Statistical Machine Learning (BE4M33SSU)
Lecture 9: EM algorithm; Bayesian learning

Czech Technical University in Prague

- Expectation Maximisation algorithm
- Bayesian inference
- Variational Bayesian inference
1. The Expectation Maximisation Algorithm

Unsupervised generative learning:

- The joint p.d. \(p_\theta(x, y) \), \(\theta \in \Theta \) is known up to the parameter \(\theta \in \Theta \),
- given training data \(T^m = \{ x^i \in \mathcal{X} \mid i = 1, 2, \ldots, m \} \) i.i.d. generated from \(p_{\theta^*} \).

How shall we implement the MLE for \(\theta \) without knowing class labels \(y \)?

\[
e_{ML}(T^m) = \arg \max_{\theta \in \Theta} \frac{1}{m} \sum_{x \in T^m} \log p_\theta(x) = \arg \max_{\theta \in \Theta} \mathbb{E}_{x \sim T^m} \left[\log \sum_{y \in \mathcal{Y}} p_\theta(x, y) \right]
\]

- If \(\theta \) is a single parameter or a vector of homogeneous parameters \(\Rightarrow \) maximise the log-likelihood directly by gradient ascent (provided it is differentiable in \(\theta \)).
- If \(\theta \) is a collection of heterogeneous parameters \(\Rightarrow \) apply the **Expectation Maximisation Algorithm** (Schlesinger, 1968, Sundberg, 1974, Dempster, Laird, and Rubin, 1977)
1. The Expectation Maximisation Algorithm

EM algorithm (intuitive idea): Iterate the following two steps

- Given the current parameter estimate $\theta^{(t)}$, compute $\alpha_x(y) := p_{\theta(t)}(y | x)$ for each $x \in T^m$ and $y \in Y$.

- Use this information as “soft” labels and solve the MLE task

$$
\theta^{(t+1)} \in \arg \max_{\theta} \sum_{x \in T^m} \sum_{y \in Y} \alpha_x(y) \log p_{\theta}(x, y)
$$

Can this really work? Yes it can! Consider the equation $\log p_{\theta}(x) = \log p_{\theta}(x, y) - \log p_{\theta}(y | x)$ and average it with $\alpha_x(y) = p_{\theta(t)}(y | x)$

$$
\log p_{\theta}(x) + \sum_{y \in Y} \alpha_x(y) \log p_{\theta}(y | x) = \sum_{y \in Y} \alpha_x(y) \log p_{\theta}(x, y)
$$

$$
g_{\theta}(x) = \sum_{y \in Y} \alpha_x(y) \log p_{\theta}(x, y)
$$

If we choose a new $\theta^{(t+1)}$ that increases the r.h.s., then $\log p_{\theta}(x)$ will increase because $g_{\theta}(x)$ will decrease!
1. The Expectation Maximisation Algorithm

EM algorithm (alternative derivation):

- Introduce auxiliary variables $\alpha_x(y) \geq 0$, for each $x \in T^m$, s.t. $\sum_{y \in Y} \alpha_x(y) = 1$

- Construct a lower bound of the log-likelihood $L(\theta, T^m) \geq L_B(\theta, \alpha, T^m)$

- Maximise this lower bound by block-wise coordinate ascent.

Construct the bound:

$$L(\theta, T^m) = \mathbb{E}_{T^m} \left[\log \sum_{y \in Y} p_\theta(x, y) \right] = \mathbb{E}_{T^m} \left[\log \sum_{y \in Y} \frac{\alpha_x(y)}{\alpha_x(y)} p_\theta(x, y) \right] \geq$$

$$L_B(\theta, \alpha, T^m) = \mathbb{E}_{T^m} \sum_{y \in Y} \left[\alpha_x(y) \log p_\theta(x, y) - \alpha_x(y) \log \alpha_x(y) \right]$$

