
STATISTICAL MACHINE LEARNING (WS2020)
EXAM FEB 4, 2021 (90 MIN / 30P)

Assignment 1 (6p). Assume you are going to learn a two-class classifier h : X →
{+1,−1} from examples with the goal to minimize the expected classification error.
The classifier is selected from a hypothesis space H based on the minimal training error
defined as the number of misclassified examples. Consider the following three cases of
hypothesis space:

(1) H1 = {h(x) = sign(x− θ) | θ ∈ R}.
(2) H2 = {h(x) = sign(|x− µ1| − |x− µ2|) | µ1 ∈ R, µ2 ∈ R}.
(3) H3 = {h(x) = sign(〈w,x〉+ b) | w ∈ Rd, b ∈ R}.

a) What is the Vapnik-Chervonenkis dimension ofH1,H2 andH3 ?
b) Assume that in all three cases your algorithm can find a classifier with the minimal
training error. In which cases is the algorithm statistically consistent?

Assignment 2 (4p). Given a training set of examples T m = {(xi, yi) ∈ (X×{+1,−1}) |
i = 1, . . . ,m} the SVM algorithm finds parameters of a linear classifier h(x) = sign(〈w,x〉+
b) by solving an unconstrained problem

(w∗, b∗) ∈ argmin
(w,b)∈Rd+1

F (w, b)

where F : Rd × R→ R is a convex function of the parameters.
a) Define the objective function F (w, b) and describe all its components.
b) How is the objective function F (w, b) related to the number of training errors?

Assignment 3 (6p). A non-negative random variable X > 0 has exponential distribution
p(x) = be−bx, where b is an unknown parameter.
a) Explain how to estimate this parameter from an i.i.d. training set T m = {xj ∈ R+ |
j = 1, . . . ,m} by using the maximum likelihood estimator .
b) The random variable Y is a mixture

Y = λX1 + (1− λ)X2

of two exponentially distributed variables with unknown parameters b1, b2 and unknown
mixture weight 0 < λ < 1. Explain how to estimate all mixture parameters from an
i.i.d. training set T m = {yj ∈ R+ | j = 1, . . . ,m} by using the EM-algorithm.

Assignment 4 (4p). Consider a homogeneous Markov model for sequences s = (s1, . . . , sn)
with elements from a finite set K. Its joint distribution is given by

p(s) = p(s1)
n∏

i=2

p(si | si−1),
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where p(s1 = k) is the marginal distribution for the first element of the sequence and
p(si = k | si−1 = k′) is the matrix of transition probabilities. Given a state k∗ ∈ K, we
want to know its expected number of occurrences in a sequence generated by the model.
Give an algorithm for computing this expectation.
Hint: Use the fact that the expected value of a sum of random variables is equal to the
sum of their expected values.

Assignment 5 (6p). Consider the following simple neural network having n inputs:

ŷ(x,w) = σ

(
n∑

i=1

wi xi

)
,

where σ is the logistic sigmoid function:

σ(s) =
1

1 + e−s
.

The network is trained using Stochastic Gradient Descent where the training set can be
described as T m = {(xi, yi) ∈ (Rn × {0, 1}) | i = 1, . . . ,m}. The loss function is the
binary cross-entropy:

`(y, ŷ) = y log ŷ + (1− y) log(1− ŷ).
(1) Use the back-propagation algorithm and derive the gradient for a single sample:

∇`(w) =

(
∂`

∂w1

,
∂`

∂w2

, . . . ,
∂`

∂wn

)
.

(2) Reuse the neuron activity computed during the forward pass and simplify the
result.

Assignment 6 (4p). Consider a regression problem with multiple training datasets T m =
{(xi, yi) | i = 1, . . . ,m} of size m generated by using

y = f(x) + ε, (1)

where ε is noise with E(ε) = 0 and Var(ε) = σ2. Derive the bias-variance decomposition
for the 1-nearest-neighbor regression. The response of the 1-NN regressor is defined as:

hm(x) = yn(x) = f(xn(x)) + ε,

where n(x) gives the index of the nearest neighbor of x in T m. For simplicity assume that
all xi are the same for all training datasets T m in consideration, hence, the randomness
arises from the noise ε, only.

Give the squared bias:

Ex

[(
gm(x)− f(x)

)2]
= Ex

[(
ET m

(
hm(x)

)
− f(x)

)2]
and variance:

Varx,T m

(
hm(x)

)
.


