Statistical Machine Learning (BE4M33SSU) Lecture 2: Empirical Risk Minimization I

Czech Technical University in Prague V. Franc

- \bullet \mathcal{X} a set of input **observations/features**
- ullet \mathcal{Y} a finite set of **hidden states**
- $h: \mathcal{X} \to \mathcal{Y}$ a prediction strategy
- $(x,y) \in \mathcal{X} \times \mathcal{Y}$ samples **randomly drawn** from r.v. with p.d.f. p(x,y)
- $\ell \colon \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ a loss function
- ◆ Task is to find a strategy with the minimal expected risk

$$R(h) = \int \sum_{y \in \mathcal{Y}} \ell(y, h(x)) \ p(x, y) \ dx = \mathbb{E}_{(x,y) \sim p} \Big(\ell(y, h(x)) \Big)$$

Example of a prediction problem

- The statistical model:
 - $\bullet \ \mathcal{X} = \mathbb{R}, \quad \mathcal{Y} = \{+1, -1\}, \quad \ell(y, y') = \left\{ \begin{array}{ll} 0 & \text{if} \quad y = y' \\ 1 & \text{if} \quad y \neq y' \end{array} \right.$
 - $p(x,y) = p(y) \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu_y)^2}$, $y \in \mathcal{Y}$.

Solving the prediction problem from examples

Assumption: we have an access to examples

$$\{(x^1, y^1), (x^2, y^2), \ldots\}$$

drawn from i.i.d. r.v. distributed according to unknown p(x, y).

• 1) **Testing**: estimate R(h) of a give $h: \mathcal{X} \to \mathcal{Y}$ using **test set**

$$\mathcal{S}^l = \{ (x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \dots, l \}$$

drawn i.i.d. from p(x, y).

• 2) **Learning**: find $h: \mathcal{X} \to \mathcal{Y}$ with small R(h) using **training set**

$$\mathcal{T}^m = \{ (x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \dots, m \}$$

drawn i.i.d. from p(x, y).

Testing: estimation of the expected risk

lacktriangle Given a predictor $h\colon \mathcal{X} \to \mathcal{Y}$ and a test set \mathcal{S}^l draw i.i.d. from distribution p(x,y), compute the **empirical risk**

$$R_{\mathcal{S}^l}(h) = \frac{1}{l} \left(\ell(y^1, h(x^1)) + \dots + \ell(y^l, h(x^l)) \right) = \frac{1}{l} \sum_{i=1}^l \ell(y^i, h(x^i))$$

and use it as an estimate of $R(h) = \mathbb{E}_{(x,y) \sim p}(\ell(y,h(x)))$.

- lacktriangle The empirical risk $R_{\mathcal{S}^l}(h)$ is a random variable.
- We will show how to compute an interval such that

$$R(h) \in (R_{\mathcal{S}^l(h)} - \varepsilon, R_{\mathcal{S}^l(h)} + \varepsilon)$$
 with probability (confidence) $\gamma \in (0, 1)$

We will show relation between ε , l and γ .

- Sample mean (arithmetic average) of the results of random trials gets closer to the expected value as more trials are performed.
- Example: The expected value of a single roll of a fair die is

$$\mu = \mathbb{E}_{z \sim p}(z) = \sum_{z=1}^{6} z \, p(z) = \frac{1+2+3+4+5+6}{6} = 3.5$$

$$\hat{\mu} = \frac{1}{l} \sum_{i=1}^{l} z^i$$

200

Hoeffding inequality

7/12

Theorem 1. Let $\{z^1,\ldots,z^l\}\in [a,b]^l$ be a sample from i.i.d. r.v. with expected value μ . Let $\hat{\mu} = \frac{1}{l} \sum_{i=1}^{l} z^{i}$. Then for any $\varepsilon > 0$ it holds that

$$\mathbb{P}\Big(|\hat{\mu} - \mu| \ge \varepsilon\Big) \le 2e^{-\frac{2l\,\varepsilon^2}{(b-a)^2}}$$

Example (rolling a die): $\mu = 3.5$, $z_i \in [1, 6]$, $\varepsilon = 0.5$.

- Let $\hat{\mu} = \frac{1}{l} \sum_{i=1}^{l} z^i$ be the sample average computed from $\{z^1, \dots, z^l\} \in [a, b]^l$ sampled from r.v. with expected value μ .
- Find ε such that $\mu \in (\hat{\mu} \varepsilon, \hat{\mu} + \varepsilon)$ with probability at least γ .

