Multilayer Network Diagnostics

Radek Mařík

Czech Technical University
Faculty of Electrical Engineering
Department of Telecommunication Engineering
Prague CZ

Created using the PhD thesis by Andrey Shchurov

Outline

- Introduction
 - Distributed System
 - Model-based Testing
- Formal Model
 - Multilayer Model
 - Reference Models
- Structural Test Case Generation Strategy
 - Framework of Test Case Generation Strategy
 - Formal Definitions
 - Test Requirements
 - Test Cases
 - Structural Test Case Generation Strategy
- 4 A Case Study
 - Input Data
 - Formal Model
 - Test Cases

Outline

- Introduction
 - Distributed System
 - Model-based Testing
- 2 Formal Mode
 - Multilayer Model
 - Reference Models
- Structural Test Case Generation Strategy
 - Framework of Test Case Generation Strategy
 - Formal Definitions
 - Test Requirements
 - Test Cases
 - Structural Test Case Generation Strategy
- 4 A Case Study
 - Input Data
 - Formal Model
 - Test Cases

Generations of Networking [McCO7]

COMPLEXITY 4th GENERATION NETWORK SYSTEMS WITH RUDIMENTARY DECISION-MAKING CAPABILITY 3rd GENERATION NETWORK SYSTEMS BASED ON SERVICE ORIENTED ARCHITECTURE 2nd GENERATION COMPLEX NETWORKS (NETWORKS OF NETWORKS) 1st GENERATION SIMPLE INDEPENDENT NETWORKS

Distributed System

a collection of independent computers that appears to its users as a single coherent system $^{[TS13]}$

- a collection of components/products (hardware and software) the viewpoint of the vendor community;
- a collection of the above plus external communication infrastructure the viewpoint of the network engineer community;
- a collection of services/applications the viewpoint of the software/system engineer community;
- all of the above plus end-users/customers the viewpoint of the business community.

Outline

- Introduction
 - Distributed System
 - Model-based Testing
- 2 Formal Mode
 - Multilayer Model
 - Reference Models
- 3 Structural Test Case Generation Strategy
 - Framework of Test Case Generation Strategy
 - Formal Definitions
 - Test Requirements
 - Test Cases
 - Structural Test Case Generation Strategy
- 4 A Case Study
 - Input Data
 - Formal Model
 - Test Cases

Model-based Testing (MBT)

The basic idea of MBT is that, instead of creating test cases manually, a selected algorithm generates them automatically from an abstract formal model.

In general, MBT involves the following major activities [UPL12]:

- building the formal model from informal requirements or existing specification documents;
- defining test selection criteria and transforming them into operational test specifications or test cases;
- generating executable tests based on test cases;
- executing the tests (including conceiving and setting up adaptor components).

General Model-based Testing Setting [Wik]

[UL07]

Model-based Testing Workflow 1

Outline

- Introduction
 - Distributed System
 - Model-based Testing
- Pormal Model
 - Multilayer Model
 - Reference Models
- Structural Test Case Generation Strategy
 - Framework of Test Case Generation Strategy
 - Formal Definitions
 - Test Requirements
 - Test Cases
 - Structural Test Case Generation Strategy
- 4 A Case Study
 - Input Data
 - Formal Model
 - Test Cases

Multilayer Model [KAB+14]

A **hierarchical multilayer network** [KAB⁺14] is a type of multilayer network of particular relevance for computer networks

- in which the bottom layer constitutes a physical network and
- the remaining layers are *virtual layers* that operate on top of the physical layer.

The concept is based on the facts:

- for each node on a given layer there is a corresponding node (or nodes) on the layer below;
- for each path between two nodes on a given layer there is a path (or paths) between the corresponding nodes on the layer below.

Hierarchical Multilayer Model [Shc15]

Multilayer Projection Network [Shc17]

Let the graph M denote the system under test (SUT) as a **multilayer projection network**:

$$M = (V, E)$$

where M is a multi-layered 3D graph, derived from the SUT specification; V(M) is a finite, non-empty set of components of SUT; and E(M) is a finite, non-empty set of component-to-component interconnections:

$$V = \bigcup_{\alpha=1}^L V^\alpha \quad \text{ and } \quad E = \left(\bigcup_{\alpha=1}^L E^\alpha\right) \bigcup \left(\bigcup_{\alpha=2}^L E^{\alpha,(\alpha-1)}\right)$$

where V^{α} is a finite, non-empty set of components of SUT on layer α ; E^{α} is a finite, non-empty set of intralayer component-to-component interconnections on layer α ;

 $E^{\alpha,(\alpha-1)}$ is a finite, non-empty set of interlayer relations (so called projections) between components of the layer α and the layer below $(\alpha-1)$; and L is the number of SUT layers $(1 \le \alpha \le L)$.

Elements of Multilayer Network

- Two main elements of multilayer networks are
 - intra-layer graphs and
 - inter-layer graphs [KAB+14]
- ullet The intralayer subgraph G^{lpha} of M can be represented as $^{[{
 m BBC}^+14]}$:

$$G^{\alpha} = (V^{\alpha}, E^{\alpha})$$

where

- V^{α} is a finite, non-empty set of components on layer α ; and
- $E^{\alpha} \subseteq V^{\alpha} \times V^{\alpha}$ is a finite, non-empty set of intralayer component-to-component interconnections on layer α .
- In practice, intralayer subgraphs G^{α} are usually not monolithic structures:
 - A set of protocols is predefined for each (physical or virtual) layer.
 - These protocols can support different topologies.

Layer of SUT [Shc17]

Let the subgraph G^{α} denote a layer of SUT as:

$$G^{\alpha} = (V^{\alpha}, E^{\alpha}, S_V^{\alpha}, S_E^{\alpha})$$

where

- G^{α} is a labeled intralayer subgraph of M;
- V^{α} is a finite, non-empty set of components on layer α ;
- $E^{\alpha} \subseteq V^{\alpha} \times V^{\alpha}$ is a finite, non-empty set of intralayer component-to-component interconnections on layer α ;
- S_V^{α} is a vertex label set for layer α ; and
- S_E^{α} is an edge label set for layer α .

Node and Edge Labels [Shc17]

$$S_V^{\alpha} = \bigcup_{v_i^{\alpha} \in V^{\alpha}} S_i^{\alpha}$$

where

- $S_i^{\alpha} \subset S^{\alpha}$ is a finite non-empty set of specifications of SUT components (a set of supported communication protocols) that defines the label of the vertex v_i^{α} of G^{α} ; and
- \bullet S^{α} is the universal set of all possible communication protocols on layer α .
- Let $S_{i,j}^{\alpha} \subset S^{\alpha}$ be a finite non-empty set of specifications of component-to-component interconnections (the set of used communication protocols) that defines the label of the edge $\left\langle v_i^{lpha}, v_i^{lpha} \right
 angle$ of G^{α} .

Protocol Sublayers [Shc17]

- Let G^{α}_{β} be a sub-subgraph which is defined by a given communication protocol $s^{\alpha}_{\beta} \in S^{\alpha}_{E} \subset S^{\alpha}$; and
- $E^{\alpha}_{\beta} \subseteq E^{\alpha}$ be a finite, non-empty set of intralayer component-to-component interconnections on sub-layer β of layer α .
- G^{α} is represented as a multiplex network:

$$G^{\alpha} = \bigcup_{\beta=1}^{|S_E^{\alpha}|} G_{\beta}^{\alpha}$$

and:

$$G^{\alpha}_{\beta} = \left(V^{\alpha}, E^{\alpha}_{\beta} \right)$$

Layer Protocols [Shc17]

$$S_E^{\alpha} = \bigcup_{\left\langle v_i^{\alpha}, v_j^{\alpha} \right\rangle \in E^{\alpha}} S_{i,j}^{\alpha}$$

and:

$$S_{i,j}^{\alpha} = \bigcup_{ \left\langle v_i^{\alpha}, v_j^{\alpha} \right\rangle \in E^{\alpha} \atop s_{\beta}^{\alpha} \in S_i^{\alpha} \atop s_{\beta}^{\alpha} \in S_i^{\alpha} } \left\{ s_{\beta}^{\alpha} \right\}$$

- If an edge $\left\langle v_i^{\alpha}, v_j^{\alpha} \right\rangle \in E^{\alpha}$ belongs to G_{β}^{α} then both components v_i^{α} and v_j^{α} support this protocol, i.e. $s_{\beta}^{\alpha} \in S_i^{\alpha}$ and $s_{\beta}^{\alpha} \in S_j^{\alpha}$
 - each pair of components v_i^{α} and v_j^{α} can be connected by at most $|S_E^{\alpha}|$ possible edges.

