Statistical Machine Learning (BE4M33SSU)
Lecture 3: Empirical Risk Minimization

Czech Technical University in Prague
V. Franc
Learning

- **The goal:** Find a strategy \(h: \mathcal{X} \to \mathcal{Y} \) minimizing \(R(h) \) using the training set of examples

\[
\mathcal{T}^m = \{ (x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \ldots, m \}
\]
drawn from i.i.d. according to unknown \(p(x, y) \).

- **Hypothesis class:**

\[
\mathcal{H} \subseteq \mathcal{Y}^\mathcal{X} = \{ h: \mathcal{X} \to \mathcal{Y} \}
\]

- **Learning algorithm:** a function

\[
A: \bigcup_{m=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^m \to \mathcal{H}
\]
which returns a strategy \(h_m = A(\mathcal{T}^m) \) for a training set \(\mathcal{T}^m \)
Learning: Empirical Risk Minimization approach

- The expected risk $R(h)$, i.e. the true but unknown objective, is replaced by the empirical risk computed from the training examples \mathcal{T}_m,

$$R_{\mathcal{T}_m}(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(y^i, h(x^i))$$

- The ERM based algorithm returns h_m such that

$$h_m \in \text{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}_m}(h)$$ \hspace{1cm} (1)

- Depending on the choice of \mathcal{H} and ℓ and algorithm solving (1) we get individual instances e.g. Support Vector Machines, Linear Regression, Logistic Regression, Neural Networks learned by back-propagation, AdaBoost, Gradient Boosted Trees, ...
Excess error = Estimation error + Approximation errors

The characters of the play:

- \(R^* = \inf_{h \in \mathcal{Y} \times X} R(h) \) best attainable true risk
- \(R(h_{\mathcal{H}}) \) best risk in \(\mathcal{H} \) where \(h_{\mathcal{H}} \in \text{Argmin}_{h \in \mathcal{H}} R(h) \)
- \(R(h_m) \) risk of \(h_m = A(T_m) \) learned from \(T_m \)

Excess error: the quantity we want to minimize

\[
\left(R(h_m) - R^* \right) = \left(R(h_m) - R(h_{\mathcal{H}}) \right) + \left(R(h_{\mathcal{H}}) - R^* \right)
\]

Questions:

- Which of the quantities are random and which are not?
- What causes individual errors?
- How do the errors depend on \(\mathcal{H} \) and \(m \)?
Statistically consistent learning algorithm

- The statistically consistent algorithm can make the estimation error $R(h_m) - R(h_\mathcal{H})$ arbitrarily small if it has enough examples.

- Is the ERM algorithm statistically consistent?

Definition 1. The algorithm $A: \bigcup_{m=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^m \to \mathcal{H}$ is statistically consistent in $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ if for any $p(x, y)$ and $\varepsilon > 0$ it holds that

$$\lim_{m \to \infty} \mathbb{P}\left(R(h_m) - R(h_\mathcal{H}) \geq \varepsilon \right) = 0$$

where $h_m = A(\mathcal{T}^m)$ is the hypothesis returned by the algorithm A for training set \mathcal{T}^m generated from $p(x, y)$.
Example: ERM does not work if \mathcal{H} is unconstrained

- Let $\mathcal{X} = [a, b] \subset \mathbb{R}$, $\mathcal{Y} = \{+1, -1\}$, $\ell(y, y') = [y \neq y']$, $p(x \mid y = +1)$ and $p(x \mid y = -1)$ be uniform distributions on \mathcal{X} and $p(y = +1) = 0.8$.

- The optimal strategy is $h(x) = +1$ with the Bayes risk $R^* = 0.2$.

- Consider learning algorithm which for a given training set $\mathcal{T}^m = \{(x^1, y^1), \ldots, (x^m, y^m)\}$ returns strategy

$$h_m(x) = \begin{cases} y^j & \text{if } x = x^j \text{ for some } j \in \{1, \ldots, m\} \\ -1 & \text{otherwise} \end{cases}$$

- The empirical risk is $R_{\mathcal{T}^m}(h_m) = 0$ with probability 1 for any m.

