
FSM Testing and Checking Sequences

Radek Mǎŕık

Czech Technical University
Faculty of Electrical Engineering

Department of Telecommunication Engineering
Prague CZ

October 17, 2023

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 1 / 44



Outline

1 Finite State Machine
Definitions

2 Finite state machine testing
Terminology
Formal FSM Testing
Example
Characterization Set Construction

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 2 / 44



Finite State Machine Definitions

Outline

1 Finite State Machine
Definitions

2 Finite state machine testing
Terminology
Formal FSM Testing
Example
Characterization Set Construction

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 3 / 44



Finite State Machine Definitions

Finite Machine in Applications [Bei95, HI98]

a model for testing of application driven using menu

a model of communication protocols

a model used in object-oriented design

Finite State Machine

an abstract machine which the number of states and input symbols is
finite and constant.

consists of

states (nodes) . . . future behavior is fully determined by a given state,
transitions (edges) . . . behavioral rules,
input symbols (labels of edges) . . . environmental stimuli, and
output symbols (labels of edges or nodes) . . . external reactions.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 4 / 44



Finite State Machine Definitions

Finite Machine in Applications [Bei95, HI98]

a model for testing of application driven using menu

a model of communication protocols

a model used in object-oriented design

Finite State Machine

an abstract machine which the number of states and input symbols is
finite and constant.

consists of

states (nodes) . . . future behavior is fully determined by a given state,
transitions (edges) . . . behavioral rules,
input symbols (labels of edges) . . . environmental stimuli, and
output symbols (labels of edges or nodes) . . . external reactions.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 4 / 44



Finite State Machine Definitions

Finite State Machine [HI98]

Let Input be a finite alphabet.
Finite state machine over Input consists of the following items:

1 A finite set Q of elements called states.
2 A subset I of the set Q containing initial states.
3 A subset T of the set Q containing end states.
4 A finite set of transitions, that returns a set of all possible next states

for each state and each symbol of the input alphabet.

Transition function

F : Q× Input → PQ

F(q, input) contains all possible states of the automaton, to which it
is possible to make a transition if the input symbol input is accepted
in state q.

PQ denotes a set of all subsets of the set Q
(a power set of the set Q, CZ potenčńı množina množiny).

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 5 / 44



Finite State Machine Definitions

Finite State Machine [HI98]

Let Input be a finite alphabet.
Finite state machine over Input consists of the following items:

1 A finite set Q of elements called states.
2 A subset I of the set Q containing initial states.
3 A subset T of the set Q containing end states.
4 A finite set of transitions, that returns a set of all possible next states

for each state and each symbol of the input alphabet.

Transition function

F : Q× Input → PQ

F(q, input) contains all possible states of the automaton, to which it
is possible to make a transition if the input symbol input is accepted
in state q.

PQ denotes a set of all subsets of the set Q
(a power set of the set Q, CZ potenčńı množina množiny).

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 5 / 44



Finite State Machine Definitions

Finite State Machine with Output (Mealy) [HI98]

Let Input be a finite alphabet.

Finite state machine over Input consists of the following items:
1 A finite set Q of elements called states.
2 A subset I of the set Q containing initial states.
3 A subset T of the set Q containing end states.
4 A set Output of all possible output symbols.
5 A finite set of transitions, that returns a set of all possible next states

for each state and each symbol of the input alphabet.

Output function

G : Q× Input → Output

G(q, input) determines an output symbol for each state and for each
input symbol.

F and G might be partial functions.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 6 / 44



Finite State Machine Definitions

Finite State Machine with Output (Mealy) [HI98]

Let Input be a finite alphabet.

Finite state machine over Input consists of the following items:
1 A finite set Q of elements called states.
2 A subset I of the set Q containing initial states.
3 A subset T of the set Q containing end states.
4 A set Output of all possible output symbols.
5 A finite set of transitions, that returns a set of all possible next states

for each state and each symbol of the input alphabet.

Output function

G : Q× Input → Output

G(q, input) determines an output symbol for each state and for each
input symbol.

F and G might be partial functions.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 6 / 44



Finite State Machine Definitions

Finite State Machines Examples [HI98]

A set Input of input symbols

Actions or commands of the user entered through a keyboard,

Mouse clicks or moves,

Signals accepted by a sensor.

