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■ When do we need generative learning?

■ Parametric distribution families

■ Maximum Likelihood Estimator and its properties
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Reminder: discriminative learning

Goal: train a classifier y = h(x) for an unknown distribution p(x,y) for features x ∈ X and
classes y ∈ Y

Discriminative learning:
■ define a hypothesis space H of predictors h : X → Y and fix a loss ℓ(y,y′)

■ given a training set T m, learn hm : X → Y by empirical risk minimisation.
Example 1 (Gaussian discriminative analysis). Assume we know: X = R, Y = {−1,+1}

p(x,y) = p(y)
1√
2πσ

e
− 1

2σ2 (x−µy)
2

with unknown p(y = 1), µ+ > µ− and σ.
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The loss is ℓ(y,y′) = Jy′ ̸= yK and the training set is T m =
(
(x1,y1), . . . ,(xm,ym)

)
.

■ The Bayes optimal predictor for each such model is sign(x−θ) with some threshold θ,
thus H has VC-dimension d = 1.

■ We apply empirical risk minimisation and want to bound the estimation error
R(hH)−R(hm) by ϵ = 0.03 with probability 0.95 over training sets T m.

From theory: H satisfies the ULLN ⇒ ERM is a successful PAC-learner ⇒
we need m > 105 training examples.

http://cmp.felk.cvut.cz
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Generative learning (Setup)

Generative learning: Use prior knowledge to restrict the search to a parametric family of
distributions pθ(x,y), θ ∈ Θ. Learning algorithm:

1. Given training data T m, estimate the unknown parameter θm = e(T m) e.g. using the
maximum likelihood estimator.

2. Consider pθm(x,y) as the true model. Predict hidden states by its Bayes optimal
predictor

h(x) = argmin
y∈Y

∑
y′∈Y

pθm(y
′ |x)ℓ(y′,y).

Example 1 (cont.). Given T m, the estimates of the model parameters are

p(y = 1) =
m+

m
µ+ =

1

m+

∑
i

xiJyi = 1K µ− =
1

m−

∑
i

xiJyi = −1K

and
σ2 =

1

m

∑
i

(
xi −µ+Jyi = 1K−µ−Jyi = −1K

)2

,

where m+ denotes the number of training examples with class yi = 1. The predictor is

h(x) = sign
[
p(x,y = 1)−p(x,y = −1)

]
= . . . = sign(x−θ),

where θ depends on the estimated µ+, µ−, σ, p(y = 1) and p(y = −1).

http://cmp.felk.cvut.cz
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When do we need generative learning?

We can not prove that this leads to a successful PAC-learner.

When and why shall we use generative learning?

■ if we need the uncertainty of the prediction hm(x),

■ if we want to detect outliers when predicting,

■ for semi-supervised learning, i.e. when only a part of the training data is annotated,

■ if the statistical relation between x and y depends on some latent variables z,
e.g. p(x,y,z) = p(x |z,y)p(z)p(y) and they are not accessible for training,

■ if we want to learn models that can generate realistic data x.

http://cmp.felk.cvut.cz
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Parametric distribution families

A parametric distribution family is a set of distributions for a r.v. X which are specified by
parameter values.

Example 2. The family of multivariate normal distributions N (µ,V ) on Rn

pµ,V (x) =
1

(2π)n/2|V |1/2
exp

[
−1

2
(x−µ)T V −1(x−µ)

]
parametrised by the vector µ ∈ Rn and a positive (semi) definite n×n matrix V .

Example 3. The family of Poisson distributions on x ∈ N with probability mass

p(x = k) =
λke−λ

k!
parametrised by λ ∈ R+. Notice that λ = E[X] = V[X].

