STATISTICAL MACHINE LEARNING (WS2020) EXAM FEB 4, 2021 (90 MIN / 30P)

Assignment 1 (6p). Assume you are going to learn a two-class classifier $h: \mathcal{X} \to \mathcal{X}$ $\{+1, -1\}$ from examples with the goal to minimize the expected classification error. The classifier is selected from a hypothesis space \mathcal{H} based on the minimal training error defined as the number of misclassified examples. Consider the following three cases of hypothesis space:

- (1) $\mathcal{H}_1 = \{h(x) = \operatorname{sign}(x \theta) \mid \theta \in \mathbb{R}\}.$
- (2) $\mathcal{H}_2 = \{h(x) = \operatorname{sign}(|x \mu_1| |x \mu_2|) \mid \mu_1 \in \mathbb{R}, \mu_2 \in \mathbb{R}\}.$ (3) $\mathcal{H}_3 = \{h(x) = \operatorname{sign}(\langle w, x \rangle + b) \mid w \in \mathbb{R}^d, b \in \mathbb{R}\}.$

a) What is the Vapnik-Chervonenkis dimension of \mathcal{H}_1 , \mathcal{H}_2 and \mathcal{H}_3 ? **b**) Assume that in all three cases your algorithm can find a classifier with the minimal training error. In which cases is the algorithm statistically consistent?

Assignment 2 (4p). Given a training set of examples $\mathcal{T}^m = \{(x^i, y^i) \in (\mathcal{X} \times \{+1, -1\}) \mid$ i = 1, ..., m the SVM algorithm finds parameters of a linear classifier $h(\mathbf{x}) = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x} \rangle +$ b) by solving an unconstrained problem

$$(\boldsymbol{w}^*, b^*) \in \operatorname*{arg\,min}_{(\boldsymbol{w}, b) \in \mathbb{R}^{d+1}} F(\boldsymbol{w}, b)$$

where $F : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}$ is a convex function of the parameters.

a) Define the objective function F(w, b) and describe all its components.

b) How is the objective function F(w, b) related to the number of training errors?

Assignment 3 (6p). A non-negative random variable $X \ge 0$ has exponential distribution $p(x) = be^{-bx}$, where b is an unknown parameter.

a) Explain how to estimate this parameter from an i.i.d. training set $\mathcal{T}^m = \{x_i \in \mathbb{R}_+ \mid i \in \mathbb{R}_+ \mid$ $j = 1, \ldots, m$ by using the maximum likelihood estimator.

b) The random variable Y is a mixture

$$Y = \lambda X_1 + (1 - \lambda) X_2$$

of two exponentially distributed variables with unknown parameters b_1 , b_2 and unknown mixture weight $0 < \lambda < 1$. Explain how to estimate all mixture parameters from an i.i.d. training set $\mathcal{T}^m = \{y_i \in \mathbb{R}_+ \mid j = 1, \dots, m\}$ by using the EM-algorithm.

Assignment 4 (4p). Consider a homogeneous Markov model for sequences $s = (s_1, \ldots, s_n)$ with elements from a finite set K. Its joint distribution is given by

$$p(s) = p(s_1) \prod_{i=2}^{n} p(s_i \mid s_{i-1}),$$

where $p(s_1 = k)$ is the marginal distribution for the first element of the sequence and $p(s_i = k | s_{i-1} = k')$ is the matrix of transition probabilities. Given a state $k^* \in K$, we want to know its expected number of occurrences in a sequence generated by the model. Give an algorithm for computing this expectation.

Hint: Use the fact that the expected value of a sum of random variables is equal to the sum of their expected values.

Assignment 5 (6p). Consider the following simple neural network having n inputs:

$$\hat{y}(\boldsymbol{x}, \boldsymbol{w}) = \sigma\left(\sum_{i=1}^{n} w_i x_i\right),$$

where σ is the logistic sigmoid function:

$$\sigma(s) = \frac{1}{1 + e^{-s}}.$$

The network is trained using Stochastic Gradient Descent where the training set can be described as $\mathcal{T}^m = \{(x^i, y^i) \in (\mathbb{R}^n \times \{0, 1\}) \mid i = 1, ..., m\}$. The loss function is the binary cross-entropy:

$$\ell(y, \hat{y}) = y \log \hat{y} + (1 - y) \log(1 - \hat{y}).$$

(1) Use the back-propagation algorithm and derive the gradient for a single sample:

$$abla \ell(\boldsymbol{w}) = \left(\frac{\partial \ell}{\partial w_1}, \frac{\partial \ell}{\partial w_2}, \dots, \frac{\partial \ell}{\partial w_n} \right).$$

(2) Reuse the neuron activity computed during the forward pass and simplify the result.

Assignment 6 (4p). Consider a regression problem with multiple training datasets $\mathcal{T}^m = \{(x_i, y_i) \mid i = 1, ..., m\}$ of size m generated by using

$$y = f(x) + \epsilon, \tag{1}$$

where ϵ is noise with $\mathbb{E}(\epsilon) = 0$ and $\operatorname{Var}(\epsilon) = \sigma^2$. Derive the bias-variance decomposition for the 1-nearest-neighbor regression. The response of the 1-NN regressor is defined as:

$$h_m(x) = y_{n(x)} = f(x_{n(x)}) + \epsilon,$$

where n(x) gives the index of the nearest neighbor of x in \mathcal{T}^m . For simplicity assume that all x_i are the same for all training datasets \mathcal{T}^m in consideration, hence, the randomness arises from the noise ϵ , only.

Give the squared bias:

$$\mathbb{E}_{x}\left[\left(g_{m}(x)-f(x)\right)^{2}\right] = \mathbb{E}_{x}\left[\left(\mathbb{E}_{\mathcal{T}^{m}}\left(h_{m}(x)\right)-f(x)\right)^{2}\right]$$

and variance:

$$\operatorname{Var}_{x,\mathcal{T}^m}(h_m(x)).$$