A set Q of states

Values of certain important variables of the system,

A behavioral model of the system,

A formular type visible on the monitor,

Whether devices are active or not.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 7 / 44



Finite State Machine Definitions

Finite State Machines Examples [HI98]

A set Input of input symbols

Actions or commands of the user entered through a keyboard,

Mouse clicks or moves,

Signals accepted by a sensor.

A set Q of states

Values of certain important variables of the system,

A behavioral model of the system,

A formular type visible on the monitor,

Whether devices are active or not.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 7 / 44



Finite State Machine Definitions

State Diagram [Bei95]

Nodes: represent states (a state of the software application).

Edges: represent transitions (a menu item selection).

Edge attributes (input symbols): e.g. mouse actions, Alt+Key,
function keys, keyboard keys of cursor movement.

Edge attributes (output symbols): e.g. a menu presentation or a
next window open.

Space ship model Enterprise

three modes of the impulse engine:
move forward(d), neutral(n), and move backward(r).

three possible state of movement:
forward(F), stop(S), and backward(B).

their combinations creates nine states:
DF, DS, DB, NF, NS, NB, RF, RS, and RB.

possible inputs: d > d, r > r, n > n, d > n, n > d, n > r, r > n.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 8 / 44



Finite State Machine Definitions

State Diagram [Bei95]

Nodes: represent states (a state of the software application).

Edges: represent transitions (a menu item selection).

Edge attributes (input symbols): e.g. mouse actions, Alt+Key,
function keys, keyboard keys of cursor movement.

Edge attributes (output symbols): e.g. a menu presentation or a
next window open.

Space ship model Enterprise

three modes of the impulse engine:
move forward(d), neutral(n), and move backward(r).

three possible state of movement:
forward(F), stop(S), and backward(B).

their combinations creates nine states:
DF, DS, DB, NF, NS, NB, RF, RS, and RB.

possible inputs: d > d, r > r, n > n, d > n, n > d, n > r, r > n.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 8 / 44



Finite State Machine Definitions

Enterprise State Space [Bei95]

FORWARDBACKWARD

RB RF

NB NS NF

DB DS DF

RS

n>r r>n

n>n

d>n n>d

d>d

r>r r>r
r>r

n>r n>rr>n r>n

n>n n>n

d>n d>nn>d n>d

d>d
d>d

<> STOPPED <>

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 9 / 44



Finite State Machine Definitions

State Diagram Properties [Bei95]

Properties

A strong connected graph,

State graphs grow very quickly,

All possible and impossible inputs are considered in every state

the implementation of the system might be incorrect.

Nice symmetry is a very rare case in real life.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 10 / 44



Finite State Machine Definitions

Transition Table [Bei95]

A transition table

has a row for each state

has a column for each input.

In fact, there are two tables with the same shape:

a transition table,
an output table.

A value in the transition table represents the next state.

A value in the output table is the output code for a given transition.

Hierachical (nested) automata are the only way how huge tables
can be avoided (e.g. statechart, starchart, etc.)

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 11 / 44



Finite State Machine Definitions

Enterprise Transition Table [Bei95]

Enterprise

STATE r > r r > n n > n n > r n > d d > d d > n r > d d > r

RB RB NB
RS RB NS
RF RS NF
NB NB RB DB
NS NS RS DS
NF NF RF DF
DB DS NB
DS DF NS
DF DF NF

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 12 / 44



Finite state machine testing Terminology

Outline

1 Finite State Machine
Definitions

2 Finite state machine testing
Terminology
Formal FSM Testing
Example
Characterization Set Construction

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 13 / 44



Finite state machine testing Terminology

State Reachability [Bei95]

Reachable state: a state B is reachable from a state A, if there is a
input sequence such that the system is transferred from the state A
to the state B.

Unreachable state: a state is unreachable if it is not reachable,
especially from the initial state. Unreachable states implies typically a
mistake.

Strong connectivity: all state of the finite automaton are reachable
from the initial state. Most practical models are strongly connected if
they do not contain mistakes.

Isolated states: a set of states that are not reachable from the initial
state. If they exist, then they are very suspicious, mistaken states.

Reset: a special input symbol/action causing the transition from any
state to the initial state.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 14 / 44



Finite state machine testing Terminology

State Categories [Bei95]

The set of the initial state: If a transition leading from this set is
performed, then there is no way back to this set (e.g. a boot of the
system).

