Statistical Machine Learning (BE4M33SSU)
Lecture 9: Hidden Markov Models

Czech Technical University in Prague

¢ Markov Models and Hidden Markov Models
¢ Inference algorithms for HMMs

¢ Parameter learning for HMMs
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Models discussed so far: mainly classifiers predicting a categorical (class) variable y € Y
Often in applications: the hidden state is a structured variable.
Here: the hidden state is given by a sequence of categorical variables.

Application examples:
text recognition (printed, handwritten, “in the wild"),

speech recognition (single word recognition, continuous speech recognition, translation),

robot self localisation.

Markov Models and Hidden Markov Models on chains:
a class of generative probabilistic models for sequences of features and sequences of

categorical variables.
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Let s = (s1,S9,...,5,) denote a sequence of length n with elements from a finite set K.

Any joint probability distribution on K™ can be written as

p(S1,82,--+,8n) =p(s1)p(s2 | 51)p(83 | $2,81) .. D(Sn | S15. -+, 8n—1)

Definition 1 A joint p.d. on K" is a Markov model if

n

p(s) =p(s1)p(sa | 1) p(ss | 82) ... p(sn | sn—1) =p(s1) | [ p(si | si-1)

1=2

holds for any s = (s1,82,...,5n).

S1 p(Sz | 31) S92 p(33 | 82) 53 29(34 | 53)

S4

@
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Example 1 (Random walk on a graph)

Let (V,FE) be a directed graph. A random walk in (V, F) is described by a sequence
s=($1,...,5¢,...) of visited nodes, i.e. s; € V.

The walker starts in node i € V' with probability p(s; =1).
The edges of the graph are weighted by w: E — R, s.t.

Z wij:1 VieV

j: (1,j)eE

In the current position s; =7, the walker randomly chooses an outgoing edge with
probability given by the weights and moves along this edge, i.e.

P(strr =] | s ) {O otherwise

Questions: How does the distribution p(s;) behave? Does it converge to some fix-point
distribution for t — co?
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How to compute the most probable sequence s* € argmax p(s1) [[ p(s; | $i—1)7
sEK™ i=2

Take the logarithm of p(s): s* € argmax [91(81) + Zgz’(si—laSi)]
sc K™ 1=2

and apply dynamic programming: Set ¢1(s1) = ¢1(s1) and compute

¢i(s;) = max [¢i—1(3i—1)+gi(3i—173i)]-

s;i_1€EK

Finally, find s}, € argmax, x ¢n(s,) and back-track the solution. This corresponds to
searching the best path in the graph

g1(s1) S1 ga2(s1, 52) S9 g3(s2, 53) S3 ga(s3, 54) Sy
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How to compute marginal probabilities for the sequence element s; in position ¢

Z Zpsll_[ Sz|37, 1)

e
| —— ]

S1 p(sa | s1) S92 p(s3 | s2) S3 p(ss | s3) Sy

Summation over the trailing variables is easily done because:

Z p S1 Sn 1 | Sn— 2) (Sn | Sn—l) :p(81) T 'p(sn—l ‘ Sn—Z)
sneK

The summation over the leading variables is done dynamically: Begin with p(s;) and

compute
E p(Sz' | Si—l)p(si—l)
si—1€K
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This computation is equivalent to a matrix vector multiplication: Consider the values
p(si=k|si_1=k') as elements of a matrix P,/ (7) and the values of p(s; = k) as elements
of a vector 7r;. Then the computation above reads as w; = m; 1 P(%).

Remark 1

¢ Notice that the preferred direction (from first to last) in the Definition 1 of a Markov
model is only apparent. By computing the marginal probabilities p(s;) and by using
p(si | si—1)p(si—1) = p(si—1,8:) = p(si—1| si)p(s;), we can rewrite the model in reverse
order.

¢ A Markov model is called homogeneous if the transition probabilities
p(s;i =k | s;—1 =k") do not depend on the position i in the sequence. In this case the
formula 7m; = w; P! holds for the computation of the marginal probabilities.
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Suppose we are given i.i.d. training data 7,,, = {s?’ € K" | j=1,...,m} and want to estimate
the parameters of the Markov model by the maximum likelihood estimate. This is very easy:

¢ Denote by a(s; 1 =¥{,s; = k) the fraction of sequences in 7T, for which s;_; =/ and

® The estimates for the conditional probabilities are then given by

a(si—1=4,5,=k)

p(S ‘S ! ) Zka(si_lzﬁ,si:k)
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4. Hidden Markov Models

¢ Let s =(s1,89,...,5,) denote a sequence of hidden states from a finite set K.

¢ Let & = (x1,29,...,7,) denote a sequence of features from some feature space X.

Definition 2 A joint p.d. on X" x K" is a Hidden Markov model if
(a) the prior p.d. p(s) for the sequences of hidden states is a Markov model, and

(b) the conditional distribution p(x | s) for the feature sequence is independent, i.e.

n

p(x|s)=][p(x:|s0).

i=1
Example 2 (Text recognition, OCR)
¢ x = (x1,29,...,2,) — sequence of images with characters,
¢ s=(s1,89,...,5,) — sequence of alphabetic characters,

® p(s;|si—1) — language model,

¢ p(z; | s;) — appearance model for characters.



http://cmp.felk.cvut.cz

Hidden Markov Models

S1

p(x1 | s1)

p(s2 | s1)

m plss|ss) /7 plsalss)

J

x1

S92

p(x2 | s2)
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p(z3 | s3)

H
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S4

p(w4 | 84)

N
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(1) Find the most probable sequence of hidden states given the sequence of features:

n n

s* € argmax p(sy) Hp(sz | Si—1)HP(sz’ | 54)

sek™ i=2 i=1

Take the logarithm, redefine the g-s and apply dynamic programming as before for Markov
models.

(2) Compute marginal probabilities for hidden states given the sequence of features:

This is now more complicated, because we need to sum over the leading and trailing hidden
state variables. Do this by dynamic matrix-vector multiplication from the left and from the
right

@(8@) — ZP(% | Si)p(Sz’ | 3@'—1) </57;—1(8z'—1)

Si—1

Yi(si) = > p(@inr [ si01) p(sirn | s0) Yira(sin)

Si+1
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The (posterior) marginal probabilities are then obtained from

p(s; | ) ~ ¢i(s:)i(ss)

The computational complexity is O(nk?).
(3) Learning the model parameters from training data:

Given i.i.d. training data 7,, = {(x’,s?) € X" x K™ | j =1,...,m}, estimate the parameters
of the HMM by the maximum likelihood estimator.

This is done by simple “counting” as before for Markov models.
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