Statistical Machine Learning (BE4M33SSU) Lecture 2: Empirical Risk Minimization I

Czech Technical University in Prague V. Franc

BE4M33SSU – Statistical Machine Learning, Winter 2020

Prediction problem: the definition

- ◆ y a finite set of **hidden states**
- ◆ $h: \mathcal{X} \rightarrow \mathcal{Y}$ a prediction strategy
- (*x, y*) ∈ X × Y samples **randomly drawn** from r.v. with p.d.f. *p*(*x, y*)

2/12

p

◆ $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ a loss function

Task is to find a strategy with the minimal **expected risk**

$$
R(h) = \int \sum_{y \in \mathcal{Y}} \ell(y, h(x)) p(x, y) dx = \mathbb{E}_{(x, y) \sim p} (\ell(y, h(x)))
$$

Example of a prediction problem

•
$$
\mathcal{X} = \mathbb{R}, \quad \mathcal{Y} = \{+1, -1\}, \quad \ell(y, y') = \begin{cases} 0 & \text{if } y = y' \\ 1 & \text{if } y \neq y' \end{cases}
$$

•
$$
p(x, y) = p(y) \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu_y)^2}
$$
, $y \in \mathcal{Y}$.

Solving the prediction problem from examples

♦ **Assumption**: we have an access to examples

$$
\{(x^1, y^1), (x^2, y^2), \ldots\}
$$

drawn from i.i.d. r.v. distributed according to unknown *p*(*x, y*).

1) **Testing**: estimate $R(h)$ of a give $h: \mathcal{X} \rightarrow \mathcal{Y}$ using **test set**

$$
\mathcal{S}^l = \{(x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \dots, l\}
$$

drawn i.i.d. from *p*(*x, y*).

 \blacklozenge

◆ 2) Learning: find $h: \mathcal{X} \rightarrow \mathcal{Y}$ with small $R(h)$ using training set

$$
\mathcal{T}^m = \{ (x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \ldots, m \}
$$

drawn i.i.d. from *p*(*x, y*).

Testing: estimation of the expected risk

 \blacklozenge Given a predictor $h\colon \mathcal{X}\to \mathcal{Y}$ and a test set \mathcal{S}^l draw i.i.d. from distribution $p(x, y)$, compute the **empirical risk**

$$
R_{\mathcal{S}^l}(h) = \frac{1}{l} \big(\ell(y^1, h(x^1)) + \dots + \ell(y^l, h(x^l)\big) = \frac{1}{l} \sum_{i=1}^l \ell(y^i, h(x^i))
$$

use it as an estimate of $R(h) = \mathbb{F}_\ell$, $\ell(\ell_2, h(x))$

and use it as an estimate of $R(h) = \mathbb{E}_{(x,y)\sim p}(\ell(y, h(x))).$

 \blacklozenge The empirical risk $R_{\mathcal{S}^l}(h)$ is a random variable.

◆ We will show how to compute an interval such that

 $R(h) \in (R_{\mathcal{S}^l(h)} - \varepsilon, R_{\mathcal{S}^l(h)} + \varepsilon)$ with probability (confidence) $\gamma \in (0,1)$

We will show relation between *ε*, *l* and *γ*.

Law of large numbers

♦ Sample mean (arithmetic average) of the results of random trials gets closer to the expected value as more trials are performed.

6/12

D

 \blacklozenge Example: The expected value of a single roll of a fair die is

Hoeffding inequality

 $\bf Theorem\ 1.\quad$ Let $\{z^1,\ldots,z^l\}\in[a,b]^l$ be a sample from i.i.d. r.v. with expected value μ . Let $\hat{\mu} = \frac{1}{l}$ $\frac{1}{l}\sum_{i=1}^{l}z^{i}.$ Then for any $\varepsilon>0$ it holds that

$$
\mathbb{P}\left(|\hat{\mu} - \mu| \ge \varepsilon\right) \le 2e^{-\frac{2l\,\varepsilon^2}{(b-a)^2}}
$$

 \blacklozenge Example (rolling a die): $\mu = 3.5$, $z_i \in [1, 6]$, $\varepsilon = 0.5$.