- The expected risk is $R(h_m) = 0.8$ for any m.
Uniform Law of Large Numbers

- We say that training set T^m is “bad” for $h \in \mathcal{H}$ if the generalization error is $|R(h) - R_{T^m}(h)| \geq \varepsilon$.

- ULLN holds for \mathcal{H} provided the probability of seeing at least one “bad training set” can be made arbitrarily low if we have enough examples.

Definition 2. The hypothesis class $\mathcal{H} \subseteq \mathcal{Y}^X$ satisfies the uniform law of large numbers if for all $\varepsilon > 0$ and $p(x, y)$ generating T^m it holds that

$$\lim_{m \to \infty} \mathbb{P} \left(\sup_{h \in \mathcal{H}} \left| R(h) - R_{T^m}(h) \right| \geq \varepsilon \right) = 0$$

Theorem 1. If \mathcal{H} satisfies ULLN then ERM is statistically consistent in \mathcal{H}.
ULLN for finite hypothesis class

- Assume a finite hypothesis class $\mathcal{H} = \{h_1, \ldots, h_K\}$.
- Define the set of all “bad” training sets for a strategy $h \in \mathcal{H}$ as

$$\mathcal{B}(h) = \{T^m \in (\mathcal{X} \times \mathcal{Y})^m \mid |R_{T^m}(h) - R(h)| \geq \varepsilon\}$$

- Hoeffding inequality generalized for finite hypothesis class \mathcal{H}:

$$\mathbb{P}\left(\max_{h \in \mathcal{H}} |R_{T^m}(h) - R(h)| \geq \varepsilon\right) \leq \sum_{h \in \mathcal{H}} \mathbb{P}(T^m \in \mathcal{B}(h)) = 2|\mathcal{H}|e^{-\frac{2m\varepsilon^2}{(b-a)^2}}$$

- Therefore

$$\lim_{m \to \infty} \mathbb{P}\left(\max_{h \in \mathcal{H}} |R_{T^m}(h) - R(h)| \geq \varepsilon\right) = 0$$

Corollary 1. The ULLN is satisfied for a finite hypothesis class.
Proof: ULLN implies consistency of ERM

For fixed T^m and $h_m \in \text{Argmin}_{h \in \mathcal{H}} R_{T^m}(h)$ we have:

$$R(h_m) - R(h_\mathcal{H}) = \left(R(h_m) - R_{T^m}(h_m) \right) + \left(R_{T^m}(h_m) - R(h_\mathcal{H}) \right) \leq \left(R(h_m) - R_{T^m}(h_m) \right) + \left(R_{T^m}(h_\mathcal{H}) - R(h_\mathcal{H}) \right) \leq 2 \sup_{h \in \mathcal{H}} \left| R(h) - R_{T^m}(h) \right|$$

Therefore $\varepsilon \leq R(h_m) - R(h_\mathcal{H})$ implies $\frac{\varepsilon}{2} \leq \sup_{h \in \mathcal{H}} \left| R(h) - R_{T^m}(h) \right|$ and

$$\mathbb{P}\left(R(h_m) - R(h_\mathcal{H}) \geq \varepsilon \right) \leq \mathbb{P}\left(\sup_{h \in \mathcal{H}} \left| R(h) - R_{T^m}(h) \right| \geq \frac{\varepsilon}{2} \right)$$

so if converges the RHS to zero (ULLN) so does the LHS (estimation error).
Linear classifier minimizing classification error