Intralayer Subgraph Representation as a Multiplex Network [Shc15]

Usage of Label Symbols [Shc17]

- The vertex label S_1^3 represents the set of communication protocols that is supported by the component $v_1^3 \in V^3$ on the layer 3.
 - The label S_V^3 represents the set of communication protocols that is supported by all components $v_i^3 \in V^3$ on the layer 3, i.e. $S_1^3 \subset S_V^3$.
 - The set S^3 represents all possible communication protocols (standard and proprietary) that can be used on the layer 3, i.e. $S_1^3 \subset S_V^3 \subset S^3$.
- The edge label $S^3_{1,5}$ represents the set of communication protocols that is used for communication between adjacent components v^3_1 and v^3_5 (the edge $\left\langle v^3_1, v^3_5 \right\rangle \in E^3$) on the layer 3.
 - The label S_E^3 represents the set of communication protocols that is used for communication between all adjacent components $\left\langle v_i^3, v_j^3 \right\rangle \in E^3$ on the layer 3, i.e. $S_{1,5}^3 \subset S_E^3 \subset {\bf S}^3$.

Cross-layer of SUT [Shc17]

ullet Let the subgraph $G^{lpha,(lpha-1)}$ denote a cross-layer of SUT as

$$G^{\alpha,(\alpha-1)} = \left(V^{\alpha}, V^{(\alpha-1)}, E^{\alpha,(\alpha-1)}\right)$$

where

- $G^{\alpha,(\alpha-1)}$ is an interlayer bipartite subgraph of M;
- V^{α} is a finite, non-empty set of components on layer α ,
- $\bullet \ V^{(\alpha-1)}$ is a finite, non-empty set of components on layer $(\alpha-1);$ and
- $E^{\alpha,(\alpha-1)}\subseteq V^{\alpha}\times V^{(\alpha-1)}$ is a finite, non-empty set of interlayer relations (all sets of projections) between components of the layer α $(2\leq \alpha \leq L)$ and the layer below $(\alpha-1)$.
- The degree of vertices of $G^{\alpha,(\alpha-1)}$ represents the technological solutions which were used to build the system [Shc14].

Clustering Technology Representation [Shc17]

•
$$G^{\alpha,(\alpha-1)} = (V^{\alpha}, V^{(\alpha-1)}, E^{\alpha,(\alpha-1)})$$

- $d(v_i^{\alpha}) > 1; v_i^{\alpha} \in V^{\alpha}$
- Hardware cluster example

Server XX - Host (Cluster Member)

COS XX - Console Operating System (Host Operating

System)

VM XX - Virtual Machine (Guest Operating System or

Container)

NAS XX - Network-Attached Storage (Network File System)

Virtualization and Replication technologies Representation [Shc17]

$$\bullet \ G^{\alpha,(\alpha-1)} = (V^{\alpha}, V^{(\alpha-1)}, E^{\alpha,(\alpha-1)})$$

•
$$d\left(v_j^{(\alpha-1)}\right) > 1; v_j^{(\alpha-1)} \in V^{(\alpha-1)}$$

Network virtualization example

L3 Switch XX - Multilayer Ethernet Switch

COS XX - Console Operating System (Firmware) VLAN XX - Virtual Local Area Network

VR XX - Virtual Router

Host virtualization example (VR ... virtual router)

Server XX - Virtualization Host

COS XX - Console Operating System (Hypervisor or

Host Operating System)

VM XX - Virtual Machine (Guest Operating System)

VLAN XX - Virtual Local Area Network

VR XX - Virtual Router

Dedicated Components [Shc17]

- $G^{\alpha,(\alpha-1)} = (V^{\alpha}, V^{(\alpha-1)}, E^{\alpha,(\alpha-1)})$
- $\bullet \ d\left(v_{i}^{\alpha}\right) = d\left(v_{j}^{(\alpha-1)}\right) = 1; \left\langle v_{i}^{\alpha}, v_{j}^{(\alpha-1)} \right\rangle \in E^{\alpha, (\alpha-1)}$
- A special case of dedicated components.

$$M = \begin{pmatrix} \begin{pmatrix} L \\ \bigcup_{\alpha=1}^{L} G^{\alpha} \end{pmatrix} \bigcup \begin{pmatrix} \int_{\alpha=2}^{L} G^{\alpha,(\alpha-1)} \end{pmatrix}$$
$$= \begin{pmatrix} \begin{pmatrix} L \\ \bigcup_{\alpha=1}^{L} G^{\alpha}_{\beta} \end{pmatrix} \end{pmatrix} \bigcup \begin{pmatrix} \int_{\alpha=2}^{L} G^{\alpha,(\alpha-1)} \end{pmatrix}$$

- From the perspective of MBT, intralayer subgraphs G^{α} are the main source of initial data for the test case generation process; and
- interlayer subgraphs $G^{\alpha,(\alpha-1)}$ make this process consistent on all layers of the formal model.

Outline

- Introduction
 - Distributed System
 - Model-based Testing
- Pormal Model
 - Multilayer Model
 - Reference Models
- Structural Test Case Generation Strategy
 - Framework of Test Case Generation Strategy
 - Formal Definitions
 - Test Requirements
 - Test Cases
 - Structural Test Case Generation Strategy
- 4 A Case Study
 - Input Data
 - Formal Model
 - Test Cases

ISO/OSI Reference Model and TCP/IP Protocol Suite 1

OSI RM	TCP/IP Protocol Suite
Application Layer	
Presentation Layer	Application Layer
Session Layer	
Transport Layer	Transport Layer
Network Layer	Internet Layer
Data Link Layer	Data Link Layer
Physical Layer	Physical Layer

- ISO/OSI Reference Model [ISO94] and
- TCP/IP Protocol Suite (Five-layer Reference Model) [TW11] [KR12] [Com15]

- ISO/OSI Reference Model (OSI RM) [ISO94] conceptual model has never been implemented in practice.
- The business community (end-users) faces the following challenges [Shc14]:
 - Physical Layer and Data Link Layer cannot be separated in the case of commercial off-the-shelf (COTS) network equipment.
 - Transport Layer and Application Layer cannot be separated in the case of COTS software.
- A common joke is that OSI RM should have three additional layers [LHC07]:
 - 8. User Layer;
 - 9. Financial Layer;
 - 10. Political Layer.

Practical Multilayer Reference Models [Shc15]

TCP/IP Protocol Suite	Basic Multilayer Reference Model	Extended Multilayer Reference Model
		Functional Layer
	Functional Layer	Social Layer
Application Layer Transport Layer	Service Layer	Service Layer
Internet Layer	Logical Layer	Logical Layer
Data Link Layer Physical Layer	Physical Layer	Physical Layer
		Engineering Layer

Outline

- Introduction
 - Distributed System
 - Model-based Testing
- 2 Formal Mode
 - Multilayer Model
 - Reference Models
- Structural Test Case Generation Strategy
 - Framework of Test Case Generation Strategy
 - Formal Definitions
 - Test Requirements
 - Test Cases
 - Structural Test Case Generation Strategy
- 4 A Case Study
 - Input Data
 - Formal Model
 - Test Cases

Framework of Test Case Generation Strategy

- The framework of structural test case generation strategy for a given layer of the formal model has the following key elements:
 - the formal model:
 - test requirements;
 - test cases.

