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Prediction problem: the definition

� X a set of input observations/features

� Y a finite set of hidden states

� h : X → Y a prediction strategy

� (x, y) ∈ X × Y samples randomly drawn from r.v. with p.d.f. p(x, y)

� ` : Y × Y → R a loss function

� Task is to find a strategy with the minimal expected risk

R(h) =

∫ ∑
y∈Y

`(y, h(x)) p(x, y) dx = E(x,y)∼p

(
`(y, h(x))

)
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Example of a prediction problem

� The statistical model:

• X = R, Y = {+1,−1}, `(y, y′) =

{
0 if y = y′

1 if y 6= y′

• p(x, y) = p(y) 1√
2πσ

e
− 1

2σ2
(x−µy)2, y ∈ Y.
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Solving the prediction problem from examples

� Assumption: we have an access to examples

{(x1, y1), (x2, y2), . . .}

drawn from i.i.d. r.v. distributed according to unknown p(x, y).

� 1) Testing: estimate R(h) of a give h : X → Y using test set

Sl = {(xi, yi) ∈ (X × Y) | i = 1, . . . , l}

drawn i.i.d. from p(x, y).

� 2) Learning: find h : X → Y with small R(h) using training set

T m = {(xi, yi) ∈ (X × Y) | i = 1, . . . ,m}

drawn i.i.d. from p(x, y).
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� Given a predictor h : X → Y and a test set Sl draw i.i.d. from
distribution p(x, y), compute the empirical risk

RSl(h) =
1

l

(
`(y1, h(x1)) + · · ·+ `(yl, h(xl)

)
=

1

l

l∑
i=1

`(yi, h(xi))

and use it as an estimate of R(h) = E(x,y)∼p(`(y, h(x))).

� The empirical risk RSl(h) is a random variable.

� We will show how to compute an interval such that

R(h) ∈ (RSl(h) − ε,RSl(h) + ε) with probability (confidence) γ ∈ (0, 1)

� We will show relation between ε, l and γ.
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Testing: estimation of the expected risk
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Law of large numbers

� Sample mean (arithmetic average) of the results of random trials gets
closer to the expected value as more trials are performed.

� Example: The expected value of a single roll of a fair die is

µ = Ez∼p(z) =
6∑
z=1

z p(z) =
1 + 2 + 3 + 4 + 5 + 6

6
= 3.5
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Hoeffding inequality

Theorem 1. Let {z1, . . . , zl} ∈ [a, b]l be a sample from i.i.d. r.v. with
expected value µ. Let µ̂ = 1

l

∑l
i=1 z

i. Then for any ε > 0 it holds that

P
(
|µ̂− µ| ≥ ε

)
≤ 2e

− 2l ε2

(b−a)2

� Example (rolling a die): µ = 3.5, zi ∈ [1, 6], ε = 0.5.
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Confidence intervals
(l, γ) → ε

� Let µ̂ = 1
l

∑l
i=1 z

i be the sample average computed from
{z1, . . . , zl} ∈ [a, b]l sampled from r.v. with expected value µ.

� Find ε such that µ ∈ (µ̂− ε, µ̂+ ε) with probability at least γ.

Using the Hoeffding inequality we can write

P
(
|µ̂− µ| < ε

)
= 1− P

(
|µ̂− µ| ≥ ε

)
≥ 1− 2e

− 2 l ε2

(b−a)2 = γ

and solving the last equation for ε yields

ε = |b− a|
√

log(2)− log(1− γ)
2 l
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Confidence intervals
(ε, γ) → l

� Let µ̂ = 1
l

∑l
i=1 z

i be the sample average computed from
{z1, . . . , zl} ∈ [a, b]l sampled from r.v. with expected value µ.

� Given a fixed ε > 0 and γ ∈ (0, 1), what is the minimal number of
examples l such that µ ∈ (µ̂− ε, µ̂+ ε) with probability γ at least ?

Starting from

P
(
|µ̂− µ| < ε

)
= 1− P

(
|µ̂− µ| ≥ ε

)
≥ 1− 2e

− 2 l ε2

(b−a)2 = γ

and solving for l yields

l =
log(2)− log(1− γ)

2 ε2
(b− a)2

http://cmp.felk.cvut.cz


10/12
Testing: estimation of the expected risk

� Given h : X → Y estimate the expected risk R(h) = E(x,y)∼p(`(y, h(x)))

by the empirical risk RSl(h) = 1
l

∑l
i=1 `(y

i, h(xi)) using the test set Sl.

� The incurred losses zi = `(yi, h(xi)) ∈ [`min, `max], i ∈ {1, . . . , l}, are
realizations of i.i.d. r.v. with the expected value µ = R(h).

� According to the Hoeffding inequality, for any ε > 0 the probability of
seeing a “bad test set” can be bound by

P
(∣∣∣RSl(h)−R(h)∣∣∣ ≥ ε) ≤ 2e

− 2l ε2

(`min−`max)2

http://cmp.felk.cvut.cz


11/12
Testing: recipe for constructing confidence intervals

� Given h : X → Y estimate the expected risk R(h) = E(x,y)∼p(`(y, h(x)))

by the empirical risk RSl(h) = 1
l

∑l
i=1 `(y

i, h(xi)) using the test set
Sl = {(x1, y1), . . . , (xl, yl)}.

� Confidence interval:

R(h) ∈
(
RSl(h)− ε,RSl(h) + ε

)
with probability γ ∈ (0, 1)

� Interval width: For fixed l and γ ∈ (0, 1) compute

ε = (`max − `min)

√
log(2)− log(1− γ)

2 l
.

� Number of examples: For fixed ε and γ ∈ (0, 1) compute

l =
log(2)− log(1− γ)

2 ε2
(`max − `min)

2
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Example: confidence intervals

� The width of R(h) ∈
(
RSl(h)− ε,RSl(h) + ε

)
is for `(y, y′) = [[y 6= y′]]

given by ε =
√

log(2)−log(1−γ)
2 l
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for γ = 0.95

l 100 1,000 10,000 18,445
ε 0.135 0.043 0.014 0.01
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