Working states: When the set of the initial state is left, then the
system works in a strongly connected set of states in which a majority
of testing is performed.

The initial state of the working set: a state of the working set
which can be considered as the “initial state”.

The set of ending state: If the system reaches this set, then there
is not way back to the working set, e.g. a finalizing sequence, a
shutdown.

The system is fully specified if transitions and output symbols are
defined for all combinations of input symbols and states.

A round trip of the state A: a sequence of transitions going from
the state A to a state B and back to the state A.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 15 / 44



Finite state machine testing Terminology

Test Design [Bei95]

Each state begins in the initial state.
The system is transferred

from the initial state using the shortest path to the selected state,
the given transition is performed,
and the system is transferred using the shortest path back into the
initial state,
i.e. we create a round trip.

Each test is build upon the preceding simpler tests.

The input symbol is determined for each transition of the round trip.

The output symbol is determined for all associated transitions of the
round trip.
We verify

input codes,
output codes,
states,
each transition.

Are all end states reachable?
Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 16 / 44



Finite state machine testing Terminology

Hidden States

Is the system in the initial state?
A test cannot be started if there is no confirmation that the system is
in the initial state.
Applications store their settings in a persistent way.
If a previous test fails, in what state is the application?

Hidden state: an unknown state that is different from a given state
but it has all transitions with the same input and output codes,
i.e. it cannot be distinguish from the given state.

Has the implementation hidden states?
During the software testing we might assume conditions that are not
valid generally.

e.g. we know in which state the state is.

Often, we do not dealt with one or two hidden states, but the state
space doubles and is multiplied in other way.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 17 / 44



Finite state machine testing Terminology

Hidden States - Example

C

A B

a

a

!!!

B3

A2

B2

A1

B1

A

b c

a

a

a

a

a

a

b

c

c

c

b

b

C

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 18 / 44



Finite state machine testing Formal FSM Testing

Outline

1 Finite State Machine
Definitions

2 Finite state machine testing
Terminology
Formal FSM Testing
Example
Characterization Set Construction

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 19 / 44



Finite state machine testing Formal FSM Testing

Finite State Machine Testing [HI98]

Based on the isomorphism of finite state machines,

A = (Input,Q,F, q0)

A′ = (Input,Q′,F′, q0
′)

g : A → A′

g : Q → Q′

1 g(q0) = q0
′

2 ∀q ∈ Q, input ∈ Input,
g(F(q, input)) = F′(g(q), input)

A

B

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 20 / 44



Finite state machine testing Formal FSM Testing

Test Set Construction [HI98, Cho78]

Chow’s W method

Let L be a set of input sequences and q, q′ be two states.

L distinguishes (CZ rozlǐśı) the state q from q′ if there is a sequence
k ∈ L such that the output sequence obtained by the application of k
to the machine in the state q is different from the output sequence
obtained by the application of k to the state q′.

The machine is minimal if it does not contain redundant states.

A set of input sequences W is called a characterization set if it can
distinguish any two state of the machine.

A state cover is a set L of input sequences such that it is possible to
find an element of L using which we can reach the given state from
the initial state q0.
A transition cover of the minimal machine is a set T of input
sequences such that it is a state cover closed under the right
composition with the input set Input.

sequence ∈ T = L • (Input1 ∪ {<>})
Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 21 / 44



Finite state machine testing Formal FSM Testing

Test Set Generation [HI98, Cho78]

How many times are there more states than in the specification? (k)

Z = Inputk •W ∪ Inputk−1 •W ∪ · · · ∪ Input1 •W ∪W

If A and B are two sets of sequences over the same alphabet,
then A •B denotes a set of sequences
composed from the sequences of the set A followed by a sequence from
B.
k steps into an “unknown” space are performed followed by the
verification of the state.

