

computing graph isomorphism, computing tree isomorphism

Jiří Vyskočil, Radek Mařík 2013

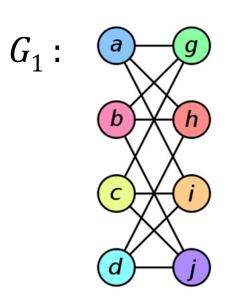
definition:

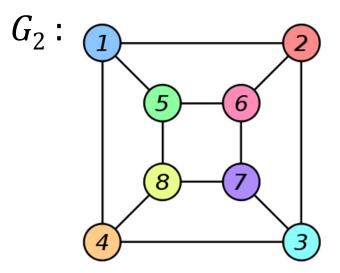
Two graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ are *isomorphic* if there is a bijection $f:V_1 \to V_2$ such that

$$\forall x, y \in V_1 : \{f(x), f(y)\} \in E_2 \iff \{x, y\} \in E_1$$

The mapping f is said to be an *isomorphism* between G_1 and G_2 .

example:





$$f: f(a) = 1 f(b) = 6 f(c) = 8 f(d) = 3 f(g) = 5 f(h) = 2 f(i) = 4 f(j) = 7$$

Co

Computing Graph Isomorphism

problem:

The *graph isomorphism problem* is the computational problem of determining whether two finite graphs are isomorphic.

- □ The graph isomorphism problem is one of a very small number of problems belonging to NP neither known to be solvable in polynomial time nor NP-complete.
- However, there is a number of important special cases of the graph isomorphism problem that have efficient, polynomial-time solutions: trees, planar graphs, some bounded-parameter graphs, etc.

_

Computing Graph Isomorphism

definition of invariant:

Let $\mathcal F$ be a family of graphs. An invariant on $\mathcal F$ is a function Φ with domain $\mathcal F$ such that

$$\forall G_1, G_2 \in \mathcal{F} : \Phi(G_1) = \Phi(G_2) \Leftarrow G_1$$
 is isomorphic to G_2

example:

- \square |V| for graph G=(V,E) is an invariant.
- □ The following degree sequence $[\deg(v_1), \deg(v_2), \deg(v_3), ..., \deg(v_n)]$ is not an invariant.
- □ However, if the degree sequence is sorted in non-decreasing order, then it is an invariant.

```
isomorphisms = [] # list of found isomorphisms
    v = 0 # index of the vertex in g1 to be mapped
    f = [-1] * len(G1.vertices) # isomorphism mapping, f[index of G1 vertex] = index of G2 vertex
    collect isomorphisms(G1, G2, v, f, isomorphisms)
    def collect isomorphisms(G1, G2, v, f, isomorphisms):
11
         N = len(G1.vertices)
        if v == N:
12
13
             return (f,) # return from the inner-most recursion
14
         for y in G2.vertices:
15
             if y in f[:v]: # vertex y has already been mapped. We can't use it twice.
                 continue
17
             # check that the structure mapped so far is the same:
19
             OK = True
21
             for u in range(v):
22
                if (u in G1['neighbors'][v]) ^ (f[u] in G2['neighbors'][y]):
                    0K = False
23
                    break
24
             if OK: # structure is fine (all edges are there), we have a candidate:
25
                 f[v] = v
27
                 result = collect isomorphisms(G1, G2, v+1, f, isomorphisms)
                 if type( result ) is tuple: # we have a isomorphism
                     isomorphisms.append(result[0])
29
         return None
```

definition:

Let \mathcal{F} be a family of graphs on vertex set V and let D be a function with domain ($\mathcal{F} \times V$). Then the partition B_G of V induced by D is

$$B_G = [B_G[0], B_G[1], ..., B_G[n-1]]$$

where

$$B_G[i] = \{ v \in V : D(G,v) = i \}$$

If the function

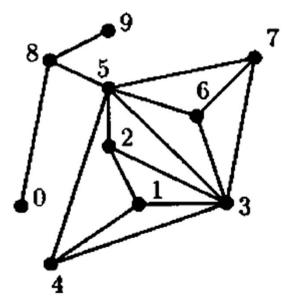
$$\Phi_D(G) = [|B_G[0]|, |B_G[1]|, ..., |B_G[n-1]|]$$

