Combinatorial algorithms

computing graph isomorphism,
computing tree isomorphism

Jiri Vyskocil, Radek Marik
2013



S Computing Graph Isomorphism

definition:

Two graphs G,=(V,E,) and G,=(V,,E,) are isomorphic if there is a
bijection f: V, » V, such that

Vxy€EV, : {fX)LfW)}IEE, & {xy}€E
The mapping f is said to be an isomorphism between G, and G,.

example:

f' f(a)=1
f(b)=6
f(c)=8
f(d)=3
f(g)=5
f(h)=2
fli)=4
flj)=7

Advanced algorithms



S Eomputing Graph Isomorphism

problem:

The graph isomorphism problem is the computational

problem of determining whether two finite graphs are
isomorphic.

The graph isomorphism problem is one of a very small number of
problems belonging to NP neither known to be solvable in polynomial
time nor NP-complete.

However, there is a number of important special cases of the graph
iIsomorphism problem that have efficient, polynomial-time solutions:
trees, planar graphs, some bounded-parameter graphs, etc.

Advanced algorithms



S Eomputing Graph Isomorphism

definition of invariant:

Let F be a family of graphs. An invariant on F is a function @ with
domain F such that

VG,G,€EF : O(G,) =DP(G,) < Gyisisomorphic to G,

example:
|V| for graph G=(V, E) is an invariant.

The following degree sequence [deg(v,), deg(v,), deg(vs), ..., deg(v,)]
IS not an invariant.

However, if the degree sequence is sorted in non-decreasing order,
then it is an invariant.

Advanced algorithms



S Eomputing Graph Isomorphism

3 isomorphisms = []
v =0
f = [-1] * len(Gl.vertices)

collect isomorphisms(Gl, G2, v, f, isomorphisms):

N = len(Gl.vertices)

1T v == N:
return (f,)

for y in G2.vertices:
if in f[:v]:

It1nue

OK = 1
for u in range(v):
if (u in G1['neighbors’
OK = F
break
if OK:
flvl =y
result = collect isomorphisms(Gl, G2, v+1, f, isomorphisms)
if type( result ) is tuple:
isomorphisms.append(result[@])




S Eomputing Graph Isomorphism

definition :

Let F be a family of graphs on vertex set IV and let D be a function
with domain ( F X V). Then the partition B; of V induced by D is

B; = B[0], Bgl1], ..., Bgln - 1] ]
where
B li]={veV : D(Gv)=1i}
If the function
©,(6) = [ |Bg[O]l, [Bg[1]l, .., |Bgln - 1]] ]

is an invariant, then we say that D is an invariant inducing function.

Advanced algorithms



" Egomputing Graph Isomorphism - Example

Let
D, (Gx)=degq(x)
D,(GX)=[d(x) : j = 1,2, ..., max{deg;(x): x € V(G)}]
where d;(x)=|{y : y is adjacent to x and deg;(y) =/ }|

Suppose the following graphs G, and G,;: p

Advanced algorithms



XO(GI) = {01 la 2) 3a 4a 5’ 61 7’ 8r 9}

XO(G2) = {a") b‘) c’ d’e, f’ g’ h)i’j}'

z |0123456789

— e T e e o e ——

Y
xﬂ&%-ms}u2467s}mo}
o, ()
z 'abcdefgzzj
Ds(gz,x)|§§§§§§§_,11
I

X (92) = {z’J}v {a»b,c’ d,g’ h}a {e) f}
(1) (2) ()

Advanced algorithms




aph Isomorphism - Example

CoXaogko¥xxwV & ¥ X X9V
oo c8scTea) oS855 56883)

””””””
’’’’’’’’’’’’’’’’
””””””””””””””””
”””””””””””””””
”””””””””””””
””””””””””””””””
’’’’’’’’’

!!!!!!!!!!!!!!!