Both families are examples of a broad class of distribution families – exponential families.

http://cmp.felk.cvut.cz
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Parametric distribution families

Definition 1. A family of distributions for a random variable x ∈ X is an exponential family
if its probability density / probability mass has the form

pθ(x) = h(x)exp
[
⟨ϕ(x),θ⟩−A(θ)

]
,

where
ϕ(x) ∈ Rn is the sufficient statistics,
θ ∈ Rn is the (natural) parameter,
h(x) is the base measure and
A(θ) is the cumulant function defined by

A(θ) = log

∫
Rn

h(x)exp
[
⟨ϕ(x),θ⟩

]
dν(x)

Notes:
■ The cumulant function is essentially the logarithm of the normalisation constant.
■ The statistic ϕ(x) is called sufficient because when estimating the parameter θ from a

training set T , all we need to know from it is ET [ϕ(x)].

http://cmp.felk.cvut.cz
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Parametric distribution families

Example 4. Consider the family of Bernoulli distributions for x ∈ {0,1} with
p(x) = βx(1−β)1−x parametrised by β ∈ (0,1). It can be written as

p(x) = exp[⟨ϕ(x),θ⟩−A(θ)]

with ϕ(x) = x, θ = log β
1−β and A(θ) = . . ..

Example 5. Consider the family of univariate normal distributions with unit variance and
mean µ for x ∈ R. Its density is given by

p(x) =
1√
2π

e−1
2(x−µ)2

and can be written as
p(x) = h(x)exp

[
⟨ϕ(x),θ⟩−A(θ)

]
with h(x) = 1√

2π
e−x2

2 , ϕ(x) = x, θ = µ and A(θ) = θ2

2 .

http://cmp.felk.cvut.cz
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Parameter estimation

Given: a parametric family of distributions pθ(x), θ ∈ Θ and an i.i.d. training set
T m =

{
xj ∈ X | j = 1, . . . ,m

}
generated from pθ∗(x) with unknown θ∗.

Estimator: a mapping θm = e(T m), which maps training sets to parameters,
i.e. e : T m 7→ θm ∈ Θ

Example 6. Estimating parameters of a normal
distribution

■ red: true distribution N (0,1)

■ blue and green: sample two i.i.d. training
sets from it and estimate parameters.
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Desired properties of an estimator:
■ the estimator is unbiased i.e. ET m∼θ∗

[
e(T m)

]
= θ∗

■ the estimator has small variance VT m∼θ∗
[
e(T m)

]
→ 0 for m → ∞

■ the estimator is consistent Pθ∗

(
|e(T m)−θ∗| ⩾ ϵ

)
→ 0 for m → ∞

http://cmp.felk.cvut.cz
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Maximum Likelihood estimator

Define the log-likelihood to obtain the given i.i.d. training data T m from the distribution
with parameter θ ∈ Θ

LT m(θ) =
1

m
logPθ(T m) =

1

m

∑
x∈T m

logpθ(x)

Notice: we normalise the log-likelihood by the sample size to make it comparable for
different sample sizes.

The Maximum Likelihood estimator predicts the parameter θm that maximises the (log-)
likelihood of the training data

θm = eML(T m) ∈ argmax
θ∈Θ

LT m(θ) = argmax
θ∈Θ

1

m

∑
x∈T m

logpθ(x)

http://cmp.felk.cvut.cz
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Maximum Likelihood estimator

Example 7 (MLE for exponential families). Consider the parametric family

pθ(x) = exp[⟨ϕ(x),θ⟩−A(θ)]

with sufficient statistic ϕ(x) ∈ Rn and natural parameter θ ∈ Rn. We are given an
i.i.d. training set T m and want to estimate θ by the MLE. The log-likelihood LT m(θ) is a
concave function of θ and has only global maxima (see seminar). We compute its derivative
and set it to zero.

∇LT m(θ) = ∇ 1

m

∑
x∈T m

[
⟨ϕ(x),θ⟩−A(θ)

]
=

1

m

∑
x∈T m

ϕ(x)−∇ log
∑
x∈X

e⟨ϕ(x),θ⟩

= ET m[ϕ(x)]−Eθ[ϕ(x)] = 0

The maximum likelihood estimator picks θ so that the expectation of ϕ(x) under the model
coincides with its empirical expectation on the training data.

Usually, we cannot compute this estimator in closed form, but we can use e.g. gradient
ascent to find the maximum.

http://cmp.felk.cvut.cz
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Kullback-Leibler divergence

To analyse properties of the ML-estimator, we will need the following similarity measure for
distributions.

