
Statistical Machine Learning (BE4M33SSU)
Lecture 1.

Czech Technical University in Prague



2/14
Course format

Teachers: Jan Drchal, Vojtech Franc and Jakub Paplhám

Format: 1 lecture & 1 seminar per week (6 credits)

Seminars: Solving theoretical assignments; explaining and discussing homeworks.

Homeworks:
1. Automaticaly evaluated: You have to submit a Python code.
2. Manually evaluated: You have to submit i) PDF report and ii) a Python code.

Grading:
� Thresholds for passing: at least 50% of the regular points in the practical labs and at
least 50% of the regular points in the exam.

� 40% homeworks + 60% written exam = 100% (+ bonus points)

Prerequisites:
� probability theory and statistics (A0B01PSI)
� pattern recognition and machine learning (AE4B33RPZ)
� optimisation (AE4B33OPT)

More details: https://cw.fel.cvut.cz/wiki/courses/be4m33ssu/start

http://cmp.felk.cvut.cz
https://cw.fel.cvut.cz/wiki/courses/be4m33ssu/start
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Goals

The aim of statistical machine learning is to develop systems (models and algorithms) for
solving prediction tasks given a set of examples and some prior knowledge about the task.

Machine learning has been successfully applied e.g. in areas

� email spam detection,

� computer vision,

� credit scoring,

� medical diagnosis,

� recommendation systems,

� speech recognition,

� network intrusion,

� natural language processing,

� and many others

You will gain skills to construct learning systems for typical applications by successfully
combining appropriate models and learning methods.

http://cmp.felk.cvut.cz
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Prediction problem

Example: Given data representing weight of adult males and females:

weight [kg] 99 65 83 76 77 · · ·
gender male female male male female · · ·

we want a predictor which outputs a person’s gender given his/her weight.

� Input observations (features) x ∈ X ; x can be: a categorical variable, a scalar, a real
valued vector, a tensor, a sequence of values, an image, a labelled graph, ldots

� Hidden state (target variable, output) y ∈ Y; y can be: see above

� Prediction strategy (predictor) h : X → Y; depending on the type of Y:

• y is a categorical variable ⇒ classification

• y is a real valued variable ⇒ regression

http://cmp.felk.cvut.cz
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Machine learning

World (
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)
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Main assuption: i.i.d. data

World (
x1, y1

)
,
(
x2, y2

)
, . . .

observation x∈ X hidden state y∈ Y

p(x,y)
i.i.d. samples

� Data: (x1, y1), (x2, y2), . . . , (xn, yn) are samples drawn from independent and
identically distributed (i.i.d.) pairs of random vars (X1, Y 1), (X2, Y 2), . . .

� Identically distributed:

p(X1 = x, Y 1 = y) = p(X2 = x, Y 2 = y) = · · · = p(Xn = x, Y n = y) , ∀x ∈ X , y ∈ Y

Remark: we will use p(x, y) instead of p(X = x, Y = y).

� Independent: the occurrence of one pair does not affect the occurrence of another:

p
(
x1, y1, x2, y2, . . . , xn, yn

)
= p(x1, y1) p(x2, y2) · · · p(xn, yn)

http://cmp.felk.cvut.cz
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The optimal predictor

� Loss function ` : Y × Y → R+ penalises wrong predictions, i.e. `(y, ŷ) is the loss for
predicting ŷ = h(x) when y is the true state.
Example: 0/1-loss

`(y, ŷ) =

{
0 if y = ŷ
1 if y 6= ŷ

� Expected risk (a.k.a. generalization error) evaluates the performance of a predictor
h : X → Y on unseen data:

R(h) =

∫ ∑
y∈Y

`(y, h(x)) p(x, y) dx = E(x,y)∼p

[
`(y, h(x))

]
The expected risk R(h) represents the average loss `(y, h(x)) when evaluated over large
i.i.d. sample (x1, y1), . . . , (xn, yn):

1

n

(
`(y1, h(x1)) + `(y2, h(x2)) + · · ·+ `(yn, h(xn))

)
p−→ R(h)

� Bayes optimal predictor:

h∗ ∈ arg min
h∈YX

R(h) ⇒ h∗(x) = arg min
ŷ∈Y

∑
y∈Y

p(y | x)`(y, ŷ)

http://cmp.felk.cvut.cz
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Data split for learning and evaluation

� Setup: we have only samples i.i.d drawn from an unknown p(x, y).

World (
x1, y1

)
, . . . , (xm, ym) ,

(
xm+1, ym+1

)
, . . . ,

(
xm+l, ym+l

)
, . . .

training set test set
p(x, y)

� Learning: find h : X → Y with small generalization error R(h) using training
(sequence) set

T m = ((xi, yi) ∈ (X × Y) | i = 1, . . . ,m) drawn i.i.d. from p(x, y)

� Evaluation: estimate the expected risk R(h) of a given predictor h : X → Y using test
(sequence) set

Sl = ((xi, yi) ∈ (X × Y) | i = 1, . . . , l) drawn i.i.d. from p(x, y)

http://cmp.felk.cvut.cz
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Evaluation

� Goal: Given a predictor h : X → Y and a test set Sl =
(
(xi, yi) ∈ X × Y | i = 1, . . . , l