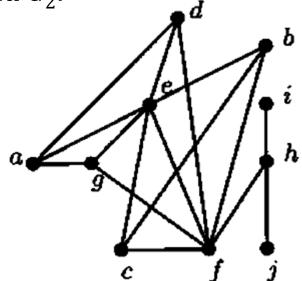
is an invariant, then we say that D is an invariant inducing function.

Let

- $D_1(G,x) = \deg_G(x)$
- $D_2(G,x)=[d_j(x): j=1,2,...,\max\{\deg_G(x): x \in V(G)\}]$ where $d_j(x)=|\{y: y \text{ is adjacent to } x \text{ and } \deg_G(y)=j\}|$

Suppose the following graphs G_1 and G_2 :



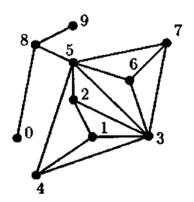


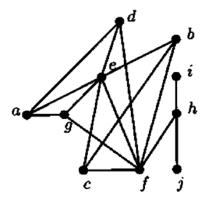
$$X_0(\mathcal{G}_1) = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}.$$

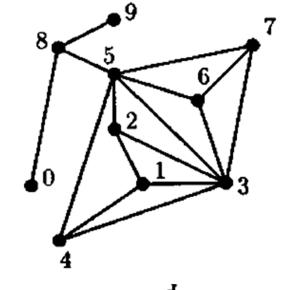
$$X_0(G_2) = \{a, b, c, d, e, f, g, h, i, j\}.$$

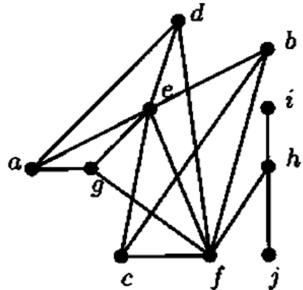
$$X_1(\mathcal{G}_1) = \{0,9\}, \{1,2,4,6,7,8\}, \{3,5\}$$

$$X_1(\mathcal{G}_2) = \{i, j\}, \{a, b, c, d, g, h\}, \{e, f\}.$$
(4)





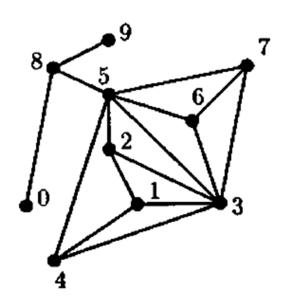


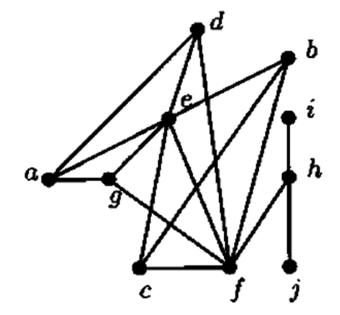


This restricts a possible isomorphism to bijections between the following sets:

$$\begin{cases}
\{0,9\} & \longleftrightarrow \{i,j\} \\
\{8\} & \longleftrightarrow \{h\} \\
\{2,4,6,7\} & \longleftrightarrow \{b,c,d,g\} \\
\{1\} & \longleftrightarrow \{a\} \\
\{3,5\} & \longleftrightarrow \{e,f\}
\end{cases}$$

There are 96 = (2!)(1!)(4!)(1!)(2!) bijections giving the possible isomorphisms. Examination of each of these possible isomorphisms shows that only the following eight bijections are isomorphisms.





$$\begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ i & a & d & e & g & f & b & c & h & j \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ j & a & d & e & g & f & b & c & h & i \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ i & a & d & e & a & f & c & b & h & i \end{pmatrix}$$

