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� Bayesian inference

� Variational Bayesian inference

� Bayesian inference in Deep Learning
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When ERM and MLE fail

Empirical risk minimisation:

� The best attainable (Bayes) risk is R∗ = infh∈YX R(h)

� The best predictor in H is hH ∈ argminh∈HR(h)

� The predictor hm learned from T m has risk R(hm)(
R(hm)−R∗

)
︸ ︷︷ ︸
excess error

=

(
R(hm)−R(hH)

)
︸ ︷︷ ︸
estimation error

+

(
R(hH)−R∗

)
︸ ︷︷ ︸

approximation error
� Misspecified hypothesis space H ⇒ high approximation error

� Size of T m too small ⇒ high estimation error

Maximum likelihood estimate: similar

� Misspecified model class pθ(x,y), θ ∈Θ

� Size of T m too small

Small amount of training data: can we avoid to choose one hm, or to decide for one θ∗?

http://cmp.felk.cvut.cz
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Bayesian inference

Interpret the unknown parameter θ ∈Θ as a random variable
� Model class p(x,y | θ), θ ∈Θ

� Prior distribution p(θ) on Θ

� Prediction strategy h : X →Y
� A loss function ` : Y ×Y → R

Given training data T m =
{

(xi,yi)
∣∣ i= 1, . . . ,m

}
compute the posterior probability to

observe a pair (x,y) by marginalising over θ ∈Θ:

p(x,y | T m) =
1

p(T m)

∫
Θ

p(T m | θ)p(x,y | θ)p(θ)dθ

Notice that a point estimate of θ is no longer needed!

Define the Bayes risk of a strategy h by

R(h,T m)∝
∑
x,y

∫
Θ

p(T m | θ)p(x,y | θ)p(θ) `(y,h(x))dθ

http://cmp.felk.cvut.cz
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Bayesian inference

For 0-1 loss this leads to the predictor

h(x,T m) = argmax
y∈Y

∫
Θ

p(θ)p(T m | θ)︸ ︷︷ ︸
α(θ)

p(x,y | θ)dθ = argmax
y∈Y

∫
Θ

α(θ)p(y | x,θ)dθ

which means to find the optimal predictor for a model mixture.

Notice how the posterior distribution

α(θ) = p(θ | T m)∝ p(T m | θ)p(θ)

interpolates between the situation without any training data, i.e. m= 0 and the likelihood of
training data for m→∞.

http://cmp.felk.cvut.cz
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Bayesian inference

Example 1 (linear regression)

y = 〈w,x〉+ ε with ε∼N (0,σ2)

and normal prior for w ∼N (0,σ2
0). Consequently, we have

p(y | x,w) =
1√

2πσ2
e
− 1

2σ2 (y−〈w,x〉)2

and p(w) =
1√

2πσ2
0

e
− 1

2σ2
0
‖w‖2

Given training data T m = (X,y), the posterior distribution for w is Gaussian

p(w | T m)∝ e
− 1

2σ2‖y−Xw‖2− 1
2σ2

0
‖w‖2

� MAP estimate gives w∗ = (XTX +λI)−1)XTy, where λ= σ2/σ2
0.

� if loss `(y,y′) = (y−y′)2 is used, then

w∗ = Ew|T m[w] =

∫
p(w | T m)wdw

http://cmp.felk.cvut.cz
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Variational Bayesian inference

� Computing integrals like ∫
Θ

p(T m | θ)p(θ)dθ

is in most cases not tractable.
� Approximate p(θ | T m) by some simple distribution qβ(θ) and find the optimal
parameter β by minimising the Kullback Leibler divergence

−KL(qβ(θ) ‖ p(θ | T m)) =

∫
Θ

qβ(θ) logp(T m | θ)dθ−KL(qβ(θ) ‖ p(θ)) + c→max
β

� use qβ(θ) with optimal β for prediction

h(x) = argmax
y

∑
y′

∫
Θ

qβ(θ)p(x,y | θ) `(y′,y)dθ

The integrals over θ can be further simplified by sampling from qβ(θ)∫
Θ

qβ(θ)f(θ)dθ ≈ 1

m

n∑
i=1

f(θi)

http://cmp.felk.cvut.cz
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Variational Bayesian inference

Example 2 Consider the optimisation task∫
Θ

qβ(θ) logp(T m | θ)dθ−KL(qβ(θ) ‖ p(θ))→max
β

for following examples

� p(θ) - uniform, qθ0(θ) = δ(θ−θ0), i.e. point estimate ⇒ θ0 = argmaxθ logp(T m | θ)
i.e., MLE.

� p(θ) - N (0,σ2
0), qθ0(θ) = δ(θ−θ0), i.e. point estimate ⇒

θ0 = argmax
θ

[
logp(T m | θ) +λ‖θ‖2

]
� p(θ) - N (0,σ2

0), qβ(θ) - N (µ,σ2)

1√
2πσ2

∫
Θ

e
− 1

2σ2 (θ−µ)2

logp(T m | θ)dθ− 1

2

[σ2 +µ2

σ2
0

− lnσ
]
→max

µ,σ

http://cmp.felk.cvut.cz
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Bayesian inference in Deep Learning

Variational Dropout (Kingma et al., 2015):

� Standard Dropout: randomly switch off neurons (with fixed probability p) during
training. At test time – weight node outputs by (1−p).

� Variational Dropout: Assume normal priors and normal posteriors for weights of deep
NNs and learn their parameters. At test time: use learned mean values of weights.

Batch Normalisation (Ioffe et al., 2015)

Let ai denote the activation of a single node in an NN, i.e. ai =
∑
jwijxj + bi.

Re-parametrise weights and bias by

ai =
(ai−µi

σi

)
si+di,

where (µi,σ
2
i ) is the statistics of ai over a mini-batch and si, di are new scale and shift

parameters. Do back-prop w.r.t. w′ij, b′i and si, di, where

w′ij =
wij
σi

and b′i = bi−µi

http://cmp.felk.cvut.cz
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Bayesian inference in Deep Learning

This has the following advantages

� Choose si = 1,di = 0 at initialisation. This means that all nodes of the NN have zero
mean and unit variance statistics in the first mini-batch.

� Gradient pre-conditioning improves training speed.

� The re-normalised weights and biases are stochastic (through the stochasticity of
mini-batches). This can be interpreted as Bayesian inference and regularises learning.

http://cmp.felk.cvut.cz
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