
Combinatorial algorithms
computing graph isomorphism,

computing tree isomorphism

Jiří Vyskočil, Radek Mařík

2013

Advanced algorithms
2 / 25

Computing Graph Isomorphism
 definition:

Two graphs G1=(V1,E1)	and G2=(V2,E2)	are isomorphic if there is a
bijection f :	V1 → V2 such that

∀ x,	y ∈ V1 :				{	f	(x),	f	(y)	} ∈ E2 ⇔ {	x,	y	} ∈ E1
The mapping f is said to be an isomorphism between G1 and G2.

 example:

ƒ	(a)	=	1	
f	(b)	=	6
f	(c)	=	8
f	(d)	=	3
f	(g)	=	5
f	(h)	=	2
f	(i)	=	4
f	(j)	=	7

G1 : G2 : f	:

Advanced algorithms
3 / 25

Computing Graph Isomorphism

 problem:

The graph	isomorphism	problem	is the computational
problem of determining whether two finite graphs are
isomorphic.

 The graph isomorphism problem is one of a very small number of
problems belonging to NP neither known to be solvable in polynomial
time nor NP-complete.

 However, there is a number of important special cases of the graph
isomorphism problem that have efficient, polynomial-time solutions:
trees, planar graphs, some bounded-parameter graphs, etc.

Advanced algorithms
4 / 25

Computing Graph Isomorphism

 definition of invariant:

Let ࣠ be a family of graphs. An invariant on ࣠ is a function Φ with
domain ࣠ such that

∀ G1,	G2 ∈ ࣠ :				Φ(G1)	=	Φ(G2)			⇐ G1 is isomorphic to G2

 example:
 |V| for graph G=(V,	E) is an invariant.
 The following degree sequence [deg(v1),	deg(v2),	deg(v3),	…	,	deg(vn)]

is not an invariant.
 However, if the degree sequence is sorted in non-decreasing order,

then it is an invariant.

Advanced algorithms
4 / 25

Computing Graph Isomorphism

 definition of invariant:

Let ࣠ be a family of graphs. An invariant on ࣠ is a function Φ with
domain ࣠ such that

∀ G1,	G2 ∈ ࣠ :				Φ(G1)	=	Φ(G2)			⇐ G1 is isomorphic to G2

 example:
 |V| for graph G=(V,	E) is an invariant.
 The following degree sequence [deg(v1),	deg(v2),	deg(v3),	…	,	deg(vn)]

is not an invariant.
 However, if the degree sequence is sorted in non-decreasing order,

then it is an invariant.

Advanced algorithms
5 / 25

Computing Graph Isomorphism

 definition :

Let ࣠ be a family of graphs on vertex set V and let D be a function
with domain (࣠	 ൈ	 V). Then the partition	BG of	V	induced by D is

BG =	[BG[0],	BG[1],	…	,	BG[n – 1]]
where

BG[i]	=	{	vV :			D	(G,v)	=	i }
If the function

Φܦ(G)	=	[|BG[0]|,	|BG[1]|,	…	,	|BG[n – 1]|]

is an invariant, then we say that D is an invariant	inducing	function.

Advanced algorithms
6 / 25

Computing Graph Isomorphism - Example

Let

 D1(G,x)=degG(x)

 D2(G,x)=[dj(x) ∶ 	݆	 ൌ 	1, 2, … ,max degG(x): 	ݔ	 ∈ ܸሺܩሻ]	

where	dj(x)=|{y :	y is	adjacent	to	x and	degG(y)	=	j }|

Suppose	the	following	graphs	G1 and	G2:

Advanced algorithms
7 / 25

Computing Graph Isomorphism - Example

1 13 161

111 13 161

Advanced algorithms
8 / 25

Computing Graph Isomorphism - Example
o

i

Advanced algorithms
9 / 25

Computing Graph Isomorphism - Example

Advanced algorithms
10 / 25

Computing Graph Isomorphism - Example
0 1 2 3 4 5 6 7 8 9
݅ ܽ ݀ ݁ ݃ ݂ ܾ ܿ ݄ ݆

0 1 2 3 4 5 6 7 8 9
݅ ܽ ݀ ݁ ݃ ݂ ܿ ܾ ݄ ݆

0 1 2 3 4 5 6 7 8 9
݅ ܽ ݃ ݁ ݀ ݂ ܾ ܿ ݄ ݆

0 1 2 3 4 5 6 7 8 9
݅ ܽ ݃ ݁ ݀ ݂ ܿ ܾ ݄ ݆

0 1 2 3 4 5 6 7 8 9
݆ ܽ ݀ ݁ ݃ ݂ ܾ ܿ ݄ ݅

0 1 2 3 4 5 6 7 8 9
݆ ܽ ݀ ݁ ݃ ݂ ܿ ܾ ݄ ݅

0 1 2 3 4 5 6 7 8 9
݆ ܽ ݃ ݁ ݀ ݂ ܾ ܿ ݄ ݅

0 1 2 3 4 5 6 7 8 9
݆ ܽ ݃ ݁ ݀ ݂ ܿ ܾ ݄ ݅

Advanced algorithms
11 / 25

Computing Graph Isomorphism

1) Function	FINDISOMORPHISM (set	of	invariant	inducing	functionݏ	ܫ;	graph	ܩଵ, (ଶܩ :	
set	of

isomorphisms
2) try {
3) (partitions,	X,	Y)	=	GETPARTITIONS (I, ,ଵܩ ;	(ଶܩ
4) }
5) catch ଵܩ“) and	ܩଶ are	not	isomorphic! “) { return ∅ ;		}
6) for i =	0			to partitions	– 1 do			{
7) for each x	 X	[i] do {
8) W	[x]	=	i ;
9) }
10) }
11) return		COLLECTISOMORPHISMS(ܩଵ, 	(f	W,	Y,	0,	ଶ,ܩ

Advanced algorithms
12 / 25

Computing Graph Isomorphism
1) Function GETPARTITIONS

set	of	invariant	inducing	functions	ܫ;
	graph	ܩଵ;
graph	ܩଶ

	:	
number	of	partitions	ܰ,
parititions	of	ܩଵ	ܺ,
parititions	of	ܩଶ	ܻ

2) N =	1;			X	[0]	=	vertices	of		ܩଵ;			Y	[0]	=	vertices	of		ܩଶ;
3) for each D	 I do {
4) P =	N ;
5) for i =	0			to P	– 1			do {
6) Partition	X	[i]	into	sets	X1 [i],	X2 [i],	X3 [i],	…	,	Xm [i]	where	x,yXj [i]	⇔ D

	
;	(ଵ,yܩ)D=(ଵ,xܩ)

7) Partition	Y	[i]	into	sets	Y1 [i],	Y2 [i],	Y3 [i],	…	,	Yn [i]	where	x,yYj [i]	⇔ D(ܩଶ,x)=D(ܩଶ,y)	;
8) if n	≠	m			then			throw	exception		“ܩଵ and	ܩଶ are	not	isomorphic!“ ;
9) Order	Y	[i]	into	sets	Y1 [i],	Y2 [i],	Y3 [i],	…	,	Yn [i]	so	that	
10) ∀x  X	[i],	∀y  Y	[i]	:	D

	
=	(ଵ,xܩ) D(ܩଶ,y)	⇔ x  Xj [i] and	y  Yj [i]	;

11) if ordering	is	not	possible			then			throw	exception		“ܩଵ and	ܩଶ are	not	isomorphic! “ ;
12) N =	N +	m – 1;
13) }
14) Reorder	the	partitions	so	that:	|X	[i]|=|Y	[i]|		≤		|X	[i+1]|=|Y	[i+1]|			for	0	≤	i <	N – 1 ;
15) }
16) return (N,	X,	Y)

