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� Markov Models and Hidden Markov Models

� Inference algorithms for HMMs

� Parameter learning for HMMs



2/12
1. Structured hidden states

Models discussed so far: mainly classifiers predicting a categorical (class) variable y ∈ Y

Often in applications: the hidden state is a structured variable.

Here: the hidden state is given by a sequence of categorical variables.

Application examples:

� text recognition (printed, handwritten, “in the wild”),

� speech recognition (single word recognition, continuous speech recognition, translation),

� robot self localisation.

Markov Models and Hidden Markov Models on chains:
a class of generative probabilistic models for sequences of features and sequences of
categorical variables.

http://cmp.felk.cvut.cz
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2. Markov Models

Let s= (s1,s2, . . . ,sn) denote a sequence of length n with elements from a finite set K.

Any joint probability distribution on Kn can be written as

p(s1,s2, . . . ,sn) = p(s1)p(s2 | s1)p(s3 | s2,s1) · . . . ·p(sn | s1, . . . ,sn−1)

Definition 1 A joint p.d. on Kn is a Markov model if

p(s) = p(s1)p(s2 | s1)p(s3 | s2) · . . . ·p(sn | sn−1) = p(s1)

n∏
i=2

p(si | si−1)

holds for any s= (s1,s2, . . . ,sn).

p(s2 | s1)s1 s2 s3 s4p(s3 | s2) p(s4 | s3)

http://cmp.felk.cvut.cz
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2. Markov Models

Example 1 (Random walk on a graph)

� Let (V,E) be a directed graph. A random walk in (V,E) is described by a sequence
s= (s1, . . . ,st, . . .) of visited nodes, i.e. st ∈ V .

� The walker starts in node i ∈ V with probability p(s1 = i).

� The edges of the graph are weighted by w : E→ R+, s.t.∑
j : (i,j)∈E

wij = 1 ∀i ∈ V

� In the current position st = i, the walker randomly chooses an outgoing edge with
probability given by the weights and moves along this edge, i.e.

p(st+1 = j | st = i) =

{
wij if (i, j) ∈ E
0 otherwise

Questions: How does the distribution p(st) behave? Does it converge to some fix-point
distribution for t→∞?

http://cmp.felk.cvut.cz
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3. Algorithms: Computing the most probable sequence

How to compute the most probable sequence s∗ ∈ argmax
s∈Kn

p(s1)
n∏

i=2

p(si | si−1)?

Take the logarithm of p(s): s∗ ∈ argmax
s∈Kn

[
g1(s1)+

n∑
i=2

gi(si−1,si)
]

and apply dynamic programming: Set φ1(s1)≡ g1(s1) and compute

φi(si) = max
si−1∈K

[
φi−1(si−1)+gi(si−1,si)

]
.

Finally, find s∗n ∈ argmaxsn∈K φn(sn) and back-track the solution. This corresponds to
searching the best path in the graph

s1 s2 s3 s4g2(s1, s2) g4(s3, s4)g1(s1) g3(s2, s3)

http://cmp.felk.cvut.cz
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3. Algorithms: Computing marginal probabilities

How to compute marginal probabilities for the sequence element si in position i

p(si) =
∑

s1∈K

· · ·
�
�
�
�
��S

S
S
S
SS

∑
si∈K

· · ·
∑

sn∈K

p(s1)

n∏
i=2

p(si | si−1)

p(s2 | s1)s1 s2 s3 s4p(s3 | s2) p(s4 | s3)

Summation over the trailing variables is easily done because:∑
sn∈K

p(s1) · · ·p(sn−1 | sn−2)p(sn | sn−1) = p(s1) · · ·p(sn−1 | sn−2)

The summation over the leading variables is done dynamically: Begin with p(s1) and
compute

p(si) =
∑

si−1∈K

p(si | si−1)p(si−1)

http://cmp.felk.cvut.cz
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3. Algorithms: Computing marginal probabilities

This computation is equivalent to a matrix vector multiplication: Consider the values
p(si = k | si−1 = k′) as elements of a matrix Pk′k(i) and the values of p(si = k) as elements
of a vector πi. Then the computation above reads as πi = πi−1P (i).

