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� Empirical Risk Minimization

� Statistical consistency
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The prediction problem

� X is a set of input observations
� Y is a finite set of hidden labels
� (x, y) ∈ X × Y is a realization of a random process with p.d.f. p(x, y)
� A prediction strategy h : X → Y
� A loss function ` : Y × Y → R penalizes a single prediction
� We want to find a precition strategy with the minimal expected risk

R(h) =

∫ ∑
y∈Y

`(y, h(x)) p(x, y) dx = E(x,y)∼p

(
`(y, h(x))

)

Why we need learning ? . . . because we don’t know p(x, y)

� We will address the problem when we can only collect examples
{(x1, y1), (x2, y2), . . .} drawn from the i.i.d. random variables
distributed according to the unknown p(x, y).
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Estimation of the risk by using test examples

� We are given a set of test examples

Sl = {(xi, yi) ∈ (X × Y) | i = 1, . . . , l}

which are drawn from i.i.d. random variables with distribution p(x, y).

� A a prediction strategy h : X → Y can be evaluated by the empirical
risk computed on the test examples

RSl(h) =
1

l

l∑
i=1

`(yi, h(xi))

� Is the test risk RSl(h) a good approximation of the expected risk R(h) ?
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Law of large numbers

� Arithmetic mean of the results of random trials will become closer to
the expected value as more trials are performed.

� Example: The expected value of a single roll of a fair die is

1 + 2 + 3 + 4 + 5 + 6

6
= 3.5

According to the LLA, the arithmetic mean of a large number of rolls is
likely to be close to 3.5 .

Theorem 1. (Hoeffding inequality) Let {z1, . . . , zl} ∈ [a, b]l be realizations
of independent random variables with the same expected value µ. Then for
any ε > 0 it holds that

P
(∣∣∣1
l

l∑
i=1

zi − µ
∣∣∣ ≥ ε) ≤ 2e

− 2l ε2

(b−a)2
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Estimation of the risk by using test examples

� We are interested in the deviation
∣∣RSl(h)−R(h)∣∣ which equals to

∣∣∣∣1l
l∑
i=1

`(yi, h(xi))− E(x,y)∼p(`(y, h(x)))

∣∣∣∣ = ∣∣∣∣1l
l∑
i=1

zi − µ
∣∣∣∣

� For fixed strategy h, the numbers zi = `(yi, h(xi)), i ∈ {1, . . . , l}, are
realizations of i.i.d. random variables with the expected value µ = R(h).

� According to the Hoeffding inequality, for any ε > 0 it holds that

P
(∣∣∣RSl(h)−R(h)∣∣∣ ≥ ε) ≤ 2e

− 2l ε2

(b−a)2

i.e, probability of seeing a “bad test set” decreases exponentially fast
with l.
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Learning from examples by empirical risk minimization

� We are given a training set of examples

T m = {(xi, yi) ∈ (X × Y) | i = 1, . . . ,m}

drawn from i.i.d. random variables distributed according to p(x, y).
� The expected risk R(h) to be minimized is replaced by the empirical risk
evaluated on training examples

RT m(h) =
1

m

m∑
i=1

`(yi, h(xi))

� The ERM learning algorithm returns hm such that

hm ∈ Argmin
h∈H

RT m(h)

where H ⊆ YX = {h : X → Y} is a hypothesis space.
� The choice of H is of a key importance.
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Error of the learning algorithm

� The best attainable (Bayes) risk is R∗ = infh∈YX R(h)

� The best predictor in H is hH ∈ Argminh∈HR(h)

� The predictor hm learned from T m has risk R(hm)

Excess error measures how far is the learned predictor from the best one:(
R(hm)−R∗

)
︸ ︷︷ ︸
excess error

=

(
R(hm)−R(hH)

)
︸ ︷︷ ︸
estimation error

+

(
R(hH)−R∗

)
︸ ︷︷ ︸

approximation error

Remarks:
� The approximation error (not random) is determined by fixing H
� The estimation error specifies how much we lose when learning from
examples T m instead of using the true p(x, y).
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Statistically consistent learning algorithm

Definition 1. The algorithm A : ∪∞m=1 (X × Y)m→ H is statistically
consistent in H ⊆ YX if for any p(x, y) and ε > 0 it holds that

lim
m→∞

P
(
R(hm)−R(hH) ≥ ε

)
= 0

where hm = A(T m) is the hypothesis returned by the algorithm A for
training set T m generated from p(x, y).

� The statistically consistent means that the probability that the
estimation error happens to be high can be pushed arbitrarily low if we
have enough examples.

� Is the ERM algorithm statistically consistent ?

http://cmp.felk.cvut.cz
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Example: ERM is not always statistically consistent

� Let X = [a, b] ⊂ R, Y = {+1,−1}, `(y, y′) = [[y 6= y′]], p(x | y = +1)

and p(x | y = −1) be uniform distributions on X and p(y = +1) = 0.8.

� The optimal strategy is h(x) = +1 with the Bayes risk R∗ = 0.2.

