STATISTICAL MACHINE LEARNING (WS2020)
EXAM FEB 4, 2021 (90 MIN / 30P)

Assignment 1 (6p). Assume you are going to learn a two-class classifier h: X —
{+1,—1} from examples with the goal to minimize the expected classification error.
The classifier is selected from a hypothesis space ‘H based on the minimal training error
defined as the number of misclassified examples. Consider the following three cases of
hypothesis space:

(1) H1 = {h(x) =sign(z —0) | 6 € R}.
(2) Ha = {h(z) =sign(|lz — | = |z — peo|) [ pn € R, pp € R}
(3) M3 = {h(x) = sign((w, ) +b) | w € R’ b € R}.

a) What is the Vapnik-Chervonenkis dimension of H1, Hs and H3 ?

b) Assume that in all three cases your algorithm can find a classifier with the minimal
training error. In which cases is the algorithm statistically consistent?

Assignment 2 (4p). Given a training set of examples 7™ = {(z',y") € (X x{+1,—1}) |
i =1,...,m} the SVM algorithm finds parameters of a linear classifier h(x) = sign({(w, )+
b) by solving an unconstrained problem

(w*,b*) € argmin F(w,b)

(w,b)€R+1

where F': R? x R — R is a convex function of the parameters.
a) Define the objective function F'(w, b) and describe all its components.
b) How is the objective function F'(w, b) related to the number of training errors?
Assignment 3 (6p). A non-negative random variable X > 0 has exponential distribution
p(x) = be~", where b is an unknown parameter.

a) Explain how to estimate this parameter from an i.i.d. training set 7" = {z; € R, |
j =1,...,m} by using the maximum likelihood estimator .

b) The random variable Y is a mixture
Y=XMX1+(1-XNX;
of two exponentially distributed variables with unknown parameters b1, b, and unknown

mixture weight 0 < A < 1. Explain how to estimate all mixture parameters from an
iid. training set 7™ = {y; € R} | j = 1,...,m} by using the EM-algorithm.

Assignment 4 (4p). Consider a homogeneous Markov model for sequences s = (s1, ..., s,)
with elements from a finite set K. Its joint distribution is given by

p(s) = p(s1) HP(Si | si-1),
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where p(s; = k) is the marginal distribution for the first element of the sequence and
p(s; = k|s;—1 = k') is the matrix of transition probabilities. Given a state k* € K, we
want to know its expected number of occurrences in a sequence generated by the model.
Give an algorithm for computing this expectation.

Hint: Use the fact that the expected value of a sum of random variables is equal to the
sum of their expected values.

Assignment 5 (6p). Consider the following simple neural network having n inputs:

J(x,w)=o0 (Z w; xl> ,
i=1
where o is the logistic sigmoid function:
1

os) = 1+es

The network is trained using Stochastic Gradient Descent where the training set can be
described as 7™ = {(z',y") € (R" x {0,1}) | ¢ = 1,...,m}. The loss function is the
binary cross-entropy:

((y,9) = ylogg + (1 —y)log(1 - 7).
(1) Use the back-propagation algorithm and derive the gradient for a single sample:

w(w):<a£ ol 86).

ow, Ows’ 7 Ow,
(2) Reuse the neuron activity computed during the forward pass and simplify the
result.

Assignment 6 (4p). Consider a regression problem with multiple training datasets 7" =
{(zs,y;) | i =1,...,m} of size m generated by using

y=f(z)+e (1
where ¢ is noise with E(¢) = 0 and Var(e) = 2. Derive the bias-variance decomposition
for the 1-nearest-neighbor regression. The response of the 1-NN regressor is defined as:
where n(x) gives the index of the nearest neighbor of x in 7. For simplicity assume that
all z; are the same for all training datasets 7™ in consideration, hence, the randomness

arises from the noise ¢, only.
Give the squared bias:

E, |(9n(2) ~ /(2)’| = E. [(Ewhm(@) - (@)2]

and variance:



