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Prediction problem: the definition @
2/12

X a set of input observations/features

Y a finite set of hidden states

h: X — ) a prediction strategy

(x,y) € X x ) samples randomly drawn from r.v. with p.d.f. p(z,y)
: )Y xY — R aloss function

Task is to find a strategy with the minimal expected risk
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Example of a prediction problem @
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The statistical model:

/

Lif y#y
1

2
1L 722 T—py) Cye.

2o

e X=R, V={+1,-1}, ((yy) :{

e p(z,y) = p(y)
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Example of a prediction problem

The statistical model:

0 if y=1v
_ _ _ N
e Y =R, Y=A{+1,-1}, L(y,vy) {1 oy
1l )2
o p(z,y) =ply) A e 22T yey

2o

The optimal strategy (assuming p_ < iy ):

h(z) = argmax,cy p(y | ) = sign(x — 0)

3/12
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Example of a prediction problem

The statistical model:

0 if y=1v
_ _ _ A
__ 1 _% x_ﬂy)Q
o p(z,y) =p(y) e >  ye.

The optimal strategy (assuming p_ < iy ):
h(z) = argmax,cy p(y | ) = sign(x — 0)
The value of the expected risk:

R(h) = [ pla,+1)dz + [ p(z, —1)dz

3/12
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Example of a prediction problem @
3/12

® The statistical model:

_ _ L /:
e ¥ =R, Y={+1,-1}, {(y.y) {1 vy
1

A ()2
o p(z,y) = ply) e 2277y ey

2o

0.2 - I R(h) |

01M%y=—n *
' p(r,y =+1)
O ; | | 1 | I 1 |
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Solving the prediction problem from examples @

4/12
Assumption: we have an access to examples

{@y), (=% y%),.. .}

drawn from i.i.d. r.v. distributed according to unknown p(z,y).
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Solving the prediction problem from examples @
4/12

Assumption: we have an access to examples

{@y), (=% y%),.. .}

drawn from i.i.d. r.v. distributed according to unknown p(z,y).

1) Testing: estimate R(h) of a give h: X — ) using test set
S = {(@y) € (X x V) |i=1,....1}

drawn i.i.d. from p(z,y).
2) Learning: find h: X — ) with small R(h) using training set

T ={(&'y) € (X x V) i=1,...,m)

drawn i.i.d. from p(x,y).
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Testing: estimation of the expected risk @
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Given a predictor h: X — ) and a test set S' draw i.i.d. from
distribution p(z,y), compute the empirical risk

Rgi(h) = %(g(yla h(zh)) + -+ 0y, h(xl)) =

1
and use it as an estimate of R(h) = E; ,)p(L(y, h(x))).
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Testing: estimation of the expected risk @

5/12

¢ Given a predictor h: X — ) and a test set S’ draw i.i.d. from
distribution p(z,y), compute the empirical risk

Rgi(h) = %(g(yla h(zh)) + -+ Ly, h(xl)) =

0.3 - —’# _

0.1 - :
O : : ‘ 1 Il 1
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Testing: estimation of the expected risk @
5/12

Given a predictor h: X — ) and a test set S' draw i.i.d. from
distribution p(z,y), compute the empirical risk

Rgi(h) = %(6(917 h(zh)) + -+ 0y, h(xl)) =

h(x) =—11 hx — +1
03 B L*# i
|
021 l R(h) =17T% |
0.1 - : Rsl(h) — 10%7
0 | o o000 leww @ @ |
5 4 -3 2 -1 0 1 2 3 4 5
X [ =10
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Testing: estimation of the expected risk @
5/12

Given a predictor h: X — ) and a test set S' draw i.i.d. from
distribution p(z,y), compute the empirical risk

Rgi(h) = %(6(917 h(zh)) + -+ 0y, h(xl)) =

h(z)=—11 h(x — +1
03 B L*# i
|
2T | R(h) =17T% |
0.1 - : Rsl(h) — 20%7
0 | | o oobe® o o |
5 4 3 -2 A 0 1 2 3 4 5
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Testing: estimation of the expected risk