Using the Hoeffding inequality we can write

$$\mathbb{P}\Big(|\hat{\mu} - \mu| < \varepsilon\Big) = 1 - \mathbb{P}\Big(|\hat{\mu} - \mu| \ge \varepsilon\Big) \ge 1 - 2e^{-\frac{2l \varepsilon^2}{(b-a)^2}} = \gamma$$

and solving the last equation for ε yields

$$\varepsilon = |b - a| \sqrt{\frac{\log(2) - \log(1 - \gamma)}{2l}}$$

$$(arepsilon,\gamma) o l$$

- Let $\hat{\mu} = \frac{1}{l} \sum_{i=1}^{l} z^i$ be the sample average computed from $\{z^1, \dots, z^l\} \in [a, b]^l$ sampled from r.v. with expected value μ .
- Given a fixed $\varepsilon > 0$ and $\gamma \in (0,1)$, what is the minimal number of examples l such that $\mu \in (\hat{\mu} \varepsilon, \hat{\mu} + \varepsilon)$ with probability γ at least ?

Starting from

$$\mathbb{P}\Big(|\hat{\mu} - \mu| < \varepsilon\Big) = 1 - \mathbb{P}\Big(|\hat{\mu} - \mu| \ge \varepsilon\Big) \ge 1 - 2e^{-\frac{2l\varepsilon^2}{(b-a)^2}} = \gamma$$

and solving for l yields

$$l = \frac{\log(2) - \log(1 - \gamma)}{2\varepsilon^2} (b - a)^2$$

Testing: estimation of the expected risk

- Given $h \colon \mathcal{X} \to \mathcal{Y}$ estimate the expected risk $R(h) = \mathbb{E}_{(x,y) \sim p}(\ell(y,h(x)))$ by the empirical risk $R_{\mathcal{S}^l}(h) = \frac{1}{l} \sum_{i=1}^l \ell(y^i,h(x^i))$ using the test set \mathcal{S}^l .
- The incurred losses $z^i = \ell(y^i, h(x^i)) \in [\ell_{\min}, \ell_{\max}]$, $i \in \{1, \dots, l\}$, are realizations of i.i.d. r.v. with the expected value $\mu = R(h)$.
- According to the Hoeffding inequality, for any $\varepsilon > 0$ the probability of seeing a "bad test set" can be bound by

$$\mathbb{P}\left(\left|R_{\mathcal{S}^l}(h) - R(h)\right| \ge \varepsilon\right) \le 2e^{-\frac{2l\,\varepsilon^2}{(\ell_{\min} - \ell_{\max})^2}}$$

Testing: recipe for constructing confidence intervals

- Given $h: \mathcal{X} \to \mathcal{Y}$ estimate the expected risk $R(h) = \mathbb{E}_{(x,y) \sim p}(\ell(y,h(x)))$ by the empirical risk $R_{\mathcal{S}^l}(h) = \frac{1}{l} \sum_{i=1}^l \ell(y^i, h(x^i))$ using the test set $\mathcal{S}^l = \{(x^1, y^1), \dots, (x^l, y^l)\}.$
- **Confidence interval:**

$$R(h) \in \left(R_{\mathcal{S}^l}(h) - \varepsilon, R_{\mathcal{S}^l}(h) + \varepsilon\right)$$
 with probability $\gamma \in (0, 1)$

• Interval width: For fixed l and $\gamma \in (0,1)$ compute

$$\varepsilon = (\ell_{\text{max}} - \ell_{\text{min}}) \sqrt{\frac{\log(2) - \log(1 - \gamma)}{2l}}.$$

• Number of examples: For fixed ε and $\gamma \in (0,1)$ compute

$$l = \frac{\log(2) - \log(1 - \gamma)}{2\varepsilon^2} \left(\ell_{\text{max}} - \ell_{\text{min}}\right)^2$$

Example: confidence intervals

12/12

lacklack The width of $R(h) \in \left(R_{\mathcal{S}^l}(h) - \varepsilon, R_{\mathcal{S}^l}(h) + \varepsilon\right)$ is for $\ell(y,y') = [y \neq y']$ given by $\varepsilon = \sqrt{\frac{\log(2) - \log(1 - \gamma)}{2 \, l}}$

for
$$\gamma = 0.95$$

	100	1,000	10,000	18,445
ε	0.135	0.043	0.014	0.01