Statistical Machine Learning (BE4M33SSU) Lecture 8: Bayesian inference and learning

Czech Technical University in Prague

Bayesian inference

- Variational Bayesian inference
- Bayesian inference in Deep Learning

When ERM and MLE fail

Empirical risk minimisation:

- The best attainable (Bayes) risk is $R^* = \inf_{h \in \mathcal{Y}^{\mathcal{X}}} R(h)$
- The best predictor in \mathcal{H} is $h_{\mathcal{H}} \in \operatorname{arg\,min}_{h \in \mathcal{H}} R(h)$
- ullet The predictor h_m learned from \mathcal{T}^m has risk $R(h_m)$

$$\underbrace{\left(R(h_m) - R^*\right)}_{\text{excess error}} = \underbrace{\left(R(h_m) - R(h_{\mathcal{H}})\right)}_{\text{estimation error}} + \underbrace{\left(R(h_{\mathcal{H}}) - R^*\right)}_{\text{approximation error}}$$

2/9

- Misspecified hypothesis space $\mathcal{H} \Rightarrow$ high approximation error
- Size of \mathcal{T}^m too small \Rightarrow high estimation error

Maximum likelihood estimate: similar

- Misspecified model class $p_{\theta}(x,y)$, $\theta \in \Theta$
- Size of \mathcal{T}^m too small

Small amount of training data: can we avoid to choose **one** h_m , or to decide for **one** θ^* ?

Bayesian inference

Interpret the unknown parameter $\theta \in \Theta$ as a **random** variable

- Model class $p(x, y \mid \theta)$, $\theta \in \Theta$
- Prior distribution $p(\theta)$ on Θ
- Prediction strategy $h: \mathcal{X} \to \mathcal{Y}$
- A loss function $\ell \colon \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$

Given training data $\mathcal{T}^m = \{(x^i, y^i) \mid i = 1, ..., m\}$ compute the posterior probability to observe a pair (x, y) by marginalising over $\theta \in \Theta$:

$$p(x, y \mid \mathcal{T}^m) = \frac{1}{p(\mathcal{T}^m)} \int_{\Theta} p(\mathcal{T}^m \mid \theta) \, p(x, y \mid \theta) \, p(\theta) \, d\theta$$

3/9

Notice that a point estimate of θ is no longer needed!

Define the Bayes risk of a strategy h by

$$R(h, \mathcal{T}^m) \propto \sum_{x, y} \int_{\Theta} p(\mathcal{T}^m \mid \theta) \, p(x, y \mid \theta) \, p(\theta) \, \ell(y, h(x)) \, d\theta$$

Bayesian inference

For 0-1 loss this leads to the predictor

$$h(x, \mathcal{T}^m) = \underset{y \in \mathcal{Y}}{\operatorname{arg\,max}} \int_{\Theta} \underbrace{p(\theta) \, p(\mathcal{T}^m \mid \theta)}_{\alpha(\theta)} \, p(x, y \mid \theta) \, d\theta = \underset{y \in \mathcal{Y}}{\operatorname{arg\,max}} \int_{\Theta} \alpha(\theta) \, p(y \mid x, \theta) \, d\theta$$

р

4/9

which means to find the optimal predictor for a model mixture.

Notice how the posterior distribution

$$\alpha(\theta) = p(\theta \mid \mathcal{T}^m) \propto p(\mathcal{T}^m \mid \theta) \, p(\theta)$$

interpolates between the situation without any training data, i.e. m = 0 and the likelihood of training data for $m \to \infty$.

Bayesian inference

Example 1 (linear regression)

$$y = \langle oldsymbol{w}, oldsymbol{x}
angle + \epsilon \quad ext{with } \epsilon \sim \mathcal{N}(0, \sigma^2)$$

and normal prior for ${\pmb w} \sim \mathcal{N}(0,\sigma_0^2).$ Consequently, we have

$$p(y \mid \boldsymbol{x}, \boldsymbol{w}) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(y - \langle \boldsymbol{w}, \boldsymbol{x} \rangle)^2} \text{ and } p(\boldsymbol{w}) = \frac{1}{\sqrt{2\pi\sigma_0^2}} e^{-\frac{1}{2\sigma_0^2} \|\boldsymbol{w}\|^2}$$

Given training data $\mathcal{T}^m = (\boldsymbol{X}, \boldsymbol{y})$, the posterior distribution for \boldsymbol{w} is Gaussian

$$p(\boldsymbol{w} \mid \mathcal{T}^m) \propto e^{-\frac{1}{2\sigma^2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}\|^2 - \frac{1}{2\sigma_0^2} \|\boldsymbol{w}\|^2}$$

• MAP estimate gives $\boldsymbol{w}^* = (\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I})^{-1}) \boldsymbol{X}^T \boldsymbol{y}$, where $\lambda = \sigma^2 / \sigma_0^2$.