- \mathcal{X} is a set of observations and $\mathcal{Y} = \{+1, -1\}$ a set of hidden labels
- $\phi: \mathcal{X} \to \mathbb{R}^n$ is fixed feature map embedding \mathcal{X} to \mathbb{R}^n
- **Task:** find linear classification strategy $h: \mathcal{X} \to \mathcal{Y}$

$$h(x; w, b) = \text{sign}(\langle w, \phi(x) \rangle + b) = \begin{cases} +1 & \text{if } \langle w, \phi(x) \rangle + b \geq 0 \\ -1 & \text{if } \langle w, \phi(x) \rangle + b < 0 \end{cases}$$

with minimal expected risk

$$R^{0/1}(h) = \mathbb{E}_{(x,y) \sim p}\left(\ell^{0/1}(y, h(x))\right) \text{ where } \ell^{0/1}(y, y') = [y \neq y']$$

- We are given a set of training examples

$$\mathcal{T}^m = \{(x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \ldots, m\}$$

drawn from i.i.d. with the distribution $p(x, y)$.
The Empirical Risk Minimization principle leads to solving

\[(w^*, b^*) \in \text{Argmin} \quad R^{0/1}_{\mathcal{F}}(h(\cdot; w, b)) \quad (1) \]

where the empirical risk is

\[R^{0/1}_{\mathcal{F}}(h(\cdot; w, b)) = \frac{1}{m} \sum_{i=1}^{m} [y^i \neq h(x^i; w, b)] \]

We will address the following issues:

1. The statistical consistency of the ERM for hypothesis class
 \[\mathcal{H} = \{h(x) = \text{sign}(\langle w, \phi(x) \rangle + b) \mid (w, b) \in \mathbb{R}^n \times \mathbb{R}\} \]

2. Algorithmic issues (next lecture): in general, there is no known algorithm solving the task (1) in time polynomial in m.
Vapnik-Chervonenkis (VC) dimension

Definition 3. Let $\mathcal{H} \subseteq \{-1, +1\}^\mathcal{X}$ and $\{x^1, \ldots, x^m\} \in \mathcal{X}^m$ be a set of m input observations. The set $\{x^1, \ldots, x^m\}$ is said to be shattered by \mathcal{H} if for all $y \in \{+1, -1\}^m$ there exists $h \in \mathcal{H}$ such that $h(x^i) = y^i$, $i \in \{1, \ldots, m\}$.

Definition 4. Let $\mathcal{H} \subseteq \{-1, +1\}^\mathcal{X}$. The Vapnik-Chervonenkis dimension of \mathcal{H} is the cardinality of the largest set of points from \mathcal{X} which can be shattered by \mathcal{H}.
Theorem 2. The VC-dimension of the hypothesis class of all two-class linear classifiers operating in n-dimensional feature space

$$\mathcal{H} = \{ h(x; \mathbf{w}, b) = \text{sign}(\langle \mathbf{w}, \phi(x) \rangle + b) \mid (\mathbf{w}, b) \in (\mathbb{R}^n \times \mathbb{R}) \}$$

is $n + 1$.

Example for $n = 2$-dimensional feature class
Consistency of prediction with two classes and 0/1-loss

Theorem 3. Let $\mathcal{H} \subseteq \{+1, -1\}^X$ be a hypothesis class with VC dimension $d < \infty$ and $T^m = \{(x^1, y^1), \ldots, (x^m, y^m)\} \in (X \times Y)^m$ a training set draw from i.i.d. rand vars with distribution $p(x, y)$. Then, for any $\varepsilon > 0$ it holds

$$
P \left(\sup_{h \in \mathcal{H}} \left| R_{0/1}^T(h) - R_{0/1}^{T_m}(h) \right| \geq \varepsilon \right) \leq 4 \left(\frac{2e m}{d} \right)^d e^{-\frac{m \varepsilon^2}{8}}$$

Corollary 1. Let $\mathcal{H} \subseteq \{+1, -1\}^X$ be a hypothesis class with VC dimension $d < \infty$. Then ULLN applies and hence ERM is statistically consistent in \mathcal{H} w.r.t $\ell^{0/1}$ loss function.