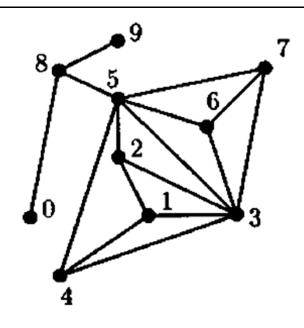
$$\begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ i & a & g & e & d & f & c & b & h & j \end{pmatrix}$$

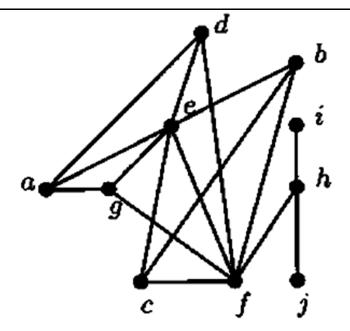
$$\begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ j & a & d & e & g & f & b & c & h & i \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ i & a & d & e & g & f & c & b & h & j \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ j & a & d & e & g & f & c & b & h & i \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ i & a & g & e & d & f & b & c & h & j \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ j & a & g & e & d & f & b & c & h & i \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ i & a & g & e & d & f & c & b & h & j \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ j & a & g & e & d & f & c & b & h & i \end{pmatrix}$$






```
set of
     Function FINDISOMORPHISM (set of invariant inducing functions I; graph G_1, G_2): isomorphisms
1)
2)
     try {
        (partitions, X, Y) = GETPARTITIONS (I, G_1, G_2);
4)
     catch ("G_1 and G_2 are not isomorphic!") { return \emptyset; }
     for i = 0 to partitions – 1 do {
        for each x \in X[i] do {
7)
           W[x] = i;
8)
9)
10)
     return CollectIsomorphisms(G_1, G_2, 0, Y, W, f)
```

```
set of invariant inducing functions I; graph G_1; parititions of G_1 X, parititions of G_2 Y
      Function GETPARTITIONS
1)
      N=1; X[0] = vertices of G_1; Y[0] = vertices of G_2;
2)
      for each D \in I do {
3)
         P = N:
4)
         for i = 0 to P - 1 do {
5)
              Partition X[i] into sets X_1[i], X_2[i], X_3[i], ..., X_m[i] where x,y \in X_i[i] \Leftrightarrow D(G_1,x) = D(G_1,y);
6)
              Partition Y[i] into sets Y_1[i], Y_2[i], Y_3[i], ..., Y_n[i] where x,y \in Y_i[i] \Leftrightarrow D(G_2,x) = D(G_2,y);
7)
              if n \neq m then throw exception "G_1 and G_2 are not isomorphic!";
8)
              Order Y[i] into sets Y_1[i], Y_2[i], Y_3[i], ..., Y_n[i] so that
9)
                 \forall x \in X[i], \forall y \in Y[i]: D(G_1,x) = D(G_2,y) \Leftrightarrow x \in X_i[i] \text{ and } y \in Y_i[i];
10)
              if ordering is not possible then throw exception "G_1 and G_2 are not isomorphic!";
11)
              N = N + m - 1:
12)
13)
          Reorder the partitions so that: |X[i]| = |Y[i]| \le |X[i+1]| = |Y[i+1]| for 0 \le i < N-1;
14)
15)
      return (N, X, Y)
```

```
partition mapping W as current isomorphism f as
     Function
                           COLLECTISOMORPHISMS
    if v = \text{number of vertices of } G_1 then return \{f\};
    R = \emptyset:
3)
  p = W[v];
    for each y \in Y[p] do {
       OK = true:
6)
       for u = 0 to v - 1 do {
           if \{u,v\} \in \text{edges of } G_1 \text{ xor } \{f[u],y\} \in \text{edges of } G_2 \text{ then } \{OK = \text{false}; \text{break}; \}
8)
9)
       if OK then {
10)
          f[v] = y;
11)
           R = R \cup \text{COLLECTISOMORPHISMS}(G_1, G_2, v+1, Y, W, f);
12)
13)
    return R
```