Confidence intervals $(l, \gamma) \rightarrow \varepsilon$

 \blacklozenge Find ε such that $\mu \in (\hat{\mu} - \varepsilon, \hat{\mu} + \varepsilon)$ with probability at least $\gamma.$

Using the Hoeffding inequality we can write

$$
\mathbb{P}\Big(|\hat{\mu} - \mu| < \varepsilon\Big) = 1 - \mathbb{P}\Big(|\hat{\mu} - \mu| \geq \varepsilon\Big) \geq 1 - 2e^{-\frac{2l \varepsilon^2}{(b-a)^2}} = \gamma
$$

and solving the last equation for *ε* yields

$$
\varepsilon = |b - a| \sqrt{\frac{\log(2) - \log(1-\gamma)}{2 \, l}}
$$

Confidence intervals $(\varepsilon, \gamma) \rightarrow l$

 \blacklozenge Let $\hat{\mu} = \frac{1}{l}$ $\frac{1}{l}\sum_{i=1}^{l}z^{i}$ be the sample average computed from $\{z^1,\ldots,z^l\}\in[a,b]^l$ sampled from r.v. with expected value μ .

 \blacklozenge Given a fixed $\varepsilon > 0$ and $\gamma \in (0,1)$, what is the minimal number of examples *l* such that $\mu \in (\hat{\mu} - \varepsilon, \hat{\mu} + \varepsilon)$ with probability γ at least ?

Starting from

$$
\mathbb{P}\Big(|\hat{\mu} - \mu| < \varepsilon\Big) = 1 - \mathbb{P}\Big(|\hat{\mu} - \mu| \ge \varepsilon\Big) \ge 1 - 2e^{-\frac{2l\,\varepsilon^2}{(b-a)^2}} = \gamma
$$

and solving for *l* yields

$$
l = \frac{\log(2) - \log(1 - \gamma)}{2\,\varepsilon^2} \,(b - a)^2
$$

Testing: estimation of the expected risk

- Given $h: \mathcal{X} \to \mathcal{Y}$ estimate the expected risk $R(h) = \mathbb{E}_{(x,y) \sim p}(\ell(y, h(x)))$ by the empirical risk $R_{\mathcal{S}^l}(h) = \frac{1}{l}\sum_{i=1}^l \ell(y^i, h(x^i))$ using the test set \mathcal{S}^l .
- \blacktriangleright The incurred losses $z^i = \ell(y^i, h(x^i)) \in [\ell_\text{min}, \ell_\text{max}], \ i \in \{1, \dots, l\},$ are realizations of i.i.d. r.v. with the expected value $\mu = R(h)$.
- \blacklozenge According to the Hoeffding inequality, for any *ε >* 0 the probability of seeing a "bad test set" can be bound by

$$
\mathbb{P}\left(\left|R_{\mathcal{S}^l}(h) - R(h)\right| \ge \varepsilon\right) \le 2e^{-\frac{2l\,\varepsilon^2}{(\ell_{\min} - \ell_{\max})^2}}
$$

Testing: recipe for constructing confidence intervals

 \blacklozenge **Confidence interval:**

$$
R(h) \in \left(R_{\mathcal S^l}(h)-\varepsilon, R_{\mathcal S^l}(h)+\varepsilon\right) \quad \text{with probability }\quad \gamma \in (0,1)
$$

 \blacklozenge Interval width: For fixed l and $\gamma \in (0,1)$ compute

$$
\varepsilon = (\ell_{\max} - \ell_{\min}) \sqrt{\frac{\log(2) - \log(1 - \gamma)}{2 l}}
$$

Number of examples: For fixed *ε* and *γ* ∈ (0*,* 1) compute

$$
l = \frac{\log(2) - \log(1 - \gamma)}{2 \varepsilon^2} (\ell_{\max} - \ell_{\min})^2
$$

.

Example: confidence intervals