Kullback-Leibler divergence: for distributions p(x), q(x) defined on X

DKL(q(x) ∥ p(x)) =
∑
x∈X

q(x) log
q(x)

p(x)

DKL is non-negative, i.e. DKL(q(x) ∥ p(x))⩾ 0 with equality iff p(x) = q(x) ∀x ∈ X . This
follows from strict concavity of the function log(x)

−DKL(q ∥ p) =
∑
x∈X

q(x) log
p(x)

q(x)
⩽

∑
x∈X

q(x)
[p(x)

q(x)
−1

]
= 0

■ it is not symmetric, i.e. DKL(q(x) ∥ p(x)) ̸= DKL(p(x) ∥ q(x)).

■ it is undefined if ∃x : q(x) > 0 and p(x) = 0.

■ DKL can be generalised for continuous distributions and is invariant under coordinate
transforms.

http://cmp.felk.cvut.cz
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Properties of the ML estimator

(1) Is the Maximum Likelihood estimator unbiased?

No, it is not unbiased in general.

(2) What conditions ensure MLE consistency, i.e.

Pθ∗
(
|θ∗ −eML(T m)| > ϵ

) m→∞−−−−→ 0,

where probability is w.r.t. T m ∼ pθ∗(x)?

To answer this question, we first notice that the ML estimator is equivalent to

Rm(θ,θ∗) =
1

m

∑
x∈T m

log
pθ∗(x)

pθ(x)
= LT m(θ∗)−LT m(θ) → min

θ

where Rm(θ,θ∗) is a sample estimate of the KL divergence DKL(pθ∗(x) ∥ pθ(x)) =: R(θ,θ∗)

http://cmp.felk.cvut.cz
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Properties of the ML estimator

The ML estimator is consistent if the following two properties hold:

Condition 1 Identifiability: If θ1 ̸= θ2 then pθ1(x) ̸= pθ2(x). Moreover, we require

inf
θ : ∥θ−θ∗∥>ϵ

DKL(pθ∗(x) ∥ pθ(x)) > 0

Condition 2 Uniform LLN

P
(
sup

θ
|Rm(θ,θ∗)−R(θ,θ∗)| > ϵ

)
→ 0 for m → ∞.

Example 8. For an exponential family pθ(x) = exp[⟨ϕ(x),θ⟩−A(θ)] we have

Rm(θ,θ∗)−R(θ,θ∗) = ET m

[
⟨ϕ(x),θ −θ∗⟩

]
−Eθ∗

[
⟨ϕ(x),θ −θ∗⟩

]
,

and it is then usually easy to specify conditions under which the ULNN holds.

http://cmp.felk.cvut.cz
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Properties of the ML estimator

What can we say about the variance of the ML estimator, i.e. VT m∼θ∗
[
eML(T m)

]
?

The asymptotic variance of the ML estimator is, in a certain sense, the smallest possible!

To make this precise, we need the notion of Fisher information

I(θ) =

∫ [ d

dθ
logpθ(x)

]2
pθ(x)dx = Eθ

[ d

dθ
logpθ(x)

]2
It is easy to show that Eθ

[
d

dθ logpθ(x)
]
= 0 (see seminar). Therefore, the Fisher information

is the variance of the random variable d
dθ logpθ(x).

Now, we have the following two statements about the variance of estimators
■ The asymptotic distribution of the ML estimator is:

eML(T m) ∼ N
(

θ∗,
1

mI(θ∗)

)
for m → ∞

■ If e is an arbitrary unbiased estimator, then its variance can not be smaller, i.e.

VT m∼θ∗
[
e(T m)

]
⩾

1

mI(θ∗)

http://cmp.felk.cvut.cz
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Properties of the ML estimator

Summary:

■ ML estimator can be biased,

■ ML estimator is consistent under mild conditions,

■ ML estimator has asymptotically optimal variance.

Remark 1 (model misspecification). In machine learning we usually do not believe that the
model class pθ(x), θ ∈ Θ is chosen correctly, i.e. such that it contains the unknown data
distribution. It is rather believed to be an useful idealisation. Let q(x) denote the true but
unknown data distribution and let θm = eML(T m) be the ML estimate for a given training
set. Using the same arguments as above, we see for the limit m → ∞

DKL(q(x) ∥ pθm(x))⩽ DKL(q(x) ∥ pθ(x)) ∀θ ∈ Θ

This means, that the MLE gives the KL-projection of q on our model class.

http://cmp.felk.cvut.cz
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