Microprocessors

6. ARM assembler

Stanislav Vitek
Katedra radioelektroniky
Ceské vysoké uceni technické v Praze

ARM Programmer-visible Registers

ARM implements sixteen 32-bit processor registers labeled RO through R15.

e R15 is the program counter (PC)
e R14 is the link register (LR)
e R13 is the stack pointer (SP)

In general, we use only* R0O...R12 as General Purpose Registers (GPRs) and only use and
refer to R13, R14, and R15 as SP, LR, and PC.

e |n practice, additional guidelines further limit the use of registers by programmers
and compilers. Curious? See the ARM Architecture Procedure Call Standard.

There is also a special status register called the Current Program Status Register (CPSR)
that indicates various useful information (more later).

Assembly Language Syntax

Assembly language consists of shorthand instruction names called mnemonics, a syntax
for using them, and other directives for organizing them.

A program called an assembler translates the mnemonics into machine language
instructions (binary; more later).

Here is a (short) ARM assembly program:

ADD R1, R2, R3 // R1 <-- R2 + R3

e ADD is a mnemonic
e R1 is a destination register; the first operand
e R2 and R3 are source registers; the second and third operand

e //R1 <-- R2 + R3 is a comment (not a very useful one)

There are different ways to use each instruction.

ADD R1, R2, R3 // R1 <-- R2 + R3

Here, the syntax of the instruction is ADD Rd, Rn, Rm where

e Rd specifies the destination register

e Rn and Rm specify the source registers

ADD R4, R5, #24 // R4 <-- R5 + 24

Here, the syntax of the instruction is ADD Rd, Rn, Imm where

e Rd specifies the destination register
e Rn specifies the source register

e |mm specifies an immediate value (constant)

Move Instructions

These instructions copy data into registers from other registers or immediate values.

MOV Rd, Op2 // MOVes value of Op2 into Rd
MOV Rd, #Immleé // MOVes immediate 16-bit value into Rd
MVN Rd, Op2 // MOVes complement (Not) of Op2 value into Rd

MOVT Rd, #Immlé // MOVes Top: moves a 16-bit constant into
// the high-order 16 bits of Rd and leaves
// the lower bits unchanged

Logic Instructions

These instructions perform binary logic operations on operands, useful for testing
conditions, manipulating data, etc.

AND Rd, Rn, Op2 // bitwise AND operation

ORR Rd, Rn, Op2 // bitwise OR operation

EOR Rd, Rn, Op2 // bitwise Exclusive OR (XOR) operation
BIC Rd, Rn, Op2 // BIt Clear: Rd <-- Rn AND NOT(Op2)

Shift and Rotate Instructions

Shift and rotate instructions change the positions of bits within a register, moving them
left or right.

Note: Last operand can be a register or an immediate value, as with logic operations.

LSL R1, R2, #5 // Logical shift left
LSR R1, R2, R3 // Logical shift right
ASR R1, R2, #4 // Arithmetic shift right

e Logical = pad with Os, Arithmetic = extend sign bit

ROR R1l, R2, #2 // Circular rotate right

e |ess significant bits (on the right of the register) are moved into the most
significant positions (on the left of the register).

Arithmetic Instructions

Addition/subtraction instructions:

ADD RO, R1, R2 // R® <-- R1 + R2

ADD RO, R1, #-24 // RO <-- R1 + (-24)

SUB RO, R1, #24 // RO <-- Rl - (24)

ADD RO, R1, R2, LSL#2 // RO <-- Rl + R2*4

Multiply instruction

MUL R2, R3, R4 // R2 <-- R3 * R4
Multiply-accumulate instruction
MLA R2, R3, R4, R5 // R2 <-- (R3 * R4) + RS

These multiply instructions only return the 32 least significant bits.

Arithmetic Instructions

What about division?

UDIV RO, R1l, R2 // RO <-- R1 / R2, R1 and R2 unsigned
SDIV RO, R1, R2 // RO <-- R1 / R2, R1 and R2 signed

But many processors do not implement division.

Division hardware is

e Complex, and therefore costly;
e Slow; and,
e Used infrequently.

Consequently, it is often performed in software using an
ARM-provided library subroutine (e.g., aeabi_idiv()).

Array Access

Consider the following C code snippet:

int arr[8] {17, 58, 79, 15, ...} ; // sizeof (int) = 4B

for (int 1 = 0; 1 < 8; i++) {
v = arr[i] ;
/] ---
arr[i] = v ;

¥

When reading from an array, we need to:

e Get the base address (&arr);
e Multiply the index by the element size (i*4) to get the offset;
e Add to calculate the address of the element; and, then, finally

e Access memory!

10

To access arr we need an instruction that can read from memory:

LDR Rd, [Rn] // Rd <-- Mem[Rn], Rn = address in bytes

Our C code is implemented in part with the following assembly:

// RO = variable i

// R1 = base address of arr (&arr)

MOV R2, #4 // R2 = 4

MUL R2, RO, R2 // R2 = i*4 -- calculate offset for index i
ADD R3, R1l, R2 // R3 = arr + i*4 -- absolute address of arr[i]
LDR R4, [R3] // R4 = arr[i] -- R4 <-- Mem[R1+i*4]

Load and Store Instructions

Memory accesses commonly* access words and take the form of:

LDR Rd, <EA> // Rd <-- Mem[EA]; reads a 32-bit word
STR Rm, <EA> // Mem[EA] <-- Rn; writes a 32-bit word

Loads and stores do not generally specify a memory address explicitly; instead, they
compute an effective address (EA) from a base address and an offset.

Effective Address Calculation
EA = base + offset

Calculating an EA is very convenient for implementing common program structures:

e.g., loops and arrays; and, complex objects.

e Other load and store instructions access bytes or half words, doubles, or multiple
words, and manipulate addresses in more complex ways.

12

Effective Address Calculation

The base address is always stored in a register (Rn). There are three kinds of offset:

e |[mmediate: a 12-bit number added to or subtracted from the base address
e |ndex register: the offset is stored in a register (Rm)

e Scaled index register: the value in the index register is shifted by a specified
immediate value, then added to or subtracted from the base address

Name Assembler syntax Address generation
register indirect [Rn] EA = Rn
Immediate offset [Rn, #offset] EA = Rn + offset
offset in Rm [Rn, £ Rm, shift] EA = Rn * shifted(Rm)

13

