb{R}_+$. Notice that $\lambda = \mathbb{E}[X] = \mathbb{V}[X]$.
2. Parametric distribution families

Both families are examples of a broad class of distribution families – exponential families.

Definition 1. A family of distributions for a random variable $x \in \mathcal{X}$ is an exponential family if its probability density / probability mass has the form

$$p_\theta(x) = h(x) \exp[\langle \phi(x), \theta \rangle - A(\theta)],$$

where

- $\phi(x) \in \mathbb{R}^n$ is the sufficient statistics,
- $\theta \in \mathbb{R}^n$ is the (natural) parameter,
- $h(x)$ is the base measure and
- $A(\theta)$ is the cumulant function defined by

$$A(\theta) = \log \int_{\mathbb{R}^n} h(x) \exp[\langle \phi(x), \theta \rangle] \, d\nu(x).$$
2. Parametric distribution families

Kullback-Leibler divergence: similarity measure for distributions, defined by

\[
D_{KL}(q(x) \parallel p(x)) = \sum_{x \in \mathcal{X}} q(x) \log \frac{q(x)}{p(x)}
\]

\(D_{KL}\) is non-negative, i.e. \(D_{KL}(q(x) \parallel p(x)) \geq 0\) with equality iff \(p(x) = q(x) \ \forall x \in \mathcal{X}\). This follows from strict concavity of the function \(\log(x)\)

\[
-D_{KL}(q \parallel p) = \sum_{x \in \mathcal{X}} q(x) \log \frac{p(x)}{q(x)} \leq \sum_{x \in \mathcal{X}} q(x) \left[\frac{p(x)}{q(x)} - 1 \right] = 0
\]

- \(D_{KL}\) can be generalised for continuous distributions.
- it is not symmetric, i.e. \(D_{KL}(q(x) \parallel p(x)) \neq D_{KL}(p(x) \parallel q(x))\).
- it is undefined if \(\exists x: q(x) > 0 \text{ and } p(x) = 0\).
2. Parametric distribution families

Example 3. Approximate a mixture of two Gaussians $p(x)$ by a single Gaussian $q(x)$ w.r.t. KL-divergence. Difference between forward and reverse KL-divergence.

$$q^* = \text{argmin}_q D_{KL}(p||q)$$

$$q^* = \text{argmin}_q D_{KL}(q||p)$$
3. Parameter estimation

Given: a parametric family of distributions $p_\theta(x)$, $\theta \in \Theta$ and an i.i.d. training set $T^m = \{x^j \in \mathcal{X} \mid j = 1, \ldots, m\}$ generated from $p_{\theta^*}(x)$ with unknown θ^*.

Estimator: a mapping $\theta_m = e(T^m)$, which maps training sets to parameters, i.e. $e : T^m \mapsto \theta_m \in \Theta$

Example: Estimating parameters of a normal distribution
- red: true distribution $\mathcal{N}(0, 1)$
- blue and green: sample two i.i.d. training sets from it and estimate parameters.

Desired properties of an estimator:
- estimator is unbiased i.e. $\mathbb{E}_{T^m \sim \theta^*}[e(T^m)] = \theta^*$
- estimator has small variance $\mathbb{V}_{T^m \sim \theta^*}[e(T^m)]$
- estimator is consistent $\mathbb{P}\left(|e(T^m) - \theta^*| \geq \epsilon\right) \to 0$ for $m \to \infty$
Define the log-likelihood to obtain the given i.i.d. training data T^m from the distribution with parameter $\theta \in \Theta$

$$L_{T^m}(\theta) = \frac{1}{m} \log P_{\theta}(T^m) = \frac{1}{m} \sum_{x \in T^m} \log p_{\theta}(x)$$

Notice: we normalise the log-likelihood by the sample size to make it comparable for different sample sizes.

The **Maximum Likelihood estimator** is defined by

$$\theta_m = e_{ML}(T^m) \in \arg \max_{\theta \in \Theta} L_{T^m}(\theta) = \arg \max_{\theta \in \Theta} \frac{1}{m} \sum_{x \in X} \log p_{\theta}(x)$$

i.e. the estimate θ_m is a maximiser of the log-likelihood.

Is the Maximum Likelihood estimator unbiased?