Framework of Test Case Generation Strategy [Shc17]

- The framework of the structural test case generation strategy for a given layer α of the formal model where
 - G^{α} is an intralayer subgraph;
 - $G^{\alpha,(\alpha-1)}$ is an interlayer subgraph;
 - \bullet $R^{(\alpha+1),\alpha}$ is a set of interlayer projections of test requirements from upper layers to layer α :
 - $R^{\alpha,\alpha}$ is a set of intralayer test requirements (or the set of test requirement defined for layer α);
 - R^{α} is a resulting set of test requirements for layer α);
 - ullet $R^{lpha,(lpha-1)}$ is a set of interlayer projections of test requirements from layer α to the layer below; and
 - T^{α} is a set of test cases (abstract test specifications) which relate to the structure of the formal model on layer α .

[Shc17]

Criterion 1

The formal model based on the concept of multilayer networks is internally consistent on a given layer α iff:

- each vertex v_i^{α} of intralayer subgraphs G^{α} is incident with at least one edge of G^{α} , i.e. $d(v_i^{\alpha} \in G^{\alpha}) \geq 1$;
- each pair of adjacent vertices v_i^{α} and v_j^{α} of G^{α} which are incident with the edge $\left\langle v_i^{\alpha}, v_j^{\alpha} \right\rangle$ of G^{α} supports at least one common communication protocol, i.e. $S_{i,j}^{\alpha} \subseteq S_i^{\alpha}$; $S_{i,j}^{\alpha} \subseteq S_j^{\alpha}$ and $S_{i,j}^{\alpha} \neq \emptyset$;
- each vertex v_i^{α} of interlayer subgraphs $G^{\alpha,(\alpha-1)}$ $(2 \leq \alpha \leq L)$ is incident with at least one edge of $G^{\alpha,(\alpha-1)}$, i.e. $d\left(v_i^{\alpha} \in G^{\alpha,(\alpha-1)}\right) \geq 1$.

Test Requirements [Shc17]

- Some disadvantages of the path coverage criterion by using the requirements-based criteria.
- In this case, the test suite should cover only the paths which are defined by:
 - end-user requirements; and
 - 2 requirements derived from technical specifications, i.e. defined by technological solutions used to build the SUT.
- The standard ISO/IEC/IEEE Std 29148:2011 [ISO11] defines:
 - the term requirement as a statement which translates or expresses a need and its associated constraints and conditions:
 - the term condition as a measurable qualitative or quantitative attribute that is stipulated for a requirement.
- Formal test requirements must determine:
 - objects as associated elements of the SUT structure; and
 - associated conditions of these objects (or requirement attributes).

Test Requirements for a Given Layer [Shc17]

 The definition of the test requirements introduces two sources of test requirements for a given layer of the formal model:

$$R^{\alpha} = \left(R^{\alpha,\alpha} \cup R^{(\alpha+1),\alpha}\right)$$

where

- R^{α} is a set of test requirements for the given layer α ;
- $R^{\alpha,\alpha}$ is a set of intralayer test requirements (or the set of test requirement defined for the layer α); and
- $R^{(\alpha+1),\alpha}$ is a set of interlayer projections of test requirements from upper layers to the layer α .
- $R^{(\alpha+1),\alpha}$, $R^{\alpha,\alpha}$ (and $R^{\alpha,(\alpha-1)}$) have the same formal operational specifications (the same presentation format).

35 / 87

Test Cases [Shc17]

Criterion 2

A test requirement induces a test case on a given layer α iff:

- the object defined by the test requirement for the layer α binds an element (at least one) of the formal model on the layer α ;
- the specifications of the bound element match the requirement attributes on the layer α .

Criterion 3

The formal model based on the concept of multilayer networks is externally consistent on a given layer α with respect to the test requirements iff each test requirement defined for the layer α initiates at least one test case on the layer α .

Network Consistency Criterion

Criterion 4

The formal model based on the concept of multilayer networks is consistent with respect to the test requirements iff:

• there is at least one test requirement defined for the top architectural layer of the formal model;

[Shc17]

- the formal model is internally consistent on all coexisting architectural layers;
- the formal model is externally consistent with respect to the test requirements on all coexisting architectural layers.

37 / 87

Outline

- Introduction
 - Distributed System
 - Model-based Testing
- 2 Formal Mode
 - Multilayer Model
 - Reference Models
- Structural Test Case Generation Strategy
 - Framework of Test Case Generation Strategy
 - Formal Definitions
 - Test Requirements
 - Test Cases
 - Structural Test Case Generation Strategy
- A Case Study
 - Input Data
 - Formal Model
 - Test Cases

Communication Channels [Shc17]

- A communication channel (or channel) is a configuration of stubs, binders, protocol objects and interceptors providing a binding between a set of interfaces to basic engineering objects, through which interaction can occur [ISO10].
- Let $P_{i,j}^{\alpha}$ denote the set of communication channels (data flows) between a pair of SUT dedicated components v_i^{α} and v_j^{α} of G^{α} which can communicate as follows:

$$P_{i,j}^{\alpha} = \bigcup_{k=1}^{K_{i,j}^{\alpha}} \left\{ p_{i,j,k}^{\alpha} \right\}$$

where $p_{i,j,k}^{\alpha}$ is a k^{th} $\left(v_i^{\alpha}, v_j^{\alpha}\right)$ -path in G^{α} ; and $K_{i,j}^{\alpha}$ is the finite number of duplicated (parallel/redundant) paths $p_{i,j,k}^{\alpha}$.

 $^{^1 \}text{A} \left(v_i^\alpha, v_j^\alpha \right)$ -path in a graph G^α is an alternating sequence $[v_i, e_{\ell_1}, v_{\ell_1}, e_{\ell_2}, \dots, v_{\ell_{(j-1)}}, e_{\ell_j}, v_j]$ of vertices and edges from G^α with $e_\ell = \left\langle v_{\ell(l-1)}, v_\ell \right\rangle$ in which all vertices and edges are distinct: [Ste10].

- \bullet Each pair of SUT components v_i^α and v_j^α can be connected by
- \bullet at most $K^{\alpha}_{i,j}$ possible $\left(v^{\alpha}_{i},v^{\alpha}_{j}\right)$ -paths
 - (the value of the variable $K_{i,j}^{\alpha}$ is dependent on the layer topology)².
- In turn:

$$P^{\alpha} = \bigcup P_{i,j}^{\alpha}$$

where

• P^{α} is the complete set of communication channels on a given layer α .

 $^{^2}$ In the real engineering world under financial constraints commercial systems are usually based on redundant architectures [Pra96], i.e. in most cases $K^{\alpha}_{i,j}=2$.

Outline

- Introduction
 - Distributed System
 - Model-based Testing
- 2 Formal Mode
 - Multilayer Model
 - Reference Models
- Structural Test Case Generation Strategy
 - Framework of Test Case Generation Strategy
 - Formal Definitions
 - Test Requirements
 - Test Cases
 - Structural Test Case Generation Strategy
- A Case Study
 - Input Data
 - Formal Model
 - Test Cases

Framework of Test Case Generation Strategy [Shc17].

[Shc17]

$$R^{\alpha} = \left(R^{\alpha,\alpha} \cup R^{(\alpha+1),\alpha}\right)$$

- R^{α} is a set of test requirements for the given layer α ;
- $R^{\alpha,\alpha}$ is a set of intralayer test requirements (or the set of test requirements defined for the layer α); and
- $R^{(\alpha+1),\alpha}$ is a set of interlayer test requirements (or the set of interlayer projections of test requirements from upper layers to the layer α).
- It is important to note that R^{α} represents the union of test requirements.

Structure of Test Requirements II [Shc17]

• Test requirements should cover: (1) SUT components; and (2) SUT communication channels.

$$R^{\alpha,\alpha} = \left(R_{comp}^{\alpha,\alpha} \cup R_{link}^{\alpha,\alpha}\right)$$

and:

$$R^{(\alpha+1),\alpha} = \left(R_{comp}^{(\alpha+1),\alpha} \cup R_{link}^{(\alpha+1),\alpha}\right)$$

- $R_{comp}^{\alpha,\alpha}$ is a set of intralayer test requirements of SUT components;
- $R_{link}^{lpha,lpha}$ is a set of intralayer test requirements of SUT communication channels;
- $R_{comp}^{(\alpha+1),\alpha}$ is a set of interlayer test requirements of SUT components; and
- $R_{link}^{(\alpha+1),\alpha}$ is a set of intralayer test requirements of SUT communication channels.