� Consider a “cheating” learning algorithm which for given training set
T m = {(x1, y1), . . . , (xm, ym)} returns strategy

hm(x) =

{
yj if x = xj for some j ∈ {1, . . . ,m}
−1 otherwise

� The empirical risk is RT m(hm) = 0 with probability 1 for any m.

� The expected risk is R(hm) = 0.8 for any m.

� For unconstrained H the empirical risk RT m(hm) may not be a good
approximation of the true risk R(hm) even if m is arbitrary large.
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Uniform Law of Large Numbers

Definition 2. The hypothesis space H ⊆ YX satisfies the uniform law of
large numbers if for all ε > 0 it holds that

lim
m→∞

P
(
sup
h∈H

∣∣∣R(h)−RT m(h)∣∣∣ ≥ ε) = 0

� ULLN says that the probability of seeing a “bad training set” for at least
one hypothesis from H can be made arbitrarily low if we have enough
examples.

Theorem 2. The ULLN satisfied for H implies the statistical consistency
of ERM in H.
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Proof: ULLN implies consistency of ERM

For fixed T m and hm ∈ Argminh∈HRT m(h) we have:

R(hm)−R(hH) =
(
R(hm)−RT m(hm)

)
+

(
RT m(hm)−R(hH)

)
≤
(
R(hm)−RT m(hm)

)
+

(
RT m(hH)−R(hH)

)
≤ 2 sup

h∈H

∣∣∣∣R(h)−RT m(h)∣∣∣∣
Therefore ε ≤ R(hm)−R(hH) implies ε2 ≤ suph∈H

∣∣∣∣R(h)−RT m(h)∣∣∣∣ and
P
(
R(hm)−R(hH) ≥ ε

)
≤ P

(
sup
h∈H

∣∣∣∣R(h)−RT m(h)∣∣∣∣ ≥ ε

2

)
so if converges the RHS to zero (ULLN) so does the LHS (estimation error).
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ULLN for finite hypothesis space

� Let us assume a finite hypothesis space H = {h1, . . . , hK}.

� We define the set of all “bad” training sets for a hypothesis h ∈ H as

B(h) =
{
T m ∈ (X × Y)m

∣∣∣∣∣RT m(h)−R(h)∣∣ ≥ ε}
� We use the union bound to upper bound the probability of seeing a bad
training set for at least one hypothesis from h ∈ H

P
(
max
h∈H
|RT m(h)−R(h)| ≥ ε

)
= P

(
T m ∈ B(h1)

∨
T m ∈ B(h2)

∨
· · ·
∨
T m ∈ B(hK)

)
≤
∑
h∈H

P(T m ∈ B(h))

http://cmp.felk.cvut.cz
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ULLN for finite hypothesis space

� Example: the union bound for three hypotheses

P
(
T m ∈ B(h1)

∨
T m ∈ B(h2)

∨
T m ∈ B(h3)

)
≤

3∑
i=1

P(T m ∈ B(hi))

B(h1)

B(h3)

B(h2)

� The union bound is tight if the events are mutually exclusive as is the
case in the figure.
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ULLN for finite hypothesis space

� Combining the union bound with the Hoeffding inequality yields

P
(
max
h∈H
|RT m(h)−R(h)| ≥ ε

)
≤
∑
h∈H

P(T m ∈ B(h)) ≤ 2|H|e−
2mε2

(b−a)2

� Therefore we see that

lim
m→∞

P
(
max
h∈H
|RT m(h)−R(h)| ≥ ε

)
= 0

Theorem 3. The finite hypothesis space satisfies the uniform law of large
numbers.
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Confidence intervals for finite hypothesis space

� We have derived a bound valid for a finite H:

P
(
max
h∈H
|RT m(h)−R(h)| ≥ ε

)
≤ 2|H|e−

2mε2

(b−a)2

� Denoting δ = 2|H|e
−2mε2

(b−a)2 and solving for ε gives

ε(m, δ, |H|) = (b− a)

√
log 2|H|+ log 1

δ

2m

� We see that for any δ > 0, with probability at least 1− δ it holds that

max
h∈H
|RT m(h)−R(h)| ≤ ε(m, δ)

and hence also R(h) ∈ (RT m(h)− ε(m, δ, |H|), RT m(h) + ε(m, δ, |H|))

http://cmp.felk.cvut.cz
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Generalization bound for finite hypothesis space

Theorem 4. Let H be a finite hypothesis space and
T m = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m a training set draw from i.i.d.
random variables with distribution p(x, y). Then, for any 0 < δ < 1, with
probability at least 1− δ the inequality

R(h) ≤ RT m(h) + (b− a)

√
log 2|H|+ log 1

δ

2m

holds for any h ∈ H and any loss function ` : Y × Y → [a, b].

� The “worst-case” bound in Theorem 4 holds for any h ∈ H, in
particular, for the ERM algorithm which minimizes the first term.

� The second term suggests that we have to use H with appropriate
cardinality (complexity); e.g. if m is small and |H| is high we can overfit.
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Summary

Topics covered in the lecture:

� Prediction problem

� Test risk and its justification by the law of large numbers

� Empirical Risk Minimization

� Excess error = estimation error + approximation error

� Statistical consistency of learning algorithm

� Uniform law of large numbers

� Generalization bound for finite hypothesis space
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