M

Certificate

A certificate Cert for family \mathcal{F} of graphs is a function such that

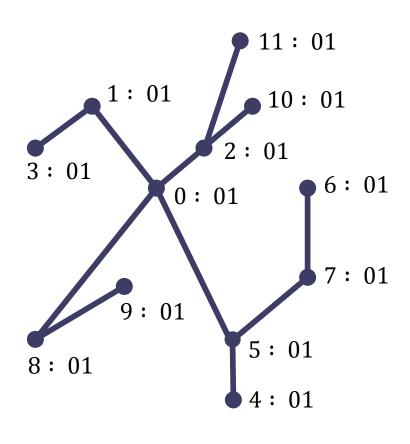
$$\forall G_1, G_2 \in \mathcal{F} : Cert(G_1) = Cert(G_2) \Leftrightarrow G_1 \text{ is isomorphic to } G_2$$

- Currently, the fastest general graph isomorphism algorithms use methods based on computing of certificates.
- Computing of certificates works not only for general graphs but it can be also applied on some classes of graphs like trees.

Computing Tree Certificate

- 1) Label all the vertices of G with the string 01.
- 2) While there are more than two vertices of *G* do: For each non-leaf *x* of *G*:
 - a) Let Y be the multi-set of labels of the leaves adjacent to x and the label of x, with the initial 0 and trailing 1 deleted from x;
 - Property Replace the label of *x* with concatenation of the labels in *Y* sorted in increasing lexicographic order, with 0 prepended and a 1 appended;
 - c) Remove all leaves adjacent to x.
- If there is only one vertex left, report the label of x as certificate.
- If there are two vertices x and y left, then report the labels of x and y, concatenated in increasing lexicographic order, as the certificate.

Computing Tree Certificate - Example



number of vertices: 12

non-leaves vertices:

$$0: Y = \langle \rangle$$

$$1: Y = \langle 01 \rangle$$

$$2: Y = (01,01)$$

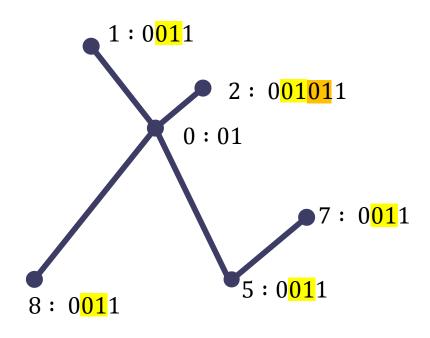
$$5: Y = \langle 01 \rangle$$

$$7: Y = \langle 01 \rangle$$

$$8: Y = \langle 01 \rangle$$

100

Computing Tree Certificate - Example



number of vertices: 6

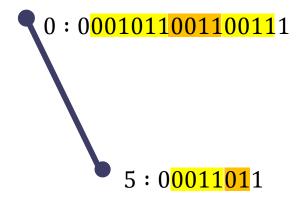
non-leaves vertices:

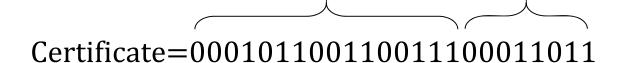
$$0: Y = \begin{pmatrix} 001011, \\ 0011, \\ 0011 \end{pmatrix}$$

$$5: Y = \begin{pmatrix} 0011, \\ 01 \end{pmatrix}$$

Computing Tree Certificate - Example

number of vertices: 2





Computing Tree Certificate

properties of certificate:

- \square the length is $2 \cdot |V|$
- □ the number of 1s and 0s is the same
- In furthermore, the number of 1s and 0s is the same for every partial subsequence that arise from any label of vertex (during the whole run of the algorithm)