Intralayer Test Requirements for SUT Components 15

Let $R_{comp}^{\alpha,\alpha} = \left\{r_{n,comp}^{\alpha,\alpha}\right\}$ denote the set of intralayer test requirements for SUT components as a set of triplets (3-tuples):

$$R_{comp}^{\alpha,\alpha} = \left\{ \left(v_i^{\alpha}, A_i^{\alpha}, A_i^{\alpha,(\alpha-1)} \right) \right\}$$

where

- v_i^{α} is a component of SUT on layer α ;
- $A_i^{\alpha} \subset S^{\alpha}$ is a set of required attributes for v_i^{α} ; and
- $A_i^{\alpha,(\alpha-1)} \subset S^{(\alpha-1)}$ is a set of required attributes for any interlayer projection of v_i^{α} on layer $(\alpha-1)$.

45 / 87

Intralayer Test Requirements for SUT Communication Channels [Shel7]

Let $R_{link}^{\alpha,\alpha} = \left\{r_{n,link}^{\alpha,\alpha}\right\}$ denote the set of intralayer test requirements for SUT communication channels as a set of quadruples (4-tuples):

$$R_{link}^{\alpha,\alpha} = \left\{ \left(v_i^{\alpha}, v_j^{\alpha}, A_{i,j}^{\alpha}, A_{i,j}^{\alpha,(\alpha-1)} \right) \right\}$$

- v_i^{α} and v_j^{α} is a pair of SUT dedicated components on layer α which must communicate;
- $A^{lpha}_{i,j}\subset S^{lpha}$ is a set of required attributes for $\left(v^{lpha}_i,v^{lpha}_j\right)$ -path; and
- $A_{i,j}^{\alpha,(\alpha-1)}\subset S^{(\alpha-1)}$ is a set of required attributes for any interlayer projection of $\left(v_i^\alpha,v_j^\alpha\right)$ -path on layer $(\alpha-1)$.

Interlayer Projections of Test Tequirements for Components [Shc17]

Let $R_{comp}^{(\alpha+1),\alpha} = \left\{r_{n,comp}^{(\alpha+1),\alpha}\right\}$ denote the set of interlayer projections of test requirements $R_{comp}^{(\alpha+1),(\alpha+1)} = \left\{\left(v_k^{(\alpha+1)},A_k^{(\alpha+1)},A_k^{(\alpha+1),\alpha}\right)\right\}$ for SUT components from layer $(\alpha+1)$ to layer α as a set of triplets:

$$R_{comp}^{(\alpha+1),\alpha} = \left\{ \left(v_i^{\alpha}, A_i^{\alpha}, A_i^{\alpha,(\alpha-1)} \right) \right\}$$

- $v_k^{(\alpha+1)}$ is a component of SUT on layer $(\alpha+1)$;
- v_i^{α} is a corresponding component of $v_k^{(\alpha+1)}$ on layer α ;
- $A_i^{\alpha} \subset S^{\alpha}$ is a set of required attributes for v_i^{α} ; and
- $A_i^{\alpha,(\alpha-1)} \subset S^{(\alpha-1)}$ is a set of required attributes for any interlayer projection of v_i^{α} on layer $(\alpha-1)$.

Interlayer Projections of Test Requirements for SUT Communication Channels [Shc17]

Let $R_{link}^{(\alpha+1),\alpha} = \left\{ r_{n,link}^{(\alpha+1),\alpha} \right\}$ denote the set of interlayer projections of test requirements $R_{link}^{(\alpha+1),(\alpha+1)} = \left\{ \left(v_k^{(\alpha+1)}, v_l^{(\alpha+1)}, A_{k,l}^{(\alpha+1)}, A_{k,l}^{(\alpha+1),\alpha} \right) \right\}$ for SUT communication channels from layer $(\alpha + 1)$ to layer α as a set of quadruples:

$$R_{link}^{(\alpha+1),\alpha} = \left\{ \left(v_i^{\alpha}, v_j^{\alpha}, A_{i,j}^{\alpha}, A_{i,j}^{\alpha,(\alpha-1)} \right) \right\}$$

- \bullet $v_{i}^{(\alpha+1)}$ and $v_{i}^{(\alpha+1)}$ is a pair of SUT dedicated components on layer $(\alpha + 1)$ which must communicate;
- v_i^{α} and v_i^{α} is a pair of corresponding components of $v_i^{(\alpha+1)}$ and $v_i^{(\alpha+1)}$ on layer α :
- $A_{i,j}^{\alpha} \subset S^{\alpha}$ is a set of required attributes for $(v_i^{\alpha}, v_j^{\alpha})$ -path; and
- $A_{i,i}^{\alpha,(\alpha-1)} \subset S^{(\alpha-1)}$ is a set of required attributes for any interlayer projection of $\left(v_i^{\alpha}, v_i^{\alpha}\right)$ -path on layer $(\alpha - 1)$.

Requirement Attributes [Shc17]

- The presentation format of the requirement attributes should be fully compatible with the presentation format of the specifications of the formal model, i.e.
 - $A_i^{\alpha}, A_{i,j}^{\alpha} \subset S^{\alpha}$ and
 - $A_i^{\alpha,(\alpha-1)}, A_{i,j}^{\alpha,(\alpha-1)} \subset S^{(\alpha-1)}$.
- In general, a set of requirement attributes can be an empty set. In this case, the test requirement expresses the need for object (component or communication channel) existence only.

Interlayer Relations (Projections) for Components

The function $\mu_{comp}^{(\alpha+1),\alpha}: R_{comp}^{(\alpha+1),(\alpha+1)} \times G^{(\alpha+1),\alpha} \to R_{comp}^{(\alpha+1),\alpha}$:

$$\begin{split} \mu_{comp}^{(\alpha+1),\alpha}\left(\left(v_k^{(\alpha+1)},A_k^{(\alpha+1)},A_k^{(\alpha+1),\alpha}\right)\right) &= \bigcup_{\left\langle v_k^{(\alpha+1)},v_i^{\alpha}\right\rangle \in G^{(\alpha+1),\alpha}} \left\{\left(v_i^{\alpha},A_i^{\alpha},A_i^{\alpha,(\alpha-1)}\right) \right. \\ &\left. A_i^{\alpha} = A_k^{(\alpha+1),\alpha},A_i^{\alpha,(\alpha-1)} = \emptyset \right. \end{split}$$

- In other words, for each test requirement $\left(v_k^{(\alpha+1)},A_k^{(\alpha+1)},A_k^{(\alpha+1),\alpha}\right)\in R_{comp}^{(\alpha+1),(\alpha+1)} \text{ on layer } (\alpha+1) \text{ the function }$ $u_{comn}^{(\alpha+1),\alpha}$ determines the finite set of all possible corresponding triplets $\left(v_i^{\alpha},A_i^{\alpha},A_i^{\alpha,(\alpha-1)}\right)\in R_{comp}^{(\alpha+1),\alpha}$ on layer α where $A_i^{\alpha}=A_k^{(\alpha+1),\alpha}$ and $A^{\alpha,(\alpha-1)} = \emptyset$
- ullet If this set is an empty set then the formal model M is inconsistent according to Criterion 1.