¢ Given a predictor h: X — ) and a test set S’ draw i.i.d. from
distribution p(z,y), compute the empirical risk

Rgi(h) = %(g(yla h(zh)) + -+ Ly, h(wl)) =

hiz) = —1 h(z) = +1
03l () | () *
0.2 | R(h) = 17% -
0.1 | Rgi(h) = 15.6%
|
0) m o-@

5 4 -3 -2 -1 0 1 2 3 4 5
X [ = 1000

5/12
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Testing: estimation of the expected risk @
5/12

Given a predictor h: X — ) and a test set S' draw i.i.d. from
distribution p(z,y), compute the empirical risk

Rgi(h) = %(g(yla h(zh)) + -+ 0y, h(xl)) =

and use it as an estimate of R(h) = E; )~ (L(y, h(x))l)
The empirical risk Rgi(h) is a random variable.

We will show how to compute an interval such that

R(h) € (Rgupy — € Rgip) +€) with probability (confidence) v € (0, 1)

We will show relation between ¢, [ and 7.
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4 N
Law of large numbers @
6/12

Sample mean (arithmetic average) of the results of random trials gets
closer to the expected value as more trials are performed.
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Law of large numbers

CAm ¢

6/12

Sample mean (arithmetic average) of the results of random trials gets
closer to the expected value as more trials are performed.

Example: The expected value of a single roll of a fair die is

6
= Ean(2) = 3 200z
z=1

=73

1=1
e ®© @ ©
© & XX
° , e e oy
21 =3 22=1 z3=5 =9

14243444546
= . —

3.9
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4 N
Law of large numbers @
6/12

Sample mean (arithmetic average) of the results of random trials gets
closer to the expected value as more trials are performed.

Example: The expected value of a single roll of a fair die is

6
1+2434+44+54+6
p=E.p(z) = Z zp(z) = 6 = 3.9
z=1
1 [
lu:?;z 6 gxperlment1
=9
€ o0 e N4
e [ J @ (X X
_. J J ,_.J ® + 3
=3 22=1 22 =5 b =2 szk

50 100 150 200
|
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4 N
Law of large numbers @
6/12

Sample mean (arithmetic average) of the results of random trials gets
closer to the expected value as more trials are performed.

Example: The expected value of a single roll of a fair die is

6
1+2+3+4+5+6
p=E.p(z) = Z zp(z) = 6 = 3.9
z=1
1 l
lu:?;z 6 gxperlmentz
_5
€ o0 e N4
e & . oo0
_. J J ,_.J ® + 3
=3 22=1 22=5 2l =2 szk

50 100 150 200
|
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4 N
Law of large numbers @
6/12

Sample mean (arithmetic average) of the results of random trials gets
closer to the expected value as more trials are performed.

Example: The expected value of a single roll of a fair die is

6
1+2+3+4+5+6
p=E.p(z) = ZZP(Z) — 6 = 3.9
z=1
1 [
[ = 7;,2 6 gxperlmentS
=9
.. & ... oo " _ﬁ4 i
® J !!_!U d J ;:ng\VﬂJv
=3 22=1 2°=5 Zh =2 szk

50 100 150 200
|
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Law of large numbers

CAm ¢

6/12

¢ Sample mean (arithmetic average) of the results of random trials gets
closer to the expected value as more trials are performed.

¢ Example: The expected value of a single roll of a fair die is

=1
_ 5]
}\W
e o ) lﬁfs"

14243444546

3.9
6
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4 N
Hoeffding inequality @
7/12

Theorem 1. Let {z',..., 2!} € [a,b]' be a sample from i.i.d. r.v. with
expected value 1. Let i = %22:1 2*. Then for any € > 0 it holds that

21 82

P(If—ul > ) < 2¢ 0o



http://cmp.felk.cvut.cz

CAm ¢
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Hoeffding inequality

Theorem 1. Let {z',..., 2!} € [a,b]' be a sample from i.i.d. r.v. with
expected value 1. Let i = %Zizl 2*. Then for any € > 0 it holds that

21 &:2

P(If—ul > ) < 2¢ 0o

¢ Example (rolling a die): u = 3.5, z; € [1,6], € = 0.5.

