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® The goal: Find a strategy h: X — ) minimizing R(h) using the
training set of examples

T ={(&'y) € (X x V) |i=1,...,m)

drawn from i.i.d. according to unknown p(x,y).

® Hypothesis class:
Hgy*:{hzﬂc%y}

® |earning algorithm: a function
A: UrX (X xY)" —H

which returns a strategy h,, = A(T"™) for a training set 7™
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The expected risk R(h), i.e. the true but unknown objective, is replaced
by the empirical risk computed from the training examples 7™,

Ryn(h) = =" U(y', h(e)

1=1

The ERM based algorithm returns h,,, such that

hopn € Argmin Rym(h) (1)
heH
Depending on the choince of H and ¢ and algorithm solving (1) we get
individual instances e.g. Support Vector Machines, Linear Regression,

Logistic Regression, Neural Networks learned by back-propagation,
AdaBoost, Gradient Boosted Trees, ...
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Let X = [a,0] CR, ¥ = {+1,—1}, (y,¢/) = [y # ¥/], plz | y = +1)
and p(x | y = —1) be uniform distributions on X and p(y = +1) = 0.8.

The optimal strategy is h(x) = +1 with the Bayes risk R* = 0.2.

Consider learning algorithm which for a given training set
T = {(z',yY),..., (2™, y™)} returns memorizing strategy

URRT I -
hm(x):{ y if x=a) forsome j €{1,...,m}

—1 otherwise

The empirical risk is Rym(h,,) = 0 with probability 1 for any m.

The expected risk is R(h,,) = 0.8 for any m.
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ERM may fail when Rym(h,,) is not a good proxy of R(h,,), because
Rym(h) is used as a guidance to select h,,.

Generalization error

We need the , i.e., the discrepancy between R(h)
and Rym(h), to become small when the number of examples m grows:

Ve>0: lim P(lRTm(hm) — R(hm)| > g) — 0

m— o0 -~

where h,, = A(T,,) is learned by A: US°_, (X x V)™ — H.

Plan for this lecture:

Conditions on H which guarantee that the generalization error
converges to zero with growing number of examples m.

Generalization bound for a finite number of examples.
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2m 82

¢ Hoeffding inequality P(|ji — p| > €) < 2e ¢-o? f=-L%"" 27
requires {z%,...,2™} to be sample from i.i.d. rv. with expeted value p.

& T ={(zyh), ..., (2™, y™)} is drawn from i.i.d. rv. with p(z,y).
Evaluation:
¢ h fixed independently on 7™, 2* = £(y*, h(z")) and {2',..., 2™} isi.id.
¢ Therefore Ve > 0: lim,, oo P(|Rym(h) — R(h)| >¢) =0
Learning:
® h,,=A(T™), 2* = L(y*, hyn(xY)) and thus {z1,..., 2™} is not i.i.d.

¢ No guarantee that Ve > 0: lim,, o0 P(|R7m(hy) — R(hp)| =€) =0
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¢ Law of Large Numbers: for any p(x,y) generating 7™, and h € H fixed
without seeing 7™ we have

Uniform Law of Large Numbers

Ve >0: lim P(|R(h) = Rym(h)| > ) =0
m— 00 N - J/

high generalization error

¢ Uniform Law of Large Numbers: if for any p(z,y) generating 7™ it holds
that

Ve >0: n}gnoop<§1€1£‘}3(h) — Rym(h)| > 8) =0

high generalization error at least
for one hypothesis

J/

we say that ULLN applies for H.
¢ Note that for h,, = A(7T,,) we have

P(\R(hm) — Ry (hm)| > 5) < 1@(216172 [R(h) — Rym(h)| > 5)
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Assume a finite hypothesis class H = {h1,...,hx}.
Define the set of all “bad” training sets for a strategy h € H as

B(h) = {Tm € (X X y)m||RTm(h) — R(h)| > 5}

Hoeffding inequality generalized for finite hypothesis class H.:

2

P(max |Rym(h) — R(h)| > 5) < S P(T™e B(h)) =2|H o0
heH =t

ULLN applies for finite hypothesis class

Ve >0: lim P(maX\RTm(h) — R(h)| > 5) =0

mM— 00 heH o
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Hoeffding inequality generalized for a finite hypothesis class H:

2m &‘2

m(h) — > <  (b-a)?
P(Iglea%dRT (h) — R(h)| > g) < 2[H|e

Find an upper bound € on the generalization error which holds uniformly
for all h € ‘H with probability 1 — 0 at least:

P(I&aﬁc [Rym(h) — R(h)| < 5) — 11— P(Iglea% Rym(h) — R(h)| > g)

2m 52

> 1-2|Hle -0 =1-6

and solving the last equality for ¢ yields

log 2|H| + log +
e(ba)\/og +log s

2m
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Theorem: Let 7™ = {(z!,y}),..., (2™, y™)} € (X x V)™ be draw from
i.i.d. rv. with p.d.f. p(z,y) and let H be a finite hypothesis class and. Then,
for any 0 < 0 < 1, with probability at least 1 — 0 the inequality

log 2|H| + log 3
2m

R(h) < Rym(h) + (b— a)\/

holds for all h € H simultaneously and any loss function £: Y x Y — |a,b].

Recommendations that follow from the bound:
We need to select appropriate trade-off between || and m:
Little prior knowledge requires a lot of examples.

Too complex hypothesis class may lead to overfitting.
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Learn h: X' — ) by minimizing the generalization bound

log 2|H| + log
R(h)<RTm(h)+(ba)\/ ‘;m 0

\ J/

e(m,|H|,5)
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