_ oo oo NO S

,,,,,,,,,,,,,,,,

—~—
(Y]
o
——
~
p—
——
-
I~
<O
-
o
——
~—
o)
Ny
iy
[=>]
o
—

535S S G S S5 S S SHITSTISSESS
A I N I I R R R e R s w0
aYaYaYaYaYaNayaNaysy ARRAQRRAQANANA)

X2(G1)

—

-

X2(G2) = {i,5}, {h}, {6,e:d. 9}, {a}. {e. }-

Advanced algorithms



" EEgmputing Graph Isomorphism - Example

This restricts a possible isomorphism to bijections between the following sets:

{0,9} +— {i,j}
{8} «— ({h}
{2,4,6,7} +— {b,c,d,g}
{1} > {qo}
(3,5} «— {ef}

There are 96 = (21)(1!)(41)(1!)(2!) bijections giving the possible isomorphisms.
Examination of each of these possible isomorphisms shows that only the follow-
ing eight bijections are isomorphisms.

Advanced algorithms



raph Isomorphism - Example

N =
0 <
N~ ©
O Q
LN S
<+ S
0N v
NS
—

o '~

o~
o <
N O
O
LN S~
<t S
M
NS
— 3

O =

o =
w0 <
o>~ Q
O O
LN S~
<+ >
Q)
NS
—

O '~

'~
oo <
N
O ©
LN S~
<
M
NS
— 3

S =

Advanced algorithms



" ESSEomputing Graph Isomorphism

set of

Function FINDISOMORPHISM (set of invariant inducing functions I; graph G4, G;) : . :
isomorphisms

try {
( partitions, X, Y) = GETPARTITIONS (I, G4, G3) ;

}
catch (“G; and G, are notisomorphic!“) { return @; }
for i=0 to partitions-1 do {
for each xe X[i] do {
Wix]=1i;

}

return COLLECTISOMORPHISMS(G4, G5, 0,Y, W, f)

Advanced algorithms



" ESSSSEomputing Graph Isomorphism

set of invariant inducing functions I; number of partitions N,
Function GETPARTITIONS graph Gy; : parititions of G; X,
graph G, parititions of G, Y

N=1; X[0] =verticesof G;; Y[0]=vertices of G,;
for each Del do {
P=N;
for i=0 to P-1 do {
Partition X [i] into sets X; [i], X, [i], X5 [1], ..., X, [{]] where xyeX; [i] & D (G1,x)=D(G1,y) ;
Partition Y [i] into sets Y [i], Y, [i], Y5 [], ..., Y, [i]] where xyeY; [i] & D(G2,x)=D(G,y) ;
if n#m then throw exception “G; and G, are not isomorphic!;
Order Y [i] into sets Y; [i], Y, [i], Y5 [i], ..., Y, [{] so that
Vxe X[i],Vy e Y[i] : D(G1,x) =D(Gpy) @ x e X;[i]landy € Y, [i] ;
if orderingis not possible then throw exception “G; and G, are not isomorphic! “;
N=N+m-1;
}
Reorder the partitions so that: |X [i]|=|Y [i]| < |X[i+1]|=|Y [i+1]| forO<i<N-1;

}
return (N, X,Y)

Advanced algorithms



" ESSEomputing Graph Isomorphism

. graph G;, G, ; partition mapping W as  current isomorphism f as

Function (starting vertex of G, v; array [vertices of G,] of . array [vertices of G,] of ) . setof
COLLECTISOMORPHISMS parititions of G, Y'; indices of partitions of G, vertices of G, isomorphistns
if v=number of vertices of G; then return {f };
R=0;
p=WI[v];
for each yeY|[p] do {

OK = true;

for u=0 to v-1 do {
if {u,v} €edgesof G; xor {f[u],y } € edgesof G, then { OK-=false;break; }

}
if OK then {

flvl=y;

R =R U COLLECTISOMORPHISMS(G1, Go, v+1, Y, W, ) ;

return R

Advanced algorithms



A Certificate

A certificate Cert for family F of graphs is a function such
that

VG,G,€F : Cert(G, =Cert(G,) < G, isisomorphictoqa,

Currently, the fastest general graph isomorphism algorithms
use methods based on computing of certificates.

Computing of certificates works not only for general graphs

but it can be also applied on some classes of graphs like
trees.

Advanced algorithms



" SSSComputing Tree Certificate

1) Label all the vertices of ¢ with the string 01.