Finite test set:
T • Z

Transition cover ensures

that all state and transition of the specification are implemented.
The set Z ensures that the implementation is in the same state as
specified.
The parameter k ensures that all hidden states into the level k are
tested.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 22 / 44



Finite state machine testing Example

Outline

1 Finite State Machine
Definitions

2 Finite state machine testing
Terminology
Formal FSM Testing
Example
Characterization Set Construction

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 23 / 44



Finite state machine testing Example

A Simple Example [HI98]

a/y

q0 q1

q3 q2

b/y

b/y

a/x

a/x

a/y

b/x

Input = {a, b}
L = {<>, b, b ::a, b ::a ::b}, <> . . . null input sequence

T = {<>, a, b, b ::a, b ::b, b ::a ::a, b ::a ::b, b ::a ::b ::a, b ::a ::b ::b}
W = {a, b} [Chy84], pp. 31–34

Z = Input •W ∪W
= {a, b} • {a, b} ∪ {a, b}
= {a, b, a ::a, a ::b, b ::a, b ::b}

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 24 / 44



Finite state machine testing Example

Test Set of the Example [HI98]

T • Z =

= {<>, a, b, b ::a, b ::b, b ::a ::a, b ::a ::b, b ::a ::b ::a, b ::a ::b ::b}
•{a, b, a ::a, a ::b, b ::a, b ::b}

= {a, b, a ::a, a ::b, b ::a, b ::b,
a ::a, a ::b, a ::a ::a, a ::a ::b, a ::b ::a, a ::b ::b,

b ::a, b ::b, b ::a ::a, b ::a ::b, b ::b ::a, b ::b ::b,

b ::a ::a, b ::a ::b, b ::a ::a ::a, b ::a ::a ::b, b ::a ::b ::a, b ::a ::b ::b,

b ::b ::a, b ::b ::b, b ::b ::a ::a, b ::b ::a ::b, b ::b ::b ::a, b ::b ::b ::b,

b ::a ::a ::a, b ::a ::a ::b, b ::a ::a ::a ::a, b ::a ::a ::a ::b, b ::a ::a ::b ::a, b ::a ::a ::b ::b,

b ::a ::b ::a, b ::a ::b ::b, b ::a ::b ::a ::a, b ::a ::b ::a ::b, b ::a ::b ::b ::a, b ::a ::b ::b ::b,

b ::a ::b ::a ::a, b ::a ::b ::a ::b, b ::a ::b ::a ::a ::a,

b ::a ::b ::a ::a ::b, b ::a ::b ::a ::b ::a, b ::a ::b ::a ::b ::b,

b ::a ::b ::b ::a, b ::a ::b ::b ::b, b ::a ::b ::b ::a ::a,

b ::a ::b ::b ::a ::b, b ::a ::b ::b ::b ::a, b ::a ::b ::b ::b ::b}
= . . . simplifications

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 25 / 44



Finite state machine testing Example

Test Set of the Example [HI98]

T • Z =

= {<>, a, b, b ::a, b ::b, b ::a ::a, b ::a ::b, b ::a ::b ::a, b ::a ::b ::b}
•{a, b, a ::a, a ::b, b ::a, b ::b}

= {a, b, a ::a, a ::b, b ::a, b ::b,
a ::a, a ::b, a ::a ::a, a ::a ::b, a ::b ::a, a ::b ::b,

b ::a, b ::b, b ::a ::a, b ::a ::b, b ::b ::a, b ::b ::b,

b ::a ::a, b ::a ::b, b ::a ::a ::a, b ::a ::a ::b, b ::a ::b ::a, b ::a ::b ::b,

b ::b ::a, b ::b ::b, b ::b ::a ::a, b ::b ::a ::b, b ::b ::b ::a, b ::b ::b ::b,

b ::a ::a ::a, b ::a ::a ::b, b ::a ::a ::a ::a, b ::a ::a ::a ::b, b ::a ::a ::b ::a, b ::a ::a ::b ::b,

b ::a ::b ::a, b ::a ::b ::b, b ::a ::b ::a ::a, b ::a ::b ::a ::b, b ::a ::b ::b ::a, b ::a ::b ::b ::b,

b ::a ::b ::a ::a, b ::a ::b ::a ::b, b ::a ::b ::a ::a ::a,

b ::a ::b ::a ::a ::b, b ::a ::b ::a ::b ::a, b ::a ::b ::a ::b ::b,

b ::a ::b ::b ::a, b ::a ::b ::b ::b, b ::a ::b ::b ::a ::a,

b ::a ::b ::b ::a ::b, b ::a ::b ::b ::b ::a, b ::a ::b ::b ::b ::b}
= . . . simplifications

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 25 / 44



Finite state machine testing Example

Test Set of the Example [HI98]

T • Z =

= {<>, a, b, b ::a, b ::b, b ::a ::a, b ::a ::b, b ::a ::b ::a, b ::a ::b ::b}
•{a, b, a ::a, a ::b, b ::a, b ::b}