Interlayer Relations (Projections) for Channels

The function $\mu_{link}^{(\alpha+1),\alpha}: R_{link}^{(\alpha+1),(\alpha+1)} \times G^{(\alpha+1),\alpha} \to R_{link}^{(\alpha+1),\alpha}$ is defined as follows:

$$\begin{split} \mu_{link}^{(\alpha+1),\alpha}\left(\left(v_k^{(\alpha+1)},v_l^{(\alpha+1)},A_{k,l}^{(\alpha+1)},A_{k,l}^{(\alpha+1),\alpha}\right)\right) &= \bigcup_{ \left\langle v_k^{(\alpha+1)},v_i^{\alpha}\right\rangle \in G^{(\alpha+1),\alpha} \\ \left\langle v_l^{(\alpha+1)},v_j^{\alpha}\right\rangle \in G^{(\alpha+1),\alpha} } \left\{ \left(v_i^{\alpha},v_j^{\alpha},A_{i,j}^{\alpha},A_{i,j}^{\alpha,(\alpha-1)}\right) \right\} \\ A_{i,j}^{\alpha} &= A_{k,l}^{(\alpha+1),\alpha},A_{i,j}^{\alpha,(\alpha-1)} = \emptyset \end{split}$$

- In other words, for each test requirement $\left(v_{k}^{(\alpha+1)}, v_{l}^{(\alpha+1)}, A_{k,l}^{(\alpha+1)}, A_{k,l}^{(\alpha+1),\alpha}\right) \in R_{link}^{(\alpha+1),(\alpha+1)}$ on layer $(\alpha+1)$ the function $\mu_{link}^{(\alpha+1),\alpha}$ determines the finite set of all possible corresponding quadruples $\left(v_i^{\alpha},v_j^{\alpha},A_{i,j}^{\alpha},A_{i,j}^{\alpha,(\alpha-1)}\right)\in R_{link}^{(\alpha+1),\alpha}$ on layer α where $A_{i,i}^{\alpha} = A_{i,i}^{(\alpha+1),\alpha}$ and $A_{i,i}^{\alpha,(\alpha-1)} = \emptyset$.
- ullet If this set is an empty set then the formal model M is inconsistent according to Criterion 1.

Test Requirement Summary [Shc17]

The sets of test requirements R_{comp}^{lpha} and R_{link}^{lpha} can be defined as:

$$R_{comp}^{\alpha} = \left(R_{comp}^{\alpha,\alpha} \cup R_{comp}^{(\alpha+1),\alpha}\right)$$

$$R_{link}^{\alpha} = \left(R_{link}^{\alpha,\alpha} \cup R_{link}^{(\alpha+1),\alpha} \right)$$

- R_{comp}^{α} is the set of test requirements of SUT components for the given layer α ; and
- R_{link}^{α} is the set of test requirements of SUT communication channels for the given layer α .

Test Cases

Outline

- - Distributed System
 - Model-based Testing
- - Multilayer Model
 - Reference Models
- Structural Test Case Generation Strategy
 - Framework of Test Case Generation Strategy
 - Formal Definitions
 - Test Requirements
 - Test Cases
 - Structural Test Case Generation Strategy
- - Input Data
 - Formal Model
 - Test Cases

Framework of Test Case Generation Strategy

Types of Test Cases [Shc17]

- Test cases should cover
 - SUT components; and
 - SUT communication channels
- The complete set of test cases T^{α} for a given layer α can be defined as:

$$T^{\alpha} = T^{\alpha}_{comp} \cup T^{\alpha}_{link}$$

Test Cases for Components [Shc17]

Let $T_{comp}^{\alpha}=\left\{t_{n,comp}^{\alpha}\right\}$ denote the set of test cases of SUT components on layer α as a set of pairs:

$$T_{comp}^{\alpha} = \left\{ \left[\left(v_i^{\alpha}, S_i^{\alpha} \right), A_i^{\alpha} \right] \right\}$$

where

- v_i^{α} is a component of SUT on layer α ; $S_i^{\alpha} \subset S^{\alpha}$ is the set of specifications of v_i^{α} ; and
- $A_i^{\alpha} \subset S^{\alpha}$ is the set of required attributes for v_i^{α} .

In other words, each test case of that kind represents a SUT component whose characteristics or configuration should be verified according to corresponding required attributes.

Test Cases for Channels [Shc17]

- If there is a set of required attributes for a path then each set of specifications (labels) of edges which constitute this path should match the set of required attributes.
- Let $T_{link}^{\alpha} = \left\{t_{n,link}^{\alpha}\right\}$ denote the set of test cases of SUT communication channels on layer α as a union of pairs:

$$T_{link}^{\alpha} = \left\{ \left[\left(\bigcup_{\left\langle v_{(l-1)}^{\alpha}, v_{l}^{\alpha} \right\rangle \in p_{i,j,k}^{\alpha}} \left(\left\langle v_{(l-1)}^{\alpha}, v_{l}^{\alpha} \right\rangle, S_{(l-1),l}^{\alpha} \right) \right), A_{i,j}^{\alpha} \right] \right\}$$

- $p_{i,j,k}^{\alpha}$ is a k^{th} $\left(v_i^{\alpha},v_j^{\alpha}\right)$ -path between the pair of SUT dedicated components v_i^{α} and v_j^{α} on layer α ;
- $v_{(l-1)}^{\alpha}$ and v_l^{α} is a pair of adjacent components on layer α which constitute the path $p_{i,i,k}^{\alpha}$;
- $S_{i,j,k}^{\alpha}\subset {m S}^{lpha}$ is the set of specifications of the edge $\left\langle v_{(l-1)}^{lpha},v_{l}^{lpha}
 ight
 angle \in p_{i,j,k}^{lpha}$; and
- $A_{i,j}^{lpha}\subset S^{lpha}$ is the set of required attributes for (v_i^{lpha},v_j^{lpha}) -paths.

Testing of Paths [Shc17]

- In some cases, diagnostic tools do not allow the testing of paths on the physical architectural layer [Ran14].
- As a consequence, each test case of SUT communication channels on this layer should be divided into subset of test cases of component-to-component interconnections which constitute the channels, i.e.:

$$\begin{split} t_{n,link}^{\alpha} &= \left[\left(\bigcup_{\left\langle v_{(l-1)}^{\alpha}, v_{l}^{\alpha} \right\rangle \in p_{i,j,k}^{\alpha}} \left(\left\langle v_{(l-1)}^{\alpha}, v_{l}^{\alpha} \right\rangle, S_{(l-1),l}^{\alpha} \right) \right), A_{i,j}^{\alpha} \right] \\ &= \bigcup_{\left\langle v_{(l-1)}^{\alpha}, v_{l}^{\alpha} \right\rangle \in p_{i,j,k}^{\alpha}} \left[\left(\left\langle v_{(l-1)}^{\alpha}, v_{l}^{\alpha} \right\rangle, S_{(l-1),l}^{\alpha} \right), A_{i,j}^{\alpha} \right] \end{split}$$

where

• layer α represents the physical architectural layer according to multilayer reference models.

Test Cases for Components [Shc17]

• The function $\varphi^{\alpha}_{comp}: R^{\alpha}_{comp} \times G^{\alpha} \to T^{\alpha}_{comp}$ is defined as follows:

$$\varphi_{comp}^{\alpha}\left(\left(v_{i}^{\alpha},A_{i}^{\alpha},A_{i}^{\alpha,(\alpha-1)}\right)\right) = \begin{cases} \left[\left(v_{i}^{\alpha},S_{i}^{\alpha}\right),A_{i}^{\alpha}\right] & \text{if } A_{i}^{\alpha} \subseteq S_{i}^{\alpha} \\ \emptyset & \text{otherwise} \end{cases}$$

- In other words, for each test requirement $\left(v_i^{\alpha},A_i^{\alpha},A_i^{\alpha,(\alpha-1)}\right) \in R_{comp}^{\alpha}$ on a given layer α the function φ_{comp}^{α} determines the pair $\left(v_i^{\alpha},S_i^{\alpha}\right) \in G^{\alpha}$ whose characteristics match the required attributes, i.e. $A_i^{\alpha} \subseteq S_i^{\alpha}$.
- ullet If this pair does not exist then the formal model M is inconsistent according to Criterion 3.