No, it is not unbiased in general.
3. Maximum Likelihood estimator

What conditions ensure MLE consistency, i.e.

\[
P\left(|\theta^* - e_{ML}(\mathcal{T}^m)| > \epsilon\right) \xrightarrow{m \to \infty} 0,
\]

where probability is w.r.t. \(\mathcal{T}^m \sim p_{\theta^*}(x) \)?

The ML estimator is consistent if the following properties hold:

- the parameter set \(\Theta \in \mathbb{R} \) is an open interval,
- the density is strictly positive, i.e. \(p_\theta(x) > 0 \), and is differentiable in \(\theta \) for all \(x \),
- the equation

\[
\frac{d}{d\theta} L_{\mathcal{T}^m}(\theta) = \frac{d}{d\theta} \left[\frac{1}{m} \sum_{x \in \mathcal{X}} \log p_\theta(x) \right] = 0
\]

has exactly one solution which corresponds to a maximum of \(L_{\mathcal{T}^m}(\theta) \). This holds for each \(m \) and each training set \(\mathcal{T}^m \).

This can be generalised to the case of many parameters \(\Theta \in \mathbb{R}^n \).
3. Maximum Likelihood estimator

What can we say about the variance of the ML estimator, i.e. $\nabla_{T^{-}\sim\theta}[e_{ML}(T^{-m})]$?

The asymptotic variance of the ML estimator is, in a certain sense, the smallest possible!

To make this precise, we need the notion of Fisher information

$$I(\theta) = \int \left[\frac{d}{d\theta} \log p_\theta(x) \right]^2 p_\theta(x) \, dx = \mathbb{E}_\theta \left[\frac{d}{d\theta} \log p_\theta(x) \right]^2$$

Under some regularity conditions, we have

$$\int \frac{d}{d\theta} p_\theta(x) \, dx = 0 \text{ and } \int \frac{d^2}{d\theta^2} p_\theta(x) \, dx = 0.$$

Then we have the following equivalent definitions of Fisher information:

$$I(\theta) = \nabla_\theta \left[\frac{d}{d\theta} \log p_\theta(x) \right] \text{ and } I(\theta) = -\mathbb{E}_\theta \left[\frac{d^2}{d\theta^2} \log p_\theta(x) \right]$$
3. Maximum Likelihood estimator

Now, we have the following two statements about the variance of estimators

- The asymptotic distribution of the ML estimator is:

\[e_{ML}(T^m) \sim N(\theta, \frac{1}{mI(\theta)}) \quad \text{for } m \to \infty \]

- If \(e \) is an unbiased estimator, then its variance can not be smaller, i.e.

\[\forall_{T^m \sim \theta} \left[e(T^m) \right] \geq \frac{1}{mI(\theta)} \]

Summary:

- ML estimator can be biased,
- ML estimator is consistent under weak conditions,
- ML estimator has asymptotically optimal variance.
3. Maximum Likelihood estimator

Example 4 (MLE for an exponential family). Let us consider an exponential family

\[p_\theta(x) = \exp[\langle \phi(x), \theta \rangle - A(\theta)] \]

and the ML estimator for an i.i.d. training set \(T^m = \{x_i \mid i = 1 \ldots, m\} \). Its log-likelihood is

\[L_{T^m}(\theta) = \frac{1}{m} \sum_{x \in T^m} \log p_\theta(x) = \frac{1}{m} \sum_{x \in T^m} \langle \phi(x), \theta \rangle - A(\theta) = \langle \psi, \theta \rangle - A(\theta), \]

where we denoted \(\psi = \mathbb{E}_{T^m}[\phi(x)] \).

- sufficient statistics: we need to now \(\mathbb{E}_{T^m}[\phi(x)] \) only.
- The function \(A(\theta) \) is convex and has gradient \(\nabla A(\theta) = \mathbb{E}_\theta[\phi] \) (see seminar).
- \(L_{T^m}(\theta) \) is concave. Hence any critical point \(\theta \) with \(\nabla L_{T^m}(\theta) = 0 \) is a global maximum.
- Maximisers \(\theta^* \) are given by the equation \(\mathbb{E}_{T^m}[\phi] = \mathbb{E}_{\theta^*}[\phi] \).
- The Fisher information for the family is given by the variance of the sufficient statistics

\[I(\theta) = \int \left[\frac{d}{d\theta} \log p_\theta(x) \right]^2 p_\theta(x) \, dx = \int \left[\phi(x) - \mathbb{E}_\theta[\phi] \right]^2 p_\theta(x) \, dx = \text{Var}_\theta[\phi] \]