Remark 1

� Notice that the preferred direction (from first to last) in the Definition 1 of a Markov
model is only apparent. By computing the marginal probabilities p(si) and by using
p(si | si−1)p(si−1) = p(si−1,si) = p(si−1 | si)p(si), we can rewrite the model in reverse
order.

� A Markov model is called homogeneous if the transition probabilities
p(si = k | si−1 = k′) do not depend on the position i in the sequence. In this case the
formula πi = π1P

i−1 holds for the computation of the marginal probabilities.

http://cmp.felk.cvut.cz


8/12
3. Algorithms: Learning a Markov model

Suppose we are given i.i.d. training data Tm = {sj ∈Kn | j = 1, . . . ,m} and want to estimate
the parameters of the Markov model by the maximum likelihood estimate. This is very easy:

� Denote by α(si−1 = `,si = k) the fraction of sequences in Tm for which si−1 = ` and
si = k.

� The estimates for the conditional probabilities are then given by

p(si = k | si−1 = `) =
α(si−1 = `,si = k)∑
kα(si−1 = `,si = k)

.

http://cmp.felk.cvut.cz
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4. Hidden Markov Models

� Let s= (s1,s2, . . . ,sn) denote a sequence of hidden states from a finite set K.

� Let x= (x1,x2, . . . ,xn) denote a sequence of features from some feature space X .

Definition 2 A joint p.d. on Xn×Kn is a Hidden Markov model if

(a) the prior p.d. p(s) for the sequences of hidden states is a Markov model, and

(b) the conditional distribution p(x | s) for the feature sequence is independent, i.e.

p(x | s) =
n∏

i=1

p(xi | si).

Example 2 (Text recognition, OCR)

� x= (x1,x2, . . . ,xn) – sequence of images with characters,

� s= (s1,s2, . . . ,sn) – sequence of alphabetic characters,

� p(si | si−1) – language model,

� p(xi | si) – appearance model for characters.

http://cmp.felk.cvut.cz
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Hidden Markov Models

p(x1 | s1)

s1
p(s2 | s1)

s2

p(s3 | s2) p(s4 | s3)
s4

p(x4 | s4)

x4x3x2x1

p(x2 | s2) p(x3 | s3)

s3
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4. Algorithms for HMMs

(1) Find the most probable sequence of hidden states given the sequence of features:

s∗ ∈ argmax
s∈Kn

p(s1)

n∏
i=2

p(si | si−1)

n∏
i=1

p(xi | si)

Take the logarithm, redefine the g-s and apply dynamic programming as before for Markov
models.

(2) Compute marginal probabilities for hidden states given the sequence of features:

This is now more complicated, because we need to sum over the leading and trailing hidden
state variables. Do this by dynamic matrix-vector multiplication from the left and from the
right

φi(si) =
∑
si−1

p(xi | si)p(si | si−1)φi−1(si−1)

ψi(si) =
∑
si+1

p(xi+1 | si+1)p(si+1 | si)ψi+1(si+1)

http://cmp.felk.cvut.cz
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4. Algorithms for HMMs

The (posterior) marginal probabilities are then obtained from

p(si | x)∼ φi(si)ψi(si)

The computational complexity is O(nK2).

(3) Learning the model parameters from training data:

Given i.i.d. training data Tm = {(xj,sj) ∈ Xn×Kn | j = 1, . . . ,m}, estimate the parameters
of the HMM by the maximum likelihood estimator.

This is done by simple “counting” as before for Markov models.

http://cmp.felk.cvut.cz

	First page
	cmporange 1.~Structured hidden states
	cmporange 2.~Markov Models
	cmporange 2.~Markov Models
	cmporange 3.~Algorithms: Computing the most probable sequence
	cmporange 3.~Algorithms: Computing marginal probabilities
	cmporange 3.~Algorithms: Computing marginal probabilities
	cmporange 3.~Algorithms: Learning a Markov model
	cmporange 4.~Hidden Markov Models
	cmporange Hidden Markov Models
	cmporange 4.~Algorithms for HMMs
	cmporange 4.~Algorithms for HMMs
	Last page

