
STATISTICAL MACHINE LEARNING (WS2020)
EXAM 19.01.20 (90 MIN / 28P)

Assignment 1 (6p). Let X be a set of input observations and Y = An a set of sequences
of length n defined over a finite alphabet A. Let h : X → Y be a prediction rule that
for each x ∈ X returns a sequence h(x) = (h1(x), . . . , hn(x)). Assume that we want
to measure the prediction accuracy of h(x) by the expected Hamming distance R(h) =
E(x,y1,...,yn)∼p(

∑n
i=1[[hi(x) 6= yi]]) where p(x, y1, . . . , yn) is a p.d.f. defined over X × Y .

As the distribution p(x, y1, . . . , yn) is unknown, we estimate R(h) by the test error

RSl(h) =
1

l

l∑
j=1

n∑
i=1

[[yji 6= hi(x
j)]]

where S l = {(xi, yi1, . . . , yin) ∈ (X × Y) | i = 1, . . . , l} is a set of examples drawn from
i.i.d. random variables with the distribution p(x, y1, . . . , yn).

a) Assume that the sequence length is n = 10 and that we compute the test error from
l = 1000 examples. What is the minimal probability that R(h) will be in the interval
(RSl(h)− 1, RSl(h) + 1) ?

b) What is the minimal number of the test examples l which we need to collect in order
to guarantee that R(h) is in the interval (RSl(h) − ε, RSl(h) + ε) with probability γ at
least? Write l as a function of ε, n and γ.

Assignment 2 (4p). Assume we are given a training set of examples T m = {(xi, yi) ∈
(X × {+1,−1}) | i = 1, . . . ,m} which is known to be linearly separable with respect
to a feature map φ : X → Rn. That is, we can find parameters (w, b) ∈ Rn+1 of a linear
classifier h(x;w, b) = sign(〈φ(x),w〉 + b) which has zero training error. Assume that
you cannot evaluate the feature map φ(x) because it is either unknown or its evaluation is
expensive. However, you know how to cheaply evaluate a kernel function k : X×X → R
such that k(x, x′) = 〈φ(x),φ(x′)〉, ∀x, x′ ∈ X . Show how to find in this case parameters
of the linear classifier by Perceptron algorithm and how to evaluate the linear classifier.

Assignment 3 (4p). Suppose you have learned a neural network classifier that predicts
the posterior class probabilities p(k |x) for an unknown distribution

p(x, k) = p(x | k) p(k) = p(k |x) p(x).
The network uses softmax activation in the last layer and has been learned on an i.i.d. train-
ing set T m = {(xj, kj) | j = 1, . . . ,m}. You want to apply the classifier in some ap-
plication domain with “shifted” class priors p(k)→ pa(k). The appearance probabilities
p(x | k) remain unchanged. Explain how to utilise the classifier for this domain without
retraining it.
Remark: We assume that the shifted class priors pa(k) are known.
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Assignment 4 (6p). We consider the following probabilistic model for real valued se-
quences x = (x1, x2, . . . , xn) of length n. The elements of the leading part, up to some
position k are independent and normally distributed with mean µ1 and variance σ2

1 . The
trailing elements are independent and normally distributed with mean µ2 and variance σ2

2 .
The boundary position k between the two parts is itself random and follows a categorical
distribution with probabilities p(k) = πk.
a) Explain how to estimate the model parameters µ1,2, σ1,2 and πk, k = 1, . . . , n from
i.i.d. training data T m =

{
(xj, kj)

∣∣ j = 1, . . . ,m
}

by using the maximum likelihood
estimator.
b) Assume now that the model parameters are known. Given a sequence x we want to
predict the boundary position between the leading and trailing part. We want to use the
quadratic loss `(k, k′) = (k − k′)2. Show that the optimal prediction for the boundary is
given by

k∗ =
n∑

k=0

k p(k |x).

Assignment 5 (3p). A convolutional layer transforms an input volume Win × Hin × C
into an output volume Wout ×Hout ×D, where Win and Hin define spatial dimensions of
the input and C is the number of input channels. Similarly Wout and Hout denote spatial
dimensions of the output and D the number of filters. Consider stride S, zero padding P
and filters having receptive field of F × F units.

(1) Give types and total number of parameters of the layer.
(2) Consider padding P preserving the size of the output in the W dimension, i.e.,

Win = Wout. Give P as a function of F , S and Win.

Assignment 6 (5p). Define a neural module (layer) joining a linear layer and an ELU
(Exponential Linear Unit) layer. Give the forward, backward and parameter messages.
Consider n inputs, K units of the linear layer and K units of the ELU layer each pro-
cessing the output of the corresponding unit of the preceding linear layer. Each ELU unit
applies the non-linearity:

f(x) =

{
x, if x > 0

exp(x)− 1, if x ≤ 0.

• The forward message is defined as a function of layer outputs w.r.t. to its inputs.
• The backward message is defined as the set of derivatives of all layer outputs

w.r.t. to all layer inputs.
• Finally, the parameter message is defined as the set of derivatives of all layer

outputs w.r.t. to all layer parameters.