The following equivalent representation shows the difference between $L(\theta, T^m)$ and $L_B(\theta, \alpha, T^m)$:

$$L_B(\theta, \alpha, T^m) = \mathbb{E}_{T^m} \left[\log p_\theta(x) \right] - \mathbb{E}_{T^m} \left[D_{KL}(\alpha_x(y) \| p_\theta(y | x)) \right]$$

We see that the lower bound is tight if $\alpha_x(y) = p_\theta(y | x)$ holds $\forall x$ and $\forall y$.
1. The Expectation Maximisation Algorithm

Maximise $L_B(\theta, \alpha, T^m)$ by block-coordinate ascent:

Start with some $\theta^{(0)}$ and iterate

E-step Fix the current $\theta^{(t)}$, maximise $L_B(\theta^{(t)}, \alpha, T^m)$ w.r.t. α-s. This gives

$$\alpha^{(t)}_x(y) = p_{\theta^{(t)}}(y | x).$$

M-step Fix the current $\alpha^{(t)}$ and maximise $L_B(\theta, \alpha^{(t)}, T^m)$ w.r.t. θ.

$$\theta^{(t+1)} = \arg \max_{\theta \in \Theta} \mathbb{E}_{T^m} \left[\sum_{y \in Y} \alpha^{(t)}_x(y) \log p_\theta(x, y) \right]$$

This is equivalent to solving the MLE for annotated training data.

Claims:

- The sequence of likelihood values $L(\theta^{(t)}, T^m)$, $t = 1, 2, \ldots$ is increasing, and the sequence $\alpha^{(t)}$, $t = 1, 2, \ldots$ is convergent (under mild assumptions).
- There is no guarantee that the EM algorithm converges to a global maximum.
- It is important to use a proper initialisation.
1. The Expectation Maximisation Algorithm

Example 1. We want to learn a simple model for different writing styles of digits

- $x = \{x_i \mid i \in D\}$ image on the pixel domain $D \in \mathbb{Z}^2$,
- $k \in K$ latent variable (mode indicator for the writing style),
- we assume a Naive Bayes model

\[
p(x, k) = p(k) \prod_{i \in D} p(x_i \mid k)
\]

Learning problem: Given i.i.d. training data $\mathcal{T}^m = \{x^j \mid j = 1, 2, \ldots, m\}$, estimate the mode probabilities $p(k)$ and the grey value probabilities $p(x_i \mid k)$ for each image pixel $i \in D$ given the mode indicator $k \in K$.

Applying the EM algorithm: Start with some model and iterate the following steps

E-step Given the current model estimate $p^{(t)}(x, k)$, compute the posterior mode probabilities for each image x in the training data \mathcal{T}^m, i.e. $\alpha^{(t)}_x(k) := p^{(t)}(k \mid x)$.

M-step Re-estimate the model by solving

\[
\mathbb{E}_{\mathcal{T}^m} \left[\sum_{k \in K} \alpha^{(t)}_x(k) \left[\log p(k) + \sum_{i \in D} \log p(x_i \mid k) \right] \right] \to \max_p
\]
1. The Expectation Maximisation Algorithm

Notice how the optimisation task in the M-step decomposes into independent small optimisation task. This gives the simple updates

\[
p(k) = \mathbb{E}_{\mathcal{T}^m} [\alpha_x^{(t)}(k)]
\]

\[
p(x_i = b \mid k) = \frac{\mathbb{E}_{\mathcal{T}^m} [\alpha_x^{(t)}(k) \mid x_i = b]}{\mathbb{E}_{\mathcal{T}^m} [\alpha_x^{(t)}(k)]}
\]

Additional reading:

Schlesinger, Hlavac, Ten Lectures on Statistical and Structural Pattern Recognition, Chapter 6, Kluwer 2002 (also available in Czech)

Thomas P. Minka, Expectation-Maximization as lower bound maximization, 1998 (short tutorial, available on the internet)
2. Bayesian Inference

Motivation:

- Both, ERM and generative learning by MLE are consistent under the respective regularity assumptions. Their estimation errors $R(h_m) - R(h_\mathcal{H})$ and $\|\theta_m - \theta^*\|$ are small in the limit of large training data sizes m.