)
drawn i.i.d. from an unknown distribution p(x, y), estimate is the expected risk

R(h) = E(x,y)∼p[`(y, h(x)]

� Approach:

• Estimate the expected risk R(h) by computing the empirical risk (test error)

RSl(h) =
1

l

(
`(y1, h(x1)) + · · ·+ `(yl, h(xl)

)
=

1

l

l∑
i=1

`(yi, h(xi))

� Issues:

• How much can R(h) deviate from RSl(h)?
Lecture: “Predictor Evaluation”

http://cmp.felk.cvut.cz
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Empirical Risk Minimization (a.k.a discriminative)
approach to learning

� Goal: given a training set T m = ((xi, yi) ∈ X × Y | i = 1, . . . ,m) i.i.d. draw from an
unknown p(x, y), find a good approximation of the Bayes predictor
h∗(x) = arg miny′∈Y

∑
y∈Y p(y | x)`(y, y′)

� Approach:
• Use prior knowledge to choose a hypothesis space H ⊂ YX = {h : X → Y}
• Approximate the expected risk R(h) by the empirical risk (training error)

RT m(h) =
1

m

(
`(y1, h(x1)) + · · ·+ `(ym, h(xm)

)
=

1

m

m∑
i=1

`(yi, h(xi))

• Learn the predictor by minimizing the emprical risk:

hm ∈ arg min
h∈H

RT m(h)

� Issues:
• How much can R(h) deviate from RT m(h)? How does it depend on H ?
Lecture: “Empirical Risk Minimization”

• How much can R(hm) deviate from R(h∗) ?
Lecture: “PAC learning”

http://cmp.felk.cvut.cz
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Instances of ERM approach

� Learning algorithms implementing the Empirical risk minimization approach, i.e.

hm ∈ arg min
h∈H

RT m(h)

differ in the choice of the hypothesis space H ⊂ YX and the loss ` : Y × Y → R+.

� Support Vector Machines: H = {h(x) = sign(〈φ(x),w〉+ b)} is a space of linear
classifiers; ` is the hinge loss.

• Lecture: “Support Vector Machines”

� Neural networks: H = {h(x) = hL(· · · (h2(h1(x))) · · · )} is a space of neural networks;
` is e.g. cross-entropy loss or L2-loss.

• Two lectures: “Supervised learning of deep neural networks” and “SGD”

� Ensemble predictors: H = {h(x) = ψ(h1(x)α1 + h2(x)α2 + · · ·+ hL(x)αL)} is a
space of predictors that combine predictions of multiple models; ` is e.g. logistic loss or
L2 loss.

• Two lectures: “Ensembling I” and “Ensembling II”

http://cmp.felk.cvut.cz
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Generative Learning

� Goal: given a training set T m = ((xi, yi) ∈ X × Y | i = 1, . . . ,m) i.i.d. draw from an
unknown p(x, y), find a good approximation of the Bayes predictor
h∗(x) = arg miny′∈Y

∑
y∈Y p(y | x)`(y, y′)

� Approach:
• Use the training set T m to find p̂(x, y) that approximates the true p.d. p(x, y).
• Use the estimated p.d. p̂(x, y) to construct the plugin Bayes predictor

ĥ(x) = arg min
y′∈Y

∑
y∈Y

p̂(y | x)`(y, y′)

� Maximum Likelihood estimation:
• Assume the true p.d. p(x, y) is in some parametrized family of distributions
P = {pθ(x, y) | θ ∈ Θ}.

• Find ML estimate of the parameters θm = arg max
θ∈Θ

1
m

∑m
i=1 log pθ(x

i, yi).

• Insert p̂(x, y) = pθm(x, y) to the plugin Bayes predictor.
• Two lectures: “Maximum Likelihood Estimator” and “Expectation-Maximization

Algorithm”

http://cmp.felk.cvut.cz
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Generative Learning

� Bayesian Learning:

• Assume the true p.d. p(x, y) is in some parametrized family of distributions
P = {p(x, y | θ) | θ ∈ Θ}.

• Interpret the unknown parameter θ ∈ Θ as a random variable.

• Assume we know the prior distribution p(θ) on Θ.

• Approach 1: MAP estimate

θm = arg max
θ∈Θ

p(θ | T m)

and set p̂(x, y) = p(x, y | θm).

• Approach 2: Bayesian inference

h(x, T m) = arg max
y∈Y

∫
Θ

p(x, y | θ) p(θ | T m)dθ

• Lecture: “Bayesian Learning”

http://cmp.felk.cvut.cz
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Generative vs. Discriminative Learning

Training data:

� if T m =
{

(xi, yi) ∈ X × Y | i = 1, . . . ,m
}
⇒ supervised learning

� if T m =
{
xi ∈ X | i = 1, . . . ,m

}
⇒ unsupervised learning

� if T m = T m1
l

⋃
T m2
u , with labelled training data T m1

l and unlabelled training data T m2
u

⇒ semi-supervised learning

Comparison of discriminative and generative learning

discriminative approach generative generative
supervised data yes yes
semi-supervised data (yes) yes
unsupervised data no yes
prediction uncertainty no yes
theoretical guarantees yes (no)

http://cmp.felk.cvut.cz
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