= {a, b, a ::a, a ::b, b ::a, b ::b,
a ::a, a ::b, a ::a ::a, a ::a ::b, a ::b ::a, a ::b ::b,

b ::a, b ::b, b ::a ::a, b ::a ::b, b ::b ::a, b ::b ::b,

b ::a ::a, b ::a ::b, b ::a ::a ::a, b ::a ::a ::b, b ::a ::b ::a, b ::a ::b ::b,

b ::b ::a, b ::b ::b, b ::b ::a ::a, b ::b ::a ::b, b ::b ::b ::a, b ::b ::b ::b,

b ::a ::a ::a, b ::a ::a ::b, b ::a ::a ::a ::a, b ::a ::a ::a ::b, b ::a ::a ::b ::a, b ::a ::a ::b ::b,

b ::a ::b ::a, b ::a ::b ::b, b ::a ::b ::a ::a, b ::a ::b ::a ::b, b ::a ::b ::b ::a, b ::a ::b ::b ::b,

b ::a ::b ::a ::a, b ::a ::b ::a ::b, b ::a ::b ::a ::a ::a,

b ::a ::b ::a ::a ::b, b ::a ::b ::a ::b ::a, b ::a ::b ::a ::b ::b,

b ::a ::b ::b ::a, b ::a ::b ::b ::b, b ::a ::b ::b ::a ::a,

b ::a ::b ::b ::a ::b, b ::a ::b ::b ::b ::a, b ::a ::b ::b ::b ::b}
= . . . simplifications

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 25 / 44



Finite state machine testing Example

Test Set of the Example [HI98]

T • Z =

= {<>, a, b, b ::a, b ::b, b ::a ::a, b ::a ::b, b ::a ::b ::a, b ::a ::b ::b}
•{a, b, a ::a, a ::b, b ::a, b ::b}

= {a, b, a ::a, a ::b, b ::a, b ::b,
a ::a, a ::b, a ::a ::a, a ::a ::b, a ::b ::a, a ::b ::b,

b ::a, b ::b, b ::a ::a, b ::a ::b, b ::b ::a, b ::b ::b,

b ::a ::a, b ::a ::b, b ::a ::a ::a, b ::a ::a ::b, b ::a ::b ::a, b ::a ::b ::b,

b ::b ::a, b ::b ::b, b ::b ::a ::a, b ::b ::a ::b, b ::b ::b ::a, b ::b ::b ::b,

b ::a ::a ::a, b ::a ::a ::b, b ::a ::a ::a ::a, b ::a ::a ::a ::b, b ::a ::a ::b ::a, b ::a ::a ::b ::b,

b ::a ::b ::a, b ::a ::b ::b, b ::a ::b ::a ::a, b ::a ::b ::a ::b, b ::a ::b ::b ::a, b ::a ::b ::b ::b,

b ::a ::b ::a ::a, b ::a ::b ::a ::b, b ::a ::b ::a ::a ::a,

b ::a ::b ::a ::a ::b, b ::a ::b ::a ::b ::a, b ::a ::b ::a ::b ::b,

b ::a ::b ::b ::a, b ::a ::b ::b ::b, b ::a ::b ::b ::a ::a,

b ::a ::b ::b ::a ::b, b ::a ::b ::b ::b ::a, b ::a ::b ::b ::b ::b}
= . . . simplifications

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 25 / 44



Finite state machine testing Example

Test Set of the Example [HI98]

T • Z =

= {<>, a, b, b ::a, b ::b, b ::a ::a, b ::a ::b, b ::a ::b ::a, b ::a ::b ::b}
•{a, b, a ::a, a ::b, b ::a, b ::b}

= {a, b, a ::a, a ::b, b ::a, b ::b,
a ::a, a ::b, a ::a ::a, a ::a ::b, a ::b ::a, a ::b ::b,

b ::a, b ::b, b ::a ::a, b ::a ::b, b ::b ::a, b ::b ::b,

b ::a ::a, b ::a ::b, b ::a ::a ::a, b ::a ::a ::b, b ::a ::b ::a, b ::a ::b ::b,

b ::b ::a, b ::b ::b, b ::b ::a ::a, b ::b ::a ::b, b ::b ::b ::a, b ::b ::b ::b,

b ::a ::a ::a, b ::a ::a ::b, b ::a ::a ::a ::a, b ::a ::a ::a ::b, b ::a ::a ::b ::a, b ::a ::a ::b ::b,