Advanced algorithms
13 / 25

Computing Graph Isomorphism
1ሻ Function																							

COLLECTISOMORPHISMS	
graph	ܩଵ, ;	ଶܩ

starting	vertex	of		ܩଵ		v	;
parititions	of	ܩଶ		ܻ	;

partition	mapping	ܹ	as
	ܡ܉ܚܚ܉	 vertices	of	ܩଵ ܎ܗ	
	indices	of	partitions	of	ܩଵ

	;	

current	isomorphism	݂	as
	ܡ܉ܚܚ܉ vertices	of	ܩଵ ܎ܗ	

vertices	of	ܩଶ
		 :	 set	of

isomorphisms

2) if v	=	number	of	vertices	of		ܩଵ then			return		{	f		}	;
3) R =	∅ ;
4) p =	W	[v]	;
5) for each y	 Y	[p]			do {
6) OK =	true ;
7) for u =	0			to v	– 1			do {
8) if		 {	u	,v	}	 ∈ edges	of		ܩଵ				xor					{	f	[u],	y		} ∈ edges	of		ܩଶ then				{		OK =	false ;	break ;		}
9) }
10) if OK then		{		
11) f	[v]	=	y	;			
12) R =	R ∪ COLLECTISOMORPHISMS(ܩଵ, 	;	(f	W,	Y,	v+1,	ଶ,ܩ
13) }	
14) }
15) return		R

Advanced algorithms
14 / 25

Certificate
 A certificate ݐݎ݁ܥ	for family 	࣠ of graphs is a function such

that

∀ G1,	G2 ∈ ࣠ 1ሻܩሺݐݎ݁ܥ				: 2ሻܩሺݐݎ݁ܥ	= ⇔ G1 is isomorphic to G2

 Currently, the fastest general graph isomorphism algorithms
use methods based on computing of certificates.

 Computing of certificates works not only for general graphs
but it can be also applied on some classes of graphs like
trees.

Advanced algorithms
15 / 25

Computing Tree Certificate
1) Label all the vertices of ܩ with the string 01.

2) While there are more than two vertices of ܩ do:
For each non-leaf ݔ of ܩ:
a) Let ܻ be the multi-set of labels of the leaves adjacent to ݔ and

the label of ݔ, with the initial 0 and trailing 1 deleted from ݔ;
b) Replace the label of ݔ	with concatenation of the labels in

ܻ	sorted in increasing lexicographic order, with 0	prepended
and a 1	appended;

c) Remove all leaves adjacent to ݔ.

3) If there is only one vertex left, report the label of ݔ	as certificate.

4) If there are two vertices ݔ	and ݕ	left, then report the labels of
 concatenated in increasing lexicographic order, as the ,ݕ and	ݔ
certificate.

Advanced algorithms
16 / 25

Computing Tree Certificate - Example

number	of	vertices:	12

nonെleaves	vertices:

0 ∶ 	ܻ ൌ
1 ∶ 	ܻ ൌ 01
2 ∶ 	ܻ ൌ 01,01
5 ∶ 	ܻ ൌ 01
7 ∶ 	ܻ ൌ 01
8 ∶ 	ܻ ൌ 01

6 ∶ 	01

1 ∶ 	01

2 ∶ 	01
3 ∶ 	01

4 ∶ 	01

5 ∶ 	01

7 ∶ 	01

8 ∶ 	01

9 ∶ 	01

0 ∶ 	01

10 ∶ 	01

11 ∶ 	01

Advanced algorithms
17 / 25

0 ∶ 01

2 ∶ 	001011

Computing Tree Certificate - Example

number	of	vertices:	6

nonെleaves	vertices:

0 ∶ 	ܻ ൌ
001011,
0011,
0011

5 ∶ 	ܻ ൌ 0011,
01

1 ∶ 0011

5 ∶ 0011

7 ∶ 	0011

8 ∶ 	0011

Advanced algorithms
18 / 25

Computing Tree Certificate - Example

number	of	vertices:	2

5 ∶ 00011011

Certificateൌ000101100110011100011011

0 ∶ 0001011001100111

Advanced algorithms
19 / 25

Computing Tree Certificate

 properties of certificate:

 the length is
 the number of 1s and 0s is the same
 furthermore, the number of 1s and 0s is the

same for every partial subsequence that arise
from any label of vertex (during the whole run
of the algorithm)

Advanced algorithms
20 / 25

Reconstruction of Tree from Certificate - Example

Advanced algorithms
21 / 25

Reconstruction of Tree from Certificate - Example

Advanced algorithms
22 / 25

Reconstruction of Tree from Certificate - Example

Advanced algorithms
23 / 25

Reconstruction of Tree from Certificate - Example

Advanced algorithms
24 / 25

Reconstruction of Tree from Certificate

1) Function		CERT IF ICATETOTREE 	 certificate	as	string	ܥ 	 ∶ 	tree	as	ܩ ൌ ሺܸ, ሻܧ