Test Cases for Channels I [Shc17]

• The function $\varphi_{link}^{\alpha}:R_{link}^{\alpha}\times G^{\alpha}\to T_{link}^{\alpha}$ is defined as follows:

$$\varphi_{link}^{\alpha}\left(\left(v_{i}^{\alpha},v_{j}^{\alpha},A_{i,j}^{\alpha},A_{i,j}^{\alpha,(\alpha-1)}\right)\right)=\bigcup_{p_{i,j,k}^{\alpha}\in P_{i,j}^{\alpha}}\left\{\widehat{t_{n,link}^{\alpha}}\right\}$$

$$\widehat{t_{n,link}^{\alpha}} = \begin{cases} t_{n,link}^{\alpha} & \text{if } \forall \left\langle v_{(l-1)}^{\alpha}, v_{l}^{\alpha} \right\rangle \in p_{i,j,k}^{\alpha} : A_{i,j}^{\alpha} \subseteq S_{(l-1),l}^{\alpha} \\ \emptyset & \text{otherwise} \end{cases}$$

Test Cases for Channels L [Shc17]

- In other words:
 - For each test requirement $\left(v_i^{\alpha}, v_j^{\alpha}, A_{i,j}^{\alpha}, A_{i,j}^{\alpha,(\alpha-1)}\right) \in R_{link}^{\alpha}$ on a given layer α the function φ_{link}^{α} determines the finite set $P_{i,j}^{\alpha}$ of all possible $\left(v_i^{\alpha}, v_j^{\alpha}\right)$ -paths $p_{i,j,k}^{\alpha} \in P_{i,j}^{\alpha}$ between the pair of SUT dedicated components v_i^{α} and v_j^{α} which should communicate.
 - If this set is an empty set then the formal model M is inconsistent according to Criterion 3
 - In turn, for each path $p_{i,j,k}^{\alpha}$ of $P_{i,j}^{\alpha}$ the function φ_{link}^{α} determines the finite set of all possible pairs $\left(\left\langle v_{(l-1)}^{\alpha},v_{l}^{\alpha}\right\rangle ,S_{(l-1),l}^{\alpha}\right)\in G^{\alpha}$ whose elements $\left\langle v_{(l-1)}^{\alpha},v_{l}^{\alpha}\right\rangle$ constitute the path $p_{i,j,k}^{\alpha}$ and whose characteristics match the required attributes, i.e. $A_{i,j}^{\alpha}\subseteq S_{(l-1),l}^{\alpha}$.
 - If this set does not cover the path $p_{i,j,k}^{\alpha}$ completely then the formal model M is inconsistent according to Criterion 3.

Outline

- - Distributed System
 - Model-based Testing
- - Multilayer Model
 - Reference Models
- Structural Test Case Generation Strategy
 - Framework of Test Case Generation Strategy
 - Formal Definitions
 - Test Requirements
 - Test Cases
 - Structural Test Case Generation Strategy
- - Input Data
 - Formal Model
 - Test Cases

Test Case Generation Strategy [

Steps of Test Case Generation Strategy [Shc17].

- ullet The set of interlayer test requirements $R^{(\alpha+1),\alpha}$ is the result of recursive applying of:
 - lacksquare the intralayer test requirements $R^{(\alpha+1),(\alpha+1)}$: and
 - 2 the interlayer test requirements $R^{(\alpha+2),(\alpha+1)}$ to the interlayer subgraph $G^{(\alpha+1),\alpha}$.

$$R^{(\alpha+1),\alpha} = \mu^{(\alpha+1),\alpha} \left(R^{(\alpha+1)} \right) = \mu^{(\alpha+1),\alpha} \left(R^{(\alpha+1),(\alpha+1)} \cup R^{(\alpha+2),(\alpha+1)} \right)$$

- The set of system infrastructure test cases T^{α} on the layer α is the result of applying of:
 - **1** the intralayer test requirements $R^{\alpha,\alpha}$; and
 - $oldsymbol{Q}$ the interlayer test requirements $R^{(\alpha+1),\alpha}$ to the intralayer subgraph G^{α}

$$T^{\alpha} = \varphi^{\alpha}(R^{\alpha}) = \varphi^{\alpha}\left(R^{\alpha,\alpha} \cup R^{(\alpha+1),\alpha}\right)$$

Outline

- - Distributed System
 - Model-based Testing
- - Multilayer Model
 - Reference Models
- - Framework of Test Case Generation Strategy
 - Formal Definitions

 - Structural Test Case Generation Strategy
- A Case Study
 - Input Data
 - Formal Model
 - Test Cases

End-user Requirements [Shc17].

ID	End-User Requirements		
R101	Business agility and flexibility should be increased		
R102	Cost of doing business should be decreased		
R103	Interaction delay (INTD) must be less than human response time (HRT)		
R104	Availability of services is defined as 99.9 percent during core business hours		
R105	Consolidate the existing 16 physical application servers down to 3 servers		
R106	Centralized management tool must be used for the new infrastructure		
R107	Separate management VLANs must be used for management traffic		
R108	Server hardware maintenance should not affect application uptime		
R109	Provide N+1 redundancy to support hardware failure during normal operation		

End-user Constraints [Shc17]

ID	End-User Constraints	
C101	VMware vSphere Essentials Plus Kit has been preselected as the virtualization platform	
C102	Dell servers have been preselected as the compute platform	
C103	Two 10G ports should be used per server	
C104	VMware Virtual SAN tool has been preselected as the storage solution	
C105	D-Link managed switches have been preselected as the network platform	

End-user Assumptions [Shc17].

ID	Assumptions				
A101	Sufficient power, cooling, and floor/rack space is available in the existing datacenter to support the new infrastructure during normal and maintenance operations				
A102	Sufficient 10G ports are available in the existing core switches to support the new infrastructure				
A103	System services (DNS, NTP and DHCP) are available in the existing infrastructure to support the new services and applications				

Derived Technical Requirements [Shc17]

ID	Source	Derived Technical Requirements
T101	C101	All components of the virtualization platform must communicate with DNS service
	A103	
T102	C101	Selected components of the virtualization platform - hyperviser (ESXi) and managenet (vCenter) servises - must
	A103	communicate with NTP service
T103	C101	Hyperviser services of the virtualization platform (ESXi) must communicate with the managemnt service of the virtualization platform (vCenter)
	R106	
	R108	
	R109	
T104	C101	Hyperviser services of the virtualization platform (ESXi) must communicate with vSphere Desktop Client with Update
1104	R106	Manager
T105	C101	vSphere Desktop Client and vSphere Web Client must communicate with the managemnt service of the virtualization
1105	R106	platform (vCenter)
T106	C101	Separate management VLAN must be used for the virtualization platform (vSphere) management traffic
	R107	
	C101	Separate management VLAN must be used for the live migration (vMotion) management traffic
T107	R107	
	R108	
	R109	
	C101	Separate management VLAN must be used for the storage area network (vSAN) management traffic
T108	C104	
	R107	
	R108	
	R109	

Functional Architectural Layer [Sh

Service Architectural Layer [Shc17].

Logical Architectural Layer [Shc17].

Physical Architectural Layer [Shc17].

Outline

- Introduction
 - Distributed System
 - Model-based Testing
- 2 Formal Mode
 - Multilayer Model
 - Reference Models
- 3 Structural Test Case Generation Strategy
 - Framework of Test Case Generation Strategy
 - Formal Definitions
 - Test Requirements
 - Test Cases
 - Structural Test Case Generation Strategy
- 4 A Case Study
 - Input Data
 - Formal Model
 - Test Cases

October 17, 2023

Layer Component Specifications [Shc17]

Record	Layer	Component Assignment	Componen	t Identifier	Vendor Identifier		onent Attributes (3		Notes	
Number	Identifier	Component Assignment	Type	Index	vendor identifier	Comp	onent Attributes (3	-tupies)	rotes	
i	α	•	v_i^a							
T1.La.01	T1.La.02	T1.La.03	T1.La.04		T1.La.05		T1.La .06		T1.La.07	
1	4	Provider of Application Services	Provider	01	-	HTML/XML	INTD=100ms	Tasks=64		
		***					***			
1	3	Apache HTTP Server	WEB	01	Apache Software Foundation	TCP 443	-	-		
						UDP 53	-	-		
2	3	VMware vCenter Server	vCenter	01		UDP 123	-	-	ı	
2	3	V Miware VCenter Server	vCenter	01	VMware	TCP 443		-	-	
						UDP/TCP 902				
	3	VMware ESXi hypervisor 6.0		01		UDP 53				
3			ESXi		VMware	UDP 123				
						UDP/TCP 902				
		***							***	
		VMware ESXi hypervisor 6.0	cos	01	VMware	IPv4	192.168.110.11	255.255.255.0		
1	2					IPv4	192.168.120.11	255.255.255.0		
						IPv4	192.168.130.11	255.255.255.0		
2	2	SUSE Linux Enterprise Server 12	VM	03	Novell	IPv4	192.168.140.12	255.255.255.0		
3	2	VLAN vMotion	VLAN	110	-	IPv4	192.168.110.0	255.255.255.0		
4	2	Virtual Router	VRF	01	-	IPv4	192.168.0.0	255.255.0.0		
1	1	Dell PowerEdge R730xd Rack Server	Server	01	Dell	10GBASE-T	Full Duplex	-		
					D-Link	10GBASE-X	Full Duplex			
2	1	DXS-3600-32S 10 Gigabit Managed Switch	Switch	01		10GBASE-SR	Full Duplex	-		
	l	_	l	l		120G CXP				

Intralayer Component Specifications [Shel7].

