
STATISTICAL MACHINE LEARNING (WS2018)
SEMINAR 2

Remark: Tools needed for solving Assignment 3 and 4 are discussed at the end of the
lecture on the ERM I which will be finished on Tuesday 16, 2018.

Assignment 1. Consider the task of age estimation based on visual cues. Let us denote
the visual features by x ∈ X and the unknown age by y ∈ N. The statistical relation
between the two random variables is known and given by their joint distribution p(x, y).
a) Deduce the optimal inference rule for the loss function `(y, y′) = |y − y′|2.
b) Same for the loss function `(y, y′) = |y − y′|.

Assignment 2. We are given a prediction strategy h : X → Y = {1, . . . , Y } assigning
observations x ∈ X into one of Y classes. Our task is to estimate the expected risk
R`(h) = E(x,y)∼p`(y, h(x)) where ` : Y × Y → R is some application specific loss
function. To this end, we collect a set of examples S l = {(xi, yi) ∈ (X × Y) | i =
1, . . . , l} drawn i.i.d. from the distribution p(x, y) and compute the test error

RSl(h) =
1

l

l∑
i=1

`(yj, h(xj)) .

What is the minimal number of test examples l we need to collect in order to have a
guarantee that the expected risk R`(h) is inside the interval (RSl(h) − ε, RSl(h) + ε)
with probability γ ∈ (0, 1) for some predefined ε > 0 ?

a) Give a formula to compute l as a function of ε and γ for the 0/1-loss `(y, y′) = [[y 6=
y′]]. Evaluate l for ε = 0.01 and γ ∈ {0.90, 0.95, 0.99}.
b) Solve the problem a) in case that the loss is the mean absolute error, `(y, y′) = |y−y′|.
Evaluate l for ε = 1, Y = 100 and γ ∈ {0.90, 0.95, 0.99}.
c) How do the formulas depend on the particular loss function?

Assignment 3. We are given a set H = {hi : X → {1, . . . , 100} | i = 1, . . . , 1000}
containing 1000 strategies each predicting the human age y ∈ {1, . . . , 100} from a facial
image x ∈ X . The quality of a single strategy is measured by the expected absolute
deviation between the predicted age and the true age

RMAE(h) = E(x,y)∼p(|y − h(x)|) ,



2

where the expectation is computed w.r.t. an unknown distribution p(x, y). The empirical
estimate of RMAE(h) reads

RT m(h) =
1

m

m∑
i=1

|yj − h(xj)|

where T m = {(xi, yi) ∈ (X ×Y) | i = 1, . . . ,m} is a set of examples drawn from i.i.d.
random variables with the same unknown p(x, y). Let hm ∈ Argminh∈HRT m(h) be a
strategy with the minimal empirical risk.

a) What is the minimal ε > 0 which allows you to claim that the expected riskRMAE(hm)
is in the interval (RT m(hm)− ε, RT m(hm) + ε) with probability 95% at least ?
b) What is the minimal number of the training examples m which guarantees that
RMAE(hm) is in the interval (RT m(hm) − 1, RT m(hm) + 1) with probability 95% at
least ?

Assignment 4. (*) Our task is to learn a prediction strategy h : X → {male, female}
estimating gender from a facial image x ∈ X . We use our prior knowledge to design H
different hypothesis spaces Hi ⊂ YX , i ∈ {1, . . . , H}. For example, each Hi can cor-
respond to Convolutional Neural Networks with a different architecture. We randomly
partition our i.i.d. drawn examples into three sets:

• T m = {(xi, yi) ∈ X × Y | i = 1, . . . ,m} training set with m examples
• Vv = {(xi, yi) ∈ X × Y | i = 1, . . . , v} validation set with v examples
• S l = {(xi, yi) ∈ X × Y | i = 1, . . . , l} test set with l examples

The prediction strategy is found in a two-stage process. In the first stage we apply ERM
on the training set T m to learn a strategy from each individual hypothesis space:

him ∈ Argmin
h∈Hi

RT m(h) , i ∈ {1, . . . , H}.

In the second stage, often called model selection, we apply the ERM on the validation
set Vv to select the best hypothesis out of those learned in the first stage:

hv ∈ Argmin
i∈{1,...,H}

RVv(him) .

The very last step uses the test set S l to evaluate the accuracy of the found hypothesis
hv by computing the test risk RSl(hv). In all cases the risks are computed using the
0/1-loss function `(y, y′) = [[y 6= y′]].

a) How would you chose the number of examples in the training, validation and the test
set? Hint: consider application of the solutions of Assignment 2 and 3.

b) Assume that you applied the two-stage approach described above and evaluated the
test risk of the found hypothesis. Let us consider three different results you could obtain:
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RT m(hv) RVv(hv) RSl(hv)

case 1 0.01% 14.2% 15.1%

case 2 3.6% 4.1% 12.3%

case 3 4.5% 4.8% 4.3%

What is the next reasonable step(s) you will take in order to improve the test accuracy?
Consider each case separately. Hint: your actions involve collecting new examples,
changing the number of examples in trn/val/tst sets, using additional hypothesis spaces
with higher/lower complexity etc.

Assignment 5. (*) Our goal is estimate the expected risk R0/1(h) = E(x,y)∼p[[y 6=
h(x)]] of a given prediction strategy h : X → {+1,−1}. To this end, we have collected
independently two sets of examples. The first set S l+ = {xi ∈ X | i = 1, . . . , l+}
contains examples drawn i.i.d. from p(x | y = +1), and the second set S l− = {xi ∈
X | i = 1, . . . , l−} examples drawn i.i.d. from p(x | y = −1). Assume that we known
the prior probability p(y = +1). We estimate the value of R0/1(h) by computing

R̂(h) = p(y = +1) · R̂FN(h) + p(y = −1) · R̂FP(h) , (1)

where

R̂FN(h) =
1

l+

∑
x∈Sl+

[[h(x) = −1]] and R̂FP(h) =
1

l+

∑
x∈Sl−

[[h(x) = +1]]

is the empirical estimate of the false negative and the false positive rate, respectively.

a) Explain in what sense R̂(h) is a reasonable estimate of R0/1(h).

b) Find the smallest ε > 0 such that R0/1(h) is inside the interval (R̂(h)− ε, R̂(h) + ε)
with probability γ at least.

c) Evaluate ε for γ = 0.95, p(y = +1) = 0.5, l+ = 1000 and l− = 20000.