 \blacklozenge if loss $\ell(y,y') = (y-y')^2$ is used, then

$$\boldsymbol{w}^* = \mathbb{E}_{\boldsymbol{w}|\mathcal{T}^m}[\boldsymbol{w}] = \int p(\boldsymbol{w} \mid \mathcal{T}^m) \boldsymbol{w} d\boldsymbol{w}$$

Variational Bayesian inference

• Computing integrals like

$$\int_{\Theta} p(\mathcal{T}^m \mid \theta) \, p(\theta) \, d\theta$$

is in most cases not tractable.

• Approximate $p(\theta \mid T^m)$ by some simple distribution $q_\beta(\theta)$ and find the optimal parameter β by minimising the Kullback Leibler divergence

$$-KL(q_{\beta}(\theta) \parallel p(\theta \mid \mathcal{T}^{m})) = \int_{\Theta} q_{\beta}(\theta) \log p(\mathcal{T}^{m} \mid \theta) \, d\theta - KL(q_{\beta}(\theta) \parallel p(\theta)) + c \to \max_{\beta}$$

• use $q_{\beta}(\theta)$ with optimal β for prediction

$$h(x) = \underset{y}{\operatorname{arg\,max}} \sum_{y'} \int_{\Theta} q_{\beta}(\theta) \, p(x, y \mid \theta) \, \ell(y', y) \, d\theta$$

The integrals over θ can be further simplified by sampling from $q_{\beta}(\theta)$

$$\int_{\Theta} q_{\beta}(\theta) f(\theta) \, d\theta \approx \frac{1}{m} \sum_{i=1}^{n} f(\theta_i)$$

Variational Bayesian inference

Example 2 Consider the optimisation task

$$\int_{\Theta} q_{\beta}(\theta) \log p(\mathcal{T}^{m} \mid \theta) \, d\theta - KL(q_{\beta}(\theta) \parallel p(\theta)) \to \max_{\beta}$$

for following examples

• $p(\theta)$ - uniform, $q_{\theta_0}(\theta) = \delta(\theta - \theta_0)$, i.e. point estimate $\Rightarrow \theta_0 = \arg \max_{\theta} \log p(\mathcal{T}^m \mid \theta)$ i.e., MLE.

• $p(\theta) - \mathcal{N}(0, \sigma_0^2)$, $q_{\theta_0}(\theta) = \delta(\theta - \theta_0)$, i.e. point estimate \Rightarrow

$$\theta_0 = \arg\max_{\theta} \left[\log p(\mathcal{T}^m \mid \theta) + \lambda \|\theta\|^2 \right]$$

• $p(\theta)$ - $\mathcal{N}(0, \sigma_0^2)$, $q_\beta(\theta)$ - $\mathcal{N}(\mu, \sigma^2)$

$$\frac{1}{\sqrt{2\pi\sigma^2}} \int_{\Theta} e^{-\frac{1}{2\sigma^2}(\theta-\mu)^2} \log p(\mathcal{T}^m \mid \theta) \, d\theta - \frac{1}{2} \Big[\frac{\sigma^2 + \mu^2}{\sigma_0^2} - \ln\sigma \Big] \to \max_{\mu,\sigma}$$

Bayesian inference in Deep Learning

Variational Dropout (Kingma et al., 2015):

- Standard Dropout: randomly switch off neurons (with fixed probability p) during training. At test time weight node outputs by (1-p).
- Variational Dropout: Assume normal priors and normal posteriors for weights of deep NNs and learn their parameters. At test time: use learned mean values of weights.

Batch Normalisation (loffe et al., 2015)

Let a_i denote the activation of a single node in an NN, i.e. $a_i = \sum_j w_{ij}x_j + b_i$. Re-parametrise weights and bias by

$$a_i = \left(\frac{a_i - \mu_i}{\sigma_i}\right) s_i + d_i,$$

where (μ_i, σ_i^2) is the statistics of a_i over a mini-batch and s_i , d_i are new scale and shift parameters. Do back-prop w.r.t. w'_{ij}, b'_i and s_i , d_i , where

$$w_{ij}' = rac{w_{ij}}{\sigma_i}$$
 and $b_i' = b_i - \mu_i$

Bayesian inference in Deep Learning

This has the following advantages

- Choose $s_i = 1, d_i = 0$ at initialisation. This means that all nodes of the NN have zero mean and unit variance statistics in the first mini-batch.
- Gradient pre-conditioning improves training speed.
- The re-normalised weights and biases are stochastic (through the stochasticity of mini-batches). This can be interpreted as Bayesian inference and regularises learning.