					Link Id	entifier							
Record	Laver	Source Identifier					Tar	et Identifier					
Number	Identifier	Component Identifier Port Ident			lentifier Component Identifier		Port Identifier		Lin	Notes			
		Type	Index	Type	Index	Type	Index	Type	Index				
n	α	v_i^{ϵ}			-	υ	,		-	S_{IJ}^a			-
T2.La.01	T2.La.02	T2.I.	a .04	T2.	La .05	T2.L	a .06	T2.	La .07		T2.La .08		T2.La .09
1	4	Provider	01	-	-	Subscriber	01			HTML/XML	INTD=100ms	Tasks=64	-
***										***			
1	3	ESXi	01	UDP	53	DNS	01	UDP	53	UDP 53		-	-
2	3	ESXi	01	UDP	123	NTP	01	UDP	123	UDP 123	-	-	
3	3	ESXi	01	TCP/UDP	902	vCenter	01	TCP/UDP	902	UDP/TCP 902	-	-	-
***										***			
1	2	OS	01	IPv4	192.168.10.101/24	VLAN	10	IPv4	192.168.10.0/24	IPv4	192.168.10.0	255.255.255.0	-
2	2	COS	01	IPv4	192.168.110.11/24	VLAN	110	IPv4	192.168.110.0/24	IPv4	192.168.110.0	255.255.255.0	-
3	2	VM	01	IPv4	192.168.130.1/24	VLAN	130	IPv4	192.168.130.0/24	IPv4	192.168.130.0	255.255.255.0	
4	2	VLAN	140	IPv4	192.168.140.0/24	VRF	01	IPv4	192.168.0.0/16	IPv4	192.168.0.0	255.255.0.0	-

1	1	Switch	01	120G CXP	01, 02	Switch	02	120G CXP	01, 02	120G CXP			Stacking Ring
2	1	Switch	01	10GBASE-X	16	Switch	11	10GBASE-X	09	10GBASE-X	Full Duplex	-	EtherChannel 1
3	1	Switch	11	10GBASE-T	01	Server	01	10GBASE-T	01	10GBASE-T	Full Duplex	-	-
4	1	WS	01	1000BASE-T	01	LAN	00	1000BASE-T	00	1000BASE-T	-		-

Interlayer Component Specifications [Shc17]

		Projection Assignment		Projection	ı Identifier		Projection Attributes			
Record Number	Layer Identifier		Source Compo	Source Component Identifier		onent Identifier		Distribution Index	Notes	
Number	Identiner		Type	Index	Type	Index	index	Attributes		
n	α		v_i^a		$v_i^{(a)}$	$v_i^{(\alpha-1)}$				
T3.La .01	T3.La .02	T3.La .03	T3.I	a.04	T3.I	La .05	T3.La .06	T3.La .07	T3.La.08	
1	4		Provider	01	WEB	01	1:1			
2	4		Subscriber	01	Desktop	01	1:2		-	
-	-		Subscriber	0.	Desktop	02	1:2		-	
***		***					***			
1	3		WEB	01	VM	02	1:2	Active/Standby	AppServer Cluster 1	
	3	•	WED		VM	03	1:2	Standby/Active	AppServer Cluster 1	
2	3		ESXi	01	COS	01	1:1			
3	3		vCenter	01	VM	01	1:1		-	
***		***					***			
1	2		OS	01	WS	01	1:1		-	
2	2		COS	01	Server	01	1:1			
					Server	01	1:3			
3	2		VM	01	Server	02	1:3			
					Server	03	1:3			
					Switch	01	1:4			
4	2		VLAN	110	Switch	02	1:4			
4		•			Switch	11	1:4			
					Switch	12	1:4			

Multilayer Model [Shc17].

Test Requirements for SUT Components [Shc17]

Record	Layer	Requirement Assignment	Componen	t Identifier			Notes				
Number	Identifier		Type	Index		Requirement Attributes (3-tuples)					
i	α		v_i^{ϵ}			A_i^{α}			$A_i^{\alpha,(\alpha-1)}$	-	
T1.La.01	T1.La.02	T1.La.03	T1.I.	a .04			T1.I	a.06			T1.La.07
1	4	R105	Provider	01	HTML/XML	-	-	-	-	-	End User Requirement
2	4	R105	Subscriber	01	-	-	-	-	-	-	End User Requirement
							***				***
1	3	R105	WEB	01	TCP 443	-	-	-	-	-	End User Requirement
2	3	C101, R106, R108, R109	vCenter	01	-	-	-	-	-	-	End User Requirement
3	3	C101	ESXi	01	-	-	-	-	-	-	End User Requirement

1	2	C101	OS	01	-	-	-	-	-	-	End User Requirement
2	2	C101	COS	01	-	-	-	-	-	-	End User Requirement
3	2	C101, R108, R109	VM	01	-	-	-	-	-	-	End User Requirement
4	2	C101, R107, R108, R109	VLAN	110	-	-	-	-	-	-	End User Requirement

1	1	C102, C103	Server	01	10GBASE-T	-	-	-	-	-	End User Requirement
2	1	C102	WS	01	-	-	-	-	-	-	End User Requirement
3	1	C105	Switch	01	-	-	-	-	-	-	End User Requirement

Test Requirements for SUT Channels [Shc17].

		Requirement Assignment	Link Identifier										
Record	Layer Identifier		Source Identifier		Target Identifier		Requirement Attributes (3-tuples)						Notes
Number	Identifier	-	Type	Index	Type	Index							
n	α	-	υ	r i	υ	a i		A^{α}_{ij} $A^{\alpha,(\alpha-1)}_{ij}$				-	
T2.La .01	T2.La .02	T2.La .03	T2.I.	a.04	T2.I	a .06		T2.La.08			T2.La.09		
1	4	R103, R104, R105	Subscriber	01	Provider	01	HTML/XML	$INTD \le 200ms$	Tasks ≥ 16	TCP 443		-	End User Requirement

1	3	T101	DNS	01	ESXi	01	UDP 53	-	-	IPv4			Technical Requirement
2	3	T102	NTP	01	ESXi	01	UDP 123			IPv4	-		Technical Requirement
3	3	T103	vCenter	01	ESXi	01	UDP/TCP 902	-	-	IPv4	-		Technical Requirement
4	3	T105	vCenter	01	vSpere	01	TCP 443	-	-	IPv4		-	Technical Requirement

1	2	T107	VLAN	110	COS	01	IPv4	192.168.110.0	255.255.255.0	10GBASE-T	-		Technical Requirement
2	2	T108	VLAN	120	COS	01	IPv4	192.168.120.0	255.255.255.0	10GBASE-T	-	-	Technical Requirement

Outline

- - Distributed System
 - Model-based Testing
- - Multilayer Model
 - Reference Models
- - Framework of Test Case Generation Strategy
 - Formal Definitions
 - Test Requirements
 - Test Cases
 - Structural Test Case Generation Strategy
- A Case Study
 - Input Data
 - Formal Model
 - Test Cases

Test Cases for SUT Components [Shc17].