2) While there are more than two vertices of G do:
For each non-leaf x of G:

a) LetY be the multi-set of labels of the leaves adjacent to x and
the label of x, with the initial 0 and trailing 1 deleted from x;

b) Replace the label of x with concatenation of the labels in
Y sorted in increasing lexicographic order, with 0 prepended
and a 1 appended;

c) Remove all leaves adjacent to x.

3) If there is only one vertex left, report the label of x as certificate.

4) If there are two vertices x and y left, then report the labels of
x and y, concatenated in increasing lexicographic order, as the
certificate.

Advanced algorithms



Advanced algorithms

number of vertices: 12

non—leaves vertices:

0:V=()
1:Y =(01)
2: Y =(01,01)
5:Y=(01)
7:Y =(01)
8:Y =(01)



" Egomputing Tree Certificate - Example

1:0011

2: 001011
0:01

7: 0011

5:0011

8: 0011

Advanced algorithms

number of vertices: 6

non—leaves vertices:

001011,
0:Y =< 0011, >

0011

c .y — <oo11,>

01



" Egomputing Tree Certificate - Example

number of vertices: 2

0:0001011001100111

5:00011011

Al N
r N ™

Certificate=000101100110011100011011

Advanced algorithms



" SSSSSComputing Tree Certificate

properties of certificate:

the length is 2 - |V|
the number of 1s and Os is the same

furthermore, the number of 1s and Os is the
same for every partial subsequence that arise
from any label of vertex (during the whole run
of the algorithm)

Advanced algorithms



-=Reconstruction of Tree from Certificate - Example

f(0)=0 OO +1 Cert(G)[x]
x) + 1, ert X
flx+1) = {f () =1, Cert(G)lx]

Cert(G) =000101100110011100011011

Advanced algorithms



-=Reconstruction of Tree from Certificate - Example

Cert(G) =000101100110011100011011

Advanced algorithms



-=Reconstruction of Tree from Certificate - Example

Cert(G) = 00010110011001110001101

Advanced algorithms



-=Reconstruction of Tree from Certificate - Example

Cert(G) = 00010110011001 01

Advanced algorithms



" EReeenstruction of Tree from Certificate

Function FINDSUBMOUNTAINS (integer [, certificate as string C) : number of submountines in C
k = 0; M[0] = the empty string; f = 0;
for x =1—1 to |C|—1 do {
if Clx]=0then{f=f+1;}else{f=f—-1;}
Mlk] = M[k] - Clx];
if f=0 then { k=k+1; M[k] = theemptystring; f =0; }
}

return k;

Function CERTIFICATETOTREE (certificate as string C) : treeas G = (V,E)

n= |2ﬂ; v=0; (V,E)=emptygraphofordern; V ={0,..,n—1};

k = FINDSUBMOUNTAINS(1,C);
if k=1 then {Labellv]=M[0]; v=v+1; }
else { Label[v] = M[0]; v=v+1; Label[v] =M[1]; v=v+1; E=EU{{0,1}}; }
for i = 0 to n—1 do {
if |Label[i]| > 2 then {
k = FINDSUBMOUNTAINS (2, Label[i]); Label[i] ="01";
for j =0 to k—1 do { Label[v]=M[j]; E=Eu{{iv}}; v=v+1;}

3'eturnG=(V,E); 0(|C|2)

Advanced algorithms



" EReeenstruction of Tree from Certificate

Function FASTCERTIFICATETOTREE (certificate as string C) : treeas G = (V,E)

(V,E) = empty digraph of order ﬂ; V= O,...,E ;
pty digrap > 2

n=20;

p=n

for x =1 to |C|—2 do {
if C[x] =0 then {

n=n+1;
E=Eu{(pn)}
p=n

} else {

p = parentt(p);

}

return G = (V,remove_orientation(E));

f parent(x) returns the parent of a node x. It returns x in the case where x has no parent.

o(|C])

Advanced algorithms



References

D.L. Kreher and D.R. Stinson , Combinatorial Algorithms:
Generation, Enumeration and Search , CRC press LTC , Boca
Raton, Florida, 1998.

Advanced algorithms