- On the other hand, their estimates h_m and θ_m can deviate substantially from the respective optimal predictor/model in case of small training data sizes.

- Models should be based on our knowledge about the problem. We do not want to restrict the complexity of the model $p_\theta(x, y)$, $\theta \in \Theta$ just because we have only a small amount of training data.

- Deciding for a single model $\theta_m = e_{ML}(T^m)$ might be sub-optimal in such situations.
2. Bayesian inference

Bayesian inference:

Interpret the unknown parameter $\theta \in \Theta$ as a **random** variable.

- Data distribution: parametric family of models $p(x,y|\theta)$, $\theta \in \Theta$,
- Prior distribution $p(\theta)$ on Θ.

The prior distribution $p(\theta)$ and i.i.d. training data $\mathcal{T}^m = \{(x_i,y_i) \mid i = 1,\ldots,m\}$ define a **posterior parameter distribution** $p(\theta|\mathcal{T}^m)$, given by

$$p(\theta|\mathcal{T}^m) = \frac{p(\theta)p(\mathcal{T}^m|\theta)}{p(\mathcal{T}^m)} \quad \text{with} \quad p(\mathcal{T}^m|\theta) = \prod_{i=1}^{m} p(x^i,y^i|\theta).$$

The probability $p(\mathcal{T}^m)$ is obtained by integrating over θ, i.e. $p(\mathcal{T}^m) = \int p(\theta)p(\mathcal{T}^m|\theta) \, d\theta$ and does not depend on θ.

Notice that the posterior distribution $p(\theta|\mathcal{T}^m) \propto p(\mathcal{T}^m|\theta) \, p(\theta)$ interpolates between the situation without any training data, i.e. $m = 0$ and the likelihood of training data for $m \to \infty$.
2. Bayesian inference

Let us use $p(\theta | \mathcal{T}^m)$, but decide for a particular value of θ for given training data \mathcal{T}^m,

$$
\theta_m = \arg\max_{\theta \in \Theta} p(\theta | \mathcal{T}^m) = \arg\max_{\theta \in \Theta} p(\mathcal{T}^m | \theta) p(\theta) = \arg\max_{\theta \in \Theta} \sum_{(x,y) \in \mathcal{T}^m} \log p(x, y | \theta) + \log p(\theta)
$$

This results in an ML estimate with an additional regulariser

$$
\theta_m = \arg\max_{\theta \in \Theta} \left[\frac{1}{m} \sum_{(x,y) \in \mathcal{T}^m} \log p(x, y | \theta) + \frac{1}{m} \log p(\theta) \right]
$$

Example 2. We want to learn a DNN classifier with squashing activation functions (e.g. tanh or sigmoid). Assuming a Gaussian prior for the network weights, i.e. $w \sim \mathcal{N}(0, \sigma)$, we get the learning objective

$$
\frac{1}{m} \sum_{(x,y) \in \mathcal{T}^m} \log p(y | x; w) - \frac{1}{2m\sigma^2} \|w\|^2 \rightarrow \max_w
$$

This enforces a considerable fraction of neurons to have small weights and thus also small activations. They will therefore operate in a quasi linear regime.
2. Bayesian inference

A more powerful approach uses the posterior distribution \(p(\theta | T^m) \propto p(T^m | \theta) p(\theta) \) to construct model mixtures and predictors. Consider the posterior probability to observe a pair \((x, y)\) by marginalising over \(\theta \in \Theta\):

\[
p(x, y | T^m) = \frac{1}{p(T^m)} \int_\Theta p(T^m | \theta) p(\theta) p(x, y | \theta) \, d\theta
\]

This is a mixture of distributions with mixture weights \(\alpha_m(\theta) \propto p(T^m | \theta) p(\theta)\).