	Test cases of SUT components on layer α								
Record Number									
n	α	v_l^a		S_i^{α}			A_l^{α}		
1	1	Server, 01	10GBASE-T	Full Duplex	-	10GBASE-T	-	-	
			10GBASE-X	Full Duplex	-				
2	1	Switch, 01	10GBASE-SR	Full Duplex	-	-	-	-	
			120G CXP	-	-				
			10BASE-T	-	-		-		
3	1	WS, 01	100BASE-T	-	-	-		-	
			1000BASE-T	-	-				
1	2	OS, 01	IPv4	192.168.10.101	255.255.255.0	-	-	-	
	2		IPv4	192.168.110.11	255.255.255.0		=		
2		COS, 01	IPv4	192.168.120.11	255.255.255.0	-		-	
			IPv4	192.168.130.11	255.255.255.0				
3	2	VLAN, 110	IPv4	192.168.110.0	255.255.255.0	-	-	-	

1	3	WEB, 01	TCP 443	-	-	TCP 443	-	-	
			UDP 53	-	-				
2	3	vCenter, 01	UDP 123	-	-		_		
2	3	vCeiner, 01	TCP 443	-	-	1		-	
			UDP/TCP 902	-	-				
			UDP 53	-	-		-		
3	3	ESXi, 01	UDP 123	-	-	-		-	
			UDP/TCP 902	-	-				

Test Cases for SUT Channels [Shc17]

Test cases of SUT communication channels on layer α

$$T_{llnk}^{\alpha} = \left\{ \left[\left(\bigcup_{\langle v_{(l-1)}^{\alpha}, v_{l}^{\alpha} \rangle \in p_{l,l,k}^{\alpha}} \left(\langle v_{(l-1)}^{\alpha}, v_{l}^{\alpha} \rangle, S_{(l-1),l}^{\alpha} \right) \right), A_{l,l}^{\alpha} \right]_{n} \right\}$$

Number	Layer Identifier	Path Identifier	Attributes of con	nponent-to-compon (3-tuples)	ent interconnections	Requirement Attributes (3-tuples)				
n	α	$p_{l,l,k}^{\alpha} = \{\langle v_{(l-1)}^{\alpha}, v_{l}^{\alpha} \rangle\}$		$S_{(l-1),l}^{\alpha}$			$A_{i,j}^{\alpha}$			
1	1	(Switch, 01; Switch, 11)	-	-	-					
	1	<switch, 01;="" 11="" switch,=""></switch,>	10GBASE-X	Full Duplex	-	-	-	-		
2	1	(Switch, 11; Server, 01)	-	-	-					
- 2	1	<switch, 01="" 11;="" server,=""></switch,>	10GBASE-T	Full Duplex		-	-	-		
3	1	(WS, 01; LAN, 00)	-	-	-					
3	1	<ws, 00="" 01;="" lan,=""></ws,>	1000BASE-T	-	-	-	-	-		

1	1 2	(VLAN, 110; COS, 01)	-	-	-	IPv4	192.168.110.0	255.255.255.0		
	-	<vlan, 01="" 110;="" cos,=""></vlan,>	IPv4	192.168.110.0	255.255.255.0	11 14	192.108.110.0	233.233.233.0		
		(VM, 01; COS, 01)	-	-	-					
2	2	<vm, 01;="" 130="" vlan,=""></vm,>	IPv4	192.168.130.0	255.255.255.0	IPv4	-	-		
		<vlan, 01="" 130;="" cos,=""></vlan,>	IPv4	192.168.130.0	255.255.255.0					
	2	(OS, 01; COS, 01)	-	-	-		-			
		<os, 01;="" 10="" vlan,=""></os,>	IPv4	192.168.10.0	255.255.255.0					
3		<vlan, 01="" 10;="" vrf,=""></vlan,>	IPv4	192.168.10.0	255.255.255.0	IPv4		-		
		<vrf, 01;="" 130="" vlan,=""></vrf,>	IPv4	192.168.130.0	255.255.255.0					
		<vlan, 01="" 130;="" cos,=""></vlan,>	IPv4	192.168.130.0	255.255.255.0					
1	3	(DNS, 01; ESXi, 01)	-	-	-		_			
	,	<dns, 01="" 01;="" esxi,=""></dns,>	UDP 53	-	-	-	_	-		
2	3	(vCenter, 01; ESXi, 01)	-	-	-		_	_		
-	3	<vcenter, 01="" 01;="" esxi,=""></vcenter,>	UDP/TCP 902	-	-	-	-	-		
2	3	(vSphere, 01; vCenter, 01)	-	-	-			_		
-	,	<vsphere, 01="" 01;="" vcenter,=""></vsphere,>	TCP 443	-	-	-	_	-		
3	3	(Desktop, 01; WEB, 01)	-	-	-	TCP 443				
3	3	<desktop, 01="" 01;="" web,=""></desktop,>	TCP 443	-	-	101 445	_	1		

Summary

- Model-based testing of distributed systems
- Multilayer model
- Test case generation strategy
 - Multilayer project network
 - Test requirements
 - Test cases
- A case study

Competencies

- Describe model based testing
- Describe SUT multilayer model
- Describe conditions of clustering, virtualization, and replication technologies.
- Specify practical multilayer reference models
- Describe the framework of structural test case generation strategy for a given layer.
- Describe formal test requirement
- Describe formal test case

References I

- [BBC⁺14] S. Boccaletti, G. Bianconi, R. Criado, C.I. del Genio, J. Gomez-Gardenes, M. Romance, I. Sendina-Nadal, Z. Wang, and M. Zanin. The structure and dynamics of multilayer networks. Physics Reports, 544(1):1-122, November 2014.
- [Com15] Douglas E. Comer. Internetworking With TCP/IP Volume I: Principles, Protocol, And Architecture. Pearson, 6th edition, 2015.
- [ISO94] ISO/IEC Std 7498-1:1994 - Information technology - Open Systems Interconnection - Basic Reference Model: The Basic Model, 1994.
- [ISO10] ISO/IEC/IEEE Std 24765:2010(E) - Systems and software engineering - Vocabulary, 2010.
- [ISO11] ISO/IEC/IEEE Std 29148:2011(E) - Systems and software engineering - Life cycle processes - Requirements engineering, 2011.
- [KAB⁺14] Mikko Kivela, Alex Arenas, Marc Barthelemy, James P. Gleeson, Yamir Moreno, and Mason A. Porter, Multilaver networks. Journal of Complex Networks, 2(3):203-271, July 2014.
- [KR12] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down Approach. Pearson, 6th edition, 2012.
- [LHC07] Thomas A. Limoncelli, Christina J. Hogan, and Strata R. Chalup. The Practice of System and Network Administration. Addison Wesley, 2nd edition, 2007.
- [McC07] James D. McCabe, Network Analysis, Architecture, and Design, Morgan Kaufmann, 3rd edition, 2007.
- [Pra96] Dhiraj K. Pradhan, editor. Fault-tolerant computer system design. Prentice-Hall, 1996.
- [Ran14] Amir Ranjbar. Troubleshooting and Maintaining Cisco IP Networks (TSHOOT) Foundation Learning Guide. Cisco Press, 1st edition, 2014.
- [Shc14] Andrey A. Shchurov. A formal model of distributed systems for test generation missions. International Journal of Computer Trends and Technology, 15(3):128-133, September 2014.

4 D > 4 A > 4 B > 4 B >

References II

[Chc1E]

[Suc19]	Technology, 26(1):12–16, August 2015.
[Shc17]	Andrey Shchurov. Automated Test Design in Multilayer Networks. PhD thesis, 2017.
[Ste10]	Maarten van Steen. Graph Theory and Complex Networks: An Introduction. Maarten van Steen, 1st edition, 2010.
[TS13]	Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles and Paradigms. Prentice Hall Press, 3rd edition, 2013.
[TW11]	Andrew S. Tanenbaum and David J. Wetherall. Computer Networks. Prentice Hall Press, 5th edition, 2011.
[UL07]	Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools Approach. Morgan Kaufmann, 2007.
[UPL12]	Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-based testing approaches. <i>Softw. Test. Verif. Reliab.</i> , 22(5):297–312, August 2012.
[Wik]	Wikipedia. Model-based testing.