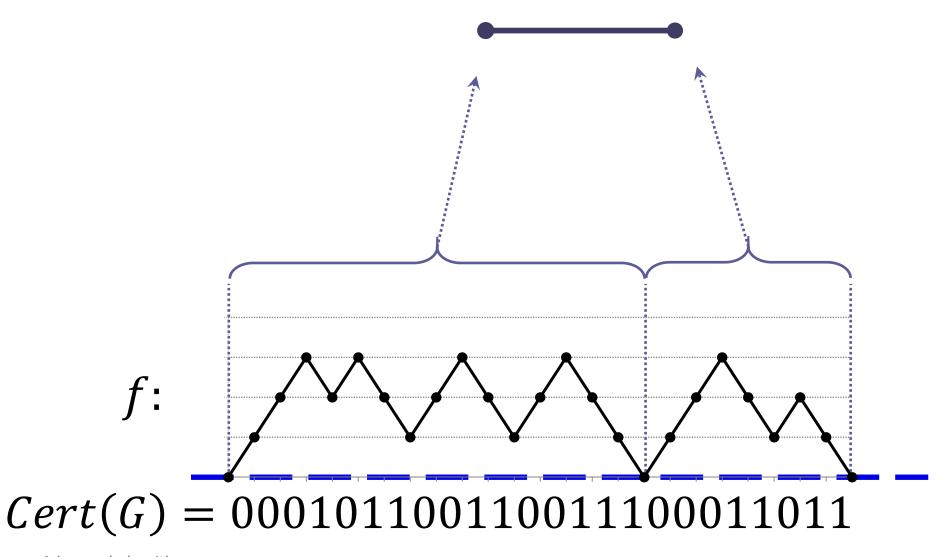
Reconstruction of Tree from Certificate - Example

$$f(0) = 0$$

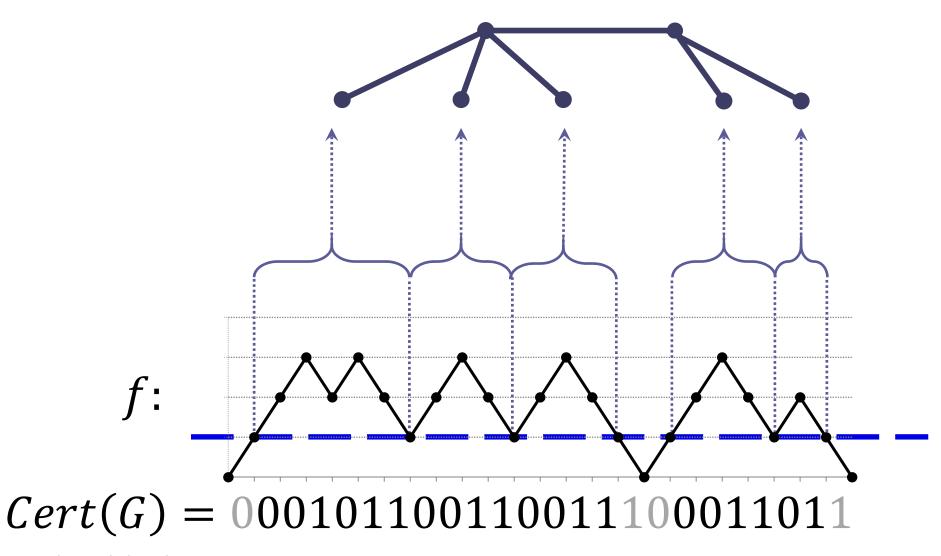
$$f(x+1) = \begin{cases} f(x) + 1, & Cert(G)[x] = 0 \\ f(x) - 1, & Cert(G)[x] = 1 \end{cases}$$