10 experiments > | |
—2exp(-2l €2/ (b-a) 2)
) ] 15| —empirical
T4 1
+ 3
=0 /\/ 0-5
1 0

50 100 150 200 0 50 100 150 200
| |
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Confidence intervals @ 0
(l? 7) _> S 8/12

Let o =+ Zi ) 2* be the sample average computed from
{21, .. l} ¢ la, b]' sampled from r.v. with expected value .

Find € such that u € (i — €, i + €) with probability at least ~.
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Confidence intervals @ 0
(l? 7) _> S 8/12

Let 1 = %22:1 2* be the sample average computed from
{z1,...,2'} € ]a,b]' sampled from r.v. with expected value .

Find € such that u € (i — €, i + €) with probability at least ~.

Using the Hoeffding inequality we can write

2l€2

P(\ﬂ—u\ < 6) =1 —P(\ﬂ—m > e) > 12 -2 =

and solving the last equation for € yields

log(2) — log(1 —
8_‘b_a‘\/og og 7)
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Confidence intervals @ 0
(Eﬂ "Y) _> l 9/12

Let o =+ Zi ) 2* be the sample average computed from
{21, .. l} ¢ la, b]' sampled from r.v. with expected value .

Given a fixed € > 0 and v € (0, 1), what is the minimal number of
examples [ such that u € (it — €, i + €) with probability ~ at least ?



http://cmp.felk.cvut.cz

Confidence intervals @ 0
(Eﬂ "Y) _> l 9/12

Let 1 = %22:1 2* be the sample average computed from
{z1,...,2'} € ]a,b]' sampled from r.v. with expected value .

Given a fixed € > 0 and v € (0, 1), what is the minimal number of
examples [ such that u € (it — €, i + €) with probability ~ at least ?

Starting from

2l€2

P(\ﬂ—u\ <6) =1—P(\ﬂ—u| 26) >1—2¢ 0-9? =y

and solving for [ yields

,_ log(2) —zl;g(l —) (b — a)’
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Testing: estimation of the expected risk @
10/12

Given h: X' — ) estimate the expected risk R(h) = E(; ,)~p(£(y, h(x)))
by the empirical risk Rgi(h) = %2221 {(yt, h(x")) using the test set S'.

The incurred losses 2* = £(y", h(x")) € Wmin, max), © € {1,...,1}, are
realizations of i.i.d. r.v. with the expected value u = R(h).

According to the Hoeffding inequality, for any € > 0 the probability of
seeing a “bad test set” can be bound by

. 21 62


http://cmp.felk.cvut.cz

. ‘ o
Testing: recipe for constructing confidence intervals @
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Given h: X' — Y estimate the expected risk R(h) = E, ,)~p(£(y, h(2)))

by the empirical risk Rgi(h) = %22:1 {(y*, h(z")) using the test set
St ={(="y"),..., (a5 y")}

Confidence interval:

R(h) € (Rgi(h) — €, Rgi(h) +¢) with probability ~ € (0,1)
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. ‘ o
Testing: recipe for constructing confidence intervals @
11/12

Given h: X' — Y estimate the expected risk R(h) = E, ,)~p(£(y, h(2)))

by the empirical risk Rgi(h) = %22:1 {(y*, h(z")) using the test set
St ={(="y"),..., (a5 y")}

Confidence interval:

R(h) € (Rgi(h) — €, Rgi(h) +¢) with probability ~ € (0,1)

For fixed [ and v € (0,1) compute

= (b gmm)\/log@) —21<zg(1 -

For fixed € and v € (0,1) compute

; _ log(2) — log(1 — 7)
22

(gmax — gmin) 2
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Example: confidence intervals

@

12/12

¢ The width of R(h) € (Rgi(h) — €, Rgi(h) +¢) is for L(y,y) = [y # V]

given by £ = \/log(2)—10g(1_,y)

0.2

21

0.15 -

~v=0.95

—~=0.90

—~=0.99 |

102 10° 104
for v = 0.95
[ 100 | 1,000 | 10,000 | 18,445
e |l 0.135 | 0.043 0.014 0.01

10°
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experiment 1
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