STATISTICAL MACHINE LEARNING (WS2018)
SEMINAR 2

Remark: Tools needed for solving Assignment 3 and 4 are discussed at the end of the
lecture on the ERM I which will be finished on Tuesday 16, 2018.

Assignment 1. Consider the task of age estimation based on visual cues. Let us denote
the visual features by x € X and the unknown age by y € N. The statistical relation
between the two random variables is known and given by their joint distribution p(z, y).
a) Deduce the optimal inference rule for the loss function ((y, ') = |y — y'|*.

b) Same for the loss function ¢(y,y’) = |y — ¥/|.

Assignment 2. We are given a prediction strategy h: X — ) = {1,...,Y} assigning
observations € X into one of Y classes. Our task is to estimate the expected risk
RY(h) = E(uy)pl(y, h(z)) where £: Y x Y — R is some application specific loss
function. To this end, we collect a set of examples 8! = {(2%,y) € (X x V) | i =
1,...,1l} drawn i.i.d. from the distribution p(z, y) and compute the test error
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What is the minimal number of test examples [ we need to collect in order to have a
guarantee that the expected risk R‘(h) is inside the interval (Rgi(h) — €, Rsi(h) + €)
with probability v € (0, 1) for some predefined ¢ > 0 ?
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a) Give a formula to compute [ as a function of € and y for the 0/1-loss £(y, ') = [y #
y']. Evaluate [ for € = 0.01 and v € {0.90,0.95,0.99}.

b) Solve the problem a) in case that the loss is the mean absolute error, £(y,y') = |y—v/|.
Evaluate [ fore = 1, Y = 100 and v € {0.90,0.95,0.99}.

¢) How do the formulas depend on the particular loss function?

Assignment 3. We are given a set H = {h;: X — {1,...,100} | i« = 1,...,1000}
containing 1000 strategies each predicting the human age y € {1,...,100} from a facial
image z € X. The quality of a single strategy is measured by the expected absolute
deviation between the predicted age and the true age

RMAE(h) = E(py)p(ly — B(2)]) 4
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where the expectation is computed w.r.t. an unknown distribution p(x, y). The empirical
estimate of RMAE(h) reads

Ryw(h) = — 3~ Iy = h(a)|

where 7™ = {(2%,y") € (X xY) | i =1,...,m} is a set of examples drawn from i.i.d.
random variables with the same unknown p(z,y). Let h,, € Argmin,,, Rr=(h) be a
strategy with the minimal empirical risk.

a) What is the minimal € > 0 which allows you to claim that the expected risk RMAE(h,,)
is in the interval (Rym (h,,) — €, Rym (h,,) + €) with probability 95% at least ?

b) What is the minimal number of the training examples m which guarantees that
RMAE(h, ) is in the interval (Rym(hy,) — 1, Rym(h,,) + 1) with probability 95% at
least ?

Assignment 4. (*) Our task is to learn a prediction strategy h: X — {male, female}
estimating gender from a facial image z € X'. We use our prior knowledge to design H
different hypothesis spaces H; C Y*, i € {1,..., H}. For example, each H; can cor-
respond to Convolutional Neural Networks with a different architecture. We randomly
partition our i.i.d. drawn examples into three sets:

o T ={(z",y) € X x Y |i=1,...,m} training set with m examples

o V' ={(z",y") € X x Y |i=1,...,v} validation set with v examples

o S'={(2,y) e X x Y |i=1,...,1} test set with [ examples
The prediction strategy is found in a two-stage process. In the first stage we apply ERM
on the training set 7 to learn a strategy from each individual hypothesis space:

h € Argmin Rym(h), ie{l,...,H}.
heH,;

In the second stage, often called model selection, we apply the ERM on the validation
set V" to select the best hypothesis out of those learned in the first stage:

h, € Argmin Ry.(h') .
The very last step uses the test set S to evaluate the accuracy of the found hypothesis

h, by computing the test risk Rgi(h,). In all cases the risks are computed using the
0/1-loss function £(y, y') = [y # ']-

a) How would you chose the number of examples in the training, validation and the test
set? Hint: consider application of the solutions of Assignment 2 and 3.

b) Assume that you applied the two-stage approach described above and evaluated the
test risk of the found hypothesis. Let us consider three different results you could obtain:



| Ry (hy) | Rye(hy) | Rat(hy)
case 1 | 0.01% 14.2% | 15.1%
case 2| 3.6% 4.1% 12.3%
case 3| 4.5% 4.8% 4.3%

What is the next reasonable step(s) you will take in order to improve the test accuracy?
Consider each case separately. Hint: your actions involve collecting new examples,
changing the number of examples in trn/val/tst sets, using additional hypothesis spaces
with higher/lower complexity etc.

Assignment 5. (*) Our goal is estimate the expected risk RY1(h) = Egply #
h(x)] of a given prediction strategy h: X — {+1,—1}. To this end, we have collected
independently two sets of examples. The first set S+ = {2 € X | i = 1,...,1,}
contains examples drawn i.i.d. from p(x | y = +1), and the second set S'- = {2 €
X |i=1,...,1_} examples drawn i.i.d. from p(x | y = —1). Assume that we known
the prior probability p(y = +1). We estimate the value of R!(h) by computing

R(h) = p(y = +1) - Rex(h) + ply = —1) - Rpp(h) (1)

where

R (h) = % SO [h() = —1] and Bpp(h) = % S [h(r) = +1]

is the empirical estimate of the false negative and the false positive rate, respectively.
a) Explain in what sense R(h) is a reasonable estimate of R%/1(h).

b) Find the smallest £ > 0 such that R/ (h) is inside the interval (R(h) — ¢, R(h) + €)
with probability v at least.

¢) Evaluate ¢ for v = 0.95, p(y = +1) = 0.5, [, = 1000 and {_ = 20000.