The Bayes optimal predictor w.r.t. 0/1 loss for this model mixture is

\[
h(x, T^m) = \arg\max_{y \in \mathcal{Y}} \int_\Theta \underbrace{p(\theta) p(T^m | \theta)}_{\alpha_m(\theta)} p(x, y | \theta) \, d\theta = \arg\max_{y \in \mathcal{Y}} \int_\Theta \alpha_m(\theta) p(x, y | \theta) \, d\theta
\]

Notice:

- the mixture weights \(\alpha_m(\theta)\) interpolate between the situation without any training data, i.e. \(m = 0\) and the likelihood of training data for \(m \to \infty\).
- similar approaches for ERM lead to Ensembling methods (see lectures 12,13).
3. Variational Bayesian inference

Variational Bayesian inference:

Computing the integral \[\int_{\Theta} p(\theta | T^m) p(x, y | \theta) \, d\theta \] is in most cases not tractable.

We can approximate \(p(\theta | T^m) \) by some simple distribution \(q_\varphi(\theta), \varphi \in \Phi \) and try find the optimal parameter \(\varphi \) by minimising the Kullback-Leibler divergence

\[
D_{KL}(q_\varphi(\theta) \parallel p(\theta | T^m)) = D_{KL}(q_\varphi(\theta) \parallel p(\theta)) - \int_{\Theta} q_\varphi(\theta) \log p(T^m | \theta) \, d\theta + c \rightarrow \min_\varphi
\]

Then we use \(q_\varphi(\theta) \) for constructing the model mixture and predictor (e.g. for 0/1 loss)

\[
h(x) = \arg\max_y \int_{\Theta} q_\varphi(\theta) p(x, y | \theta) \, d\theta
\]

The remaining integral over \(\theta \) can be often further simplified by sampling \(\theta_i \sim q_\varphi(\theta) \), i.e.

\[
\int_{\Theta} q_\varphi(\theta)p(x, y | \theta) \, d\theta \approx \frac{1}{m} \sum_{i=1}^{n} p(x, y | \theta_i)
\]
3. Variational Bayesian inference

Example 3 (Bayesian inference for a single neuron). Let us consider a single neuron modelling class probabilities for $y = \pm 1$

$$p(y | x; w) = \sigma(y \langle w, x \rangle),$$

where $\sigma()$ denotes the sigmoid function. We assume the prior probability for the neuron weights $p(w) = \mathcal{N}(w; 0, \mathbb{I})$.

Given a training set $\mathcal{T}^m = \{(x^i, y^i) | i = 1, \ldots, m\}$, the posterior weight distribution is

$$p(w | \mathcal{T}^m) \propto p(w) \prod_{(x,y) \in \mathcal{T}^m} p(y | x; w)$$

We will approximate it by a normal distribution $q_\mu(w) = \mathcal{N}(w; \mu, \mathbb{I})$. We must solve

$$\int_{\mathbb{R}^n} q_\mu(w) \sum_{(x,y) \in \mathcal{T}^m} \log \sigma(y \langle w, x \rangle) \, dw - D_{KL}(q_\mu(w) || p(w)) \to \max \mu$$
3. Variational Bayesian inference

The KL-divergence can be computed and differentiated in closed form.

Let us discuss computing the gradient of the first term

\[
\int_{\mathbb{R}^n} q_\mu(w) \sum_{(x,y) \in T^m} \log \sigma(y\langle w, x \rangle) \, dw \bigg|_{w=v-\mu} = \int_{\mathbb{R}^n} q_0(v) \sum_{(x,y) \in T^m} \log \sigma(y\langle v - \mu, x \rangle) \, dv
\]

We can use a stochastic gradient estimator by

1. sample \(v_i \sim q_0(v) \)

2. draw a mini-batch \(B \) from training data and estimate the gradient by

\[
g = \nabla_\mu \sum_{(x,y) \in B} \log \sigma(y\langle v_i - \mu, x \rangle)
\]