2ሻ ݊ ൌ ஼
ଶ
; ݒ		 ൌ 0;		 ܸ, ܧ ൌ empty	graph	of	order	݊; 			ܸ ൌ 0,… , ݊ െ 1 ;

3ሻ ݇ ൌ FINDSUBMOUNTA IN S 1, ܥ ;	
4) if k	=	1			then			{ ݈ܾ݁ܽܮ ݒ ൌ ܯ 0 ; ݒ		 ൌ ݒ ൅ 1;			}
5) else	 ݈ܾ݁ܽܮ		} ݒ ൌ ܯ 0 ; ݒ		 ൌ ݒ ൅ 1; ݈ܾ݁ܽܮ ݒ ൌ ܯ 1 ; ݒ		 ൌ ݒ ൅ 1; ܧ		 ൌ ܧ ∪ 0,1 ; }	
6) for ݅	 ൌ 	0 to ݊ െ 1 do {
7) if ሾ݅ሿ݈ܾ݁ܽܮ ൐ 2 then		{		
8ሻ 													݇ ൌ FINDSUBMOUNTA IN S 2, ሾ݅ሿ݈ܾ݁ܽܮ ; ሾ݅ሿ݈ܾ݁ܽܮ		 ൌ "01";	
9) for ݆	 ൌ 	0 to ݇ െ 1 do ݈ܾ݁ܽܮ		} ݒ ൌ ܯ ݆ ; ܧ		 ൌ ܧ ∪ ݅, ݒ ; ݒ		 ൌ ݒ ൅ 1;		}
10) }	
11) return		ܩ ൌ ܸ, ܧ ;

1) Function		FINDSUBMOUNTA IN S integer	݈,	certificate	as	string	ܥ ∶ number	of	submountines	in	ܥ
2ሻ ݇ ൌ 0; ܯ		 0 ൌ the	empty	string; 		݂ ൌ 0;
3) for 	ݔ ൌ ݈ െ 1 to ܥ െ ݈ do {
4) if ܥ ݔ ൌ 0 then		{		݂ ൌ ݂ ൅ 1;	 }		else	{		݂ ൌ ݂ െ 1; }
5) ܯ	 ݇ ൌ ܯ ݇ ∙ ܥ ݔ ;
6) if ݂ ൌ 0 then		{		݇ ൌ ݇ ൅ 1; ܯ			 ݇ ൌ the	empty	string; 			݂ ൌ 0; }
7) }	
8) return		݇;

૛

Advanced algorithms
25 / 25

Reconstruction of Tree from Certificate
1) Function		FASTCERT IF ICATETOTREE 	 certificate	as	string	ܥ 	 ∶ 	tree	as	ܩ ൌ ሺܸ, ሻܧ

2ሻ ܸ, ܧ ൌ empty	digraph	of	order	 ஼
ଶ
; 			ܸ ൌ 0,… , ஼

ଶ
;

3ሻ ݊ ൌ 0;
4ሻ ݌ ൌ ݊;
5) for 	ݔ ൌ 1 to ܥ െ 2 do {
6) if ܥ ݔ ൌ 0 then		{	
7) ݊ ൌ ݊ ൅ 1;
8) ܧ ൌ ܧ ∪ ሺ݌, ݊ሻ ;
9) ݌																		 ൌ ݊;
10) }			else			{	
11) ݌ ൌ †ݐ݊݁ݎܽ݌ ݌ ;
12) }
13) }	
14) return		ܩ ൌ ܸ, ሻܧሺ݊݋݅ݐܽݐ݊݁݅ݎ݋_݁ݒ݋݉݁ݎ ;

† ሻݔሺݐ݊݁ݎܽ݌ returns	the	parent	of	a	node	x. It	returns	x in	the	case	where	x		has	no	parent.

Advanced algorithms
26 / 25

References

 D.L. Kreher and D.R. Stinson , Combinatorial Algorithms:
Generation, Enumeration and Search , CRC press LTC , Boca
Raton, Florida, 1998.