Reconstruction of Tree from Certificate - Example

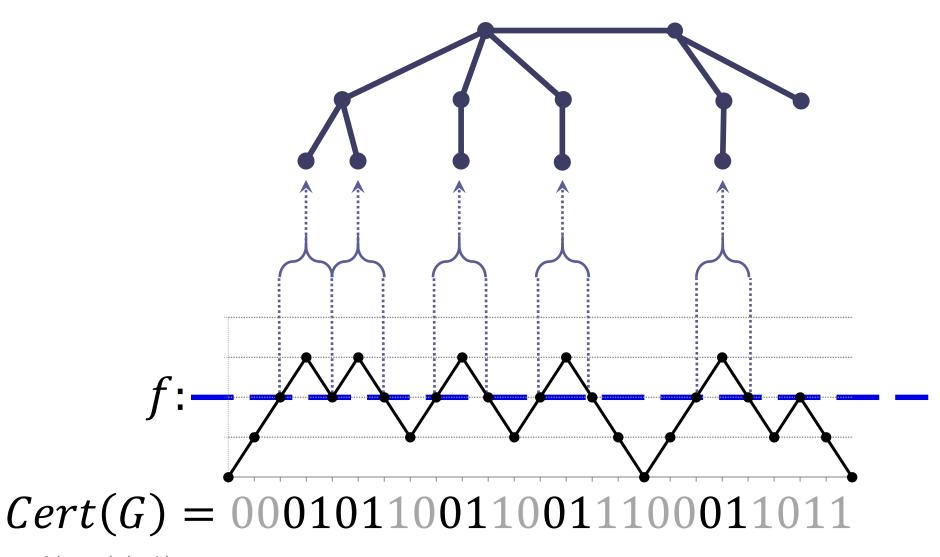


Reconstruction of Tree from Certificate - Example



P

Reconstruction of Tree from Certificate - Example



Reconstruction of Tree from Certificate

```
Function FIND SUB MOUNTAINS (integer l, certificate as string C): number of submountines in C
1)
     k=0; M[0]= the empty string; f=0;
     for x = l - 1 to |C| - l do {
           if C[x] = 0 then { f = f + 1; } else { f = f - 1; }
4)
          M[k] = M[k] \cdot C[x]:
5)
           if f = 0 then { k = k + 1; M[k] = the empty string; f = 0; }
6)
7)
     return k;
     Function CERTIFICATE TO TREE (certificate as string C): tree as G = (V, E)
1)
    n = \frac{|C|}{2}; v = 0; (V, E) = \text{empty graph of order } n; V = \{0, ..., n - 1\};
    k = \text{FINDSUBMOUNTAINS}(1, C);
     if k = 1 then \{Label[v] = M[0]; v = v + 1; \}
       else { Label[v] = M[0]; v = v + 1; Label[v] = M[1]; v = v + 1; E = E \cup \{\{0,1\}\}; }
     for i = 0 to n - 1 do {
    if |Label[i]| > 2 then {
7)
           k = \text{FINDSUBMOUNTAINS}(2, Label[i]); Label[i] = "01";
8)
           for j = 0 to k-1 do { Label[v] = M[j]; E = E \cup \{\{i,v\}\}; v = v+1; }
9)
10)
    return G = (V, E);
   Advanced algorithms
```

Reconstruction of Tree from Certificate

```
Function FAST CERTIFICATE TO TREE (certificate as string C): tree as G = (V, E)
     (V, E) = \text{empty digraph of order } \frac{|C|}{2}; \quad V = \left\{0, \dots, \frac{|C|}{2}\right\};
     n=0:
     p=n;
     for x = 1 to |C| - 2 do {
5)
           if C[x] = 0 then {
                n = n + 1;
                E = E \cup \{(p, n)\};
                p=n;
     } else {
10)
               p = parent^{\dagger}(p);
11)
12)
13) }
14) return G = (V, remove\_orientation(E));
```

† parent(x) returns the parent of a node x. It returns x in the case where x has no parent.

O(|C|)

References

 D.L. Kreher and D.R. Stinson, Combinatorial Algorithms: Generation, Enumeration and Search, CRC press LTC, Boca Raton, Florida, 1998.

Advanced algorithms 26 / 25