Assignments

Assignment 1 (6p). Let \mathcal{X} be a set of input observations and $\mathcal{Y} = \mathcal{A}^n$ a set of sequences of length n defined over a finite alphabet \mathcal{A}. Let $h : \mathcal{X} \to \mathcal{Y}$ be a prediction rule that for each $x \in \mathcal{X}$ returns a sequence $h(x) = (h_1(x), \ldots, h_n(x))$. Assume that we want to measure the prediction accuracy of $h(x)$ by the expected Hamming distance $R(h) = \mathbb{E}_{(x,y_1,\ldots,y_n) \sim p} (\sum_{i=1}^{n} [h_i(x) \neq y_i])$ where $p(x,y_1,\ldots,y_n)$ is a p.d.f. defined over $\mathcal{X} \times \mathcal{Y}$. As the distribution $p(x,y_1,\ldots,y_n)$ is unknown, we estimate $R(h)$ by the test error

$$R_{S^l}(h) = \frac{1}{l} \sum_{j=1}^{l} \sum_{i=1}^{n} [y'_i \neq h_i(x')]$$

where $S^l = \{(x^i, y'_1, \ldots, y'_n) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \ldots, l\}$ is a set of examples drawn from i.i.d. random variables with the distribution $p(x,y_1,\ldots,y_n)$.

a) Assume that the sequence length is $n = 10$ and that we compute the test error from $l = 1000$ examples. What is the minimal probability that $R(h)$ will be in the interval $(R_{S^l}(h) - 1, R_{S^l}(h) + 1)$?

b) What is the minimal number of the test examples l which we need to collect in order to guarantee that $R(h)$ is in the interval $(R_{S^l}(h) - \epsilon, R_{S^l}(h) + \epsilon)$ with probability γ at least? Write l as a function of ϵ, n and γ.

Assignment 2 (4p). Assume we are given a training set of examples $T^m = \{(x^i, y_i') \in (\mathcal{X} \times \{+1, -1\}) \mid i = 1, \ldots, m\}$ which is known to be linearly separable with respect to a feature map $\phi : \mathcal{X} \to \mathbb{R}^n$. That is, we can find parameters $(\mathbf{w}, b) \in \mathbb{R}^{n+1}$ of a linear classifier $h(x; \mathbf{w}, b) = \text{sign}(\langle \phi(x), \mathbf{w} \rangle + b)$ which has zero training error. Assume that you cannot evaluate the feature map $\phi(x)$ because it is either unknown or its evaluation is expensive. However, you know how to cheaply evaluate a kernel function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ such that $k(x, x') = \langle \phi(x), \phi(x') \rangle$, $\forall x, x' \in \mathcal{X}$. Show how to find in this case parameters of the linear classifier by Perceptron algorithm and how to evaluate the linear classifier.

Assignment 3 (4p). Suppose you have learned a neural network classifier that predicts the posterior class probabilities $p(k \mid x)$ for an unknown distribution

$$p(x, k) = p(x \mid k) p(k) = p(k \mid x) p(x).$$

The network uses softmax activation in the last layer and has been learned on an i.i.d. training set $T^m = \{(x^j, k^j) \mid j = 1, \ldots, m\}$. You want to apply the classifier in some application domain with “shifted” class priors $p(k) \rightarrow p_\alpha(k)$. The appearance probabilities $p(x \mid k)$ remain unchanged. Explain how to utilise the classifier for this domain without retraining it.

Remark: We assume that the shifted class priors $p_\alpha(k)$ are known.
Assignment 4 (6p). We consider the following probabilistic model for real valued sequences \(\mathbf{x} = (x_1, x_2, \ldots, x_n) \) of length \(n \). The elements of the leading part, up to some position \(k \) are independent and normally distributed with mean \(\mu_1 \) and variance \(\sigma_1^2 \). The trailing elements are independent and normally distributed with mean \(\mu_2 \) and variance \(\sigma_2^2 \). The boundary position \(k \) between the two parts is itself random and follows a categorical distribution with probabilities \(p(k) = \pi_k \).

a) Explain how to estimate the model parameters \(\mu_1, \mu_2, \sigma_1, \sigma_2 \) and \(\pi_k, k = 1, \ldots, n \) from i.i.d. training data \(T^m = \{ (x_j, k_j) | j = 1, \ldots, m \} \) by using the maximum likelihood estimator.

b) Assume now that the model parameters are known. Given a sequence \(x \) we want to predict the boundary position between the leading and trailing part. We want to use the quadratic loss \(\ell(k, k') = (k - k')^2 \). Show that the optimal prediction for the boundary is given by

\[
k^* = \sum_{k=0}^{n} k p(k | x).
\]

Assignment 5 (3p). A convolutional layer transforms an input volume \(W_{\text{in}} \times H_{\text{in}} \times C \) into an output volume \(W_{\text{out}} \times H_{\text{out}} \times D \), where \(W_{\text{in}} \) and \(H_{\text{in}} \) define spatial dimensions of the input and \(C \) is the number of input channels. Similarly \(W_{\text{out}} \) and \(H_{\text{out}} \) denote spatial dimensions of the output and \(D \) the number of filters. Consider stride \(S \), zero padding \(P \) and filters having receptive field of \(F \times F \) units.

1. Give types and total number of parameters of the layer.
2. Consider padding \(P \) preserving the size of the output in the \(W \) dimension, i.e., \(W_{\text{in}} = W_{\text{out}} \). Give \(P \) as a function of \(F, S \) and \(W_{\text{in}} \).

Assignment 6 (5p). Define a neural module (layer) joining a linear layer and an ELU (Exponential Linear Unit) layer. Give the forward, backward and parameter messages. Consider \(n \) inputs, \(K \) units of the linear layer and \(K \) units of the ELU layer each processing the output of the corresponding unit of the preceding linear layer. Each ELU unit applies the non-linearity:

\[
f(x) = \begin{cases}
 x, & \text{if } x > 0 \\
 \exp(x) - 1, & \text{if } x \leq 0.
\end{cases}
\]

- The forward message is defined as a function of layer outputs w.r.t. to its inputs.
- The backward message is defined as the set of derivatives of all layer outputs w.r.t. to all layer inputs.
- Finally, the parameter message is defined as the set of derivatives of all layer outputs w.r.t. to all layer parameters.