b ::a ::b ::a, b ::a ::b ::b, b ::a ::b ::a ::a, b ::a ::b ::a ::b, b ::a ::b ::b ::a, b ::a ::b ::b ::b,

b ::a ::b ::a ::a, b ::a ::b ::a ::b, b ::a ::b ::a ::a ::a,

b ::a ::b ::a ::a ::b, b ::a ::b ::a ::b ::a, b ::a ::b ::a ::b ::b,

b ::a ::b ::b ::a, b ::a ::b ::b ::b, b ::a ::b ::b ::a ::a,

b ::a ::b ::b ::a ::b, b ::a ::b ::b ::b ::a, b ::a ::b ::b ::b ::b}
= . . . simplifications

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 25 / 44



Finite state machine testing Example

Applications [Bei95]

Menu driven software,

Object-oriented software,

Protocols,

Device drivers,

Legacy hardware,

Microcomputers of industrial and home devices,

Software instalation,

Archive and backup software,

Safety software models,

WEB applications.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 26 / 44



Finite state machine testing Characterization Set Construction

Outline

1 Finite State Machine
Definitions

2 Finite state machine testing
Terminology
Formal FSM Testing
Example
Characterization Set Construction

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 27 / 44



Finite state machine testing Characterization Set Construction

Mealy Machine [Mea55, Mat13]

Definition 1 (Mealy machine with a finite number of states is)

6-tuple M(X,Y,Q, q0, δ, λ):

X is a finite set of input symbols (the input alphabet),

Y is a finite set of output symbols (the output alphabet)

Q is a finite set of state,

q0 ∈ Q is the initial state,

D ⊆ Q×X is a specification domain,

δ : D → Q is a state transition function,

λ : D → Y is an output function.

If D = Q×X, then M is a complete Mealy machine [SP10].

A sequence α = x1 . . . xk, α ∈ I∗ is a defined input sequence for a
state q ∈ Q if there are q1, . . . , qk+1 ∈ Q, where q1 = q such that
(qi, xi) ∈ D and δ(qi, xi) = qi+1 for all 1 ≤ i ≤ k.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 28 / 44



Finite state machine testing Characterization Set Construction

machine Minimality [SP10, Mat13]

Let M(X,Y,Q, q0, δ, λ) be a Mealy machine with a finite number of
states.

Extended transition and state functions applied to an input symbol x
of a defined input sequence α including the empty sequence ϵ:

for q ∈ Q, δ(q, ϵ) = q and λ(q, ϵ) = ϵ
δ(q, αx) = δ(δ(q, α), x)
λ(q, αx) = λ(δ(q, α), x)

Ω(q) is the set of all defined input sequences for state q ∈ Q.

Two states q, q′ ∈ Q are distinguishable,
if there is γ ∈ Ω(q) ∩ Ω(q′) such that λ(q, γ) ̸= λ(q′, γ).
Then, we say that γ distinghishes the states q and q′.

Two states q1, q2 ∈ Q; q1 ̸= q2 are state equivalent,
if they lead to the same of equivalent states after an application of
any input sequence.

M is minimal if no its two states are equivalent [Ner58, Gil60].

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 29 / 44



Finite state machine testing Characterization Set Construction

C-equivalence of States [SP10, Mat13]

Let M(X,Y,Q, q0, δ, λ) be a Mealy machine with a finite number of states.

Let C ⊆ Ω(q) ∩ Ω(q′) be a set.
The states q1, q2 ∈ Q are C-equivalent,
if λ(q, γ) ̸= λ(q′, γ) for all γ ∈ C.

Two machines M1(X,Y,Q1, q
1
0, δ1, λ1) and M2(X,Y,Q2, q

2
0, δ2, λ2) are

equivalent, if

1 for each state q ∈ M1 there is q′ ∈ M2 such that q and q′ are equivalent
and

2 for each state q ∈ M2 there is q′ ∈ M1 such that q and q′ are equivalent.

k-equivalence

Let M1(X,Y,Q1, q
1
0, δ1, λ1) and M2(X,Y,Q2, q

2
0, δ2, λ2)

be two machines.
The states qi ∈ Q1 and qj ∈ Q2 are considered to be k-equivalent,
if they produce identical output sequences after excited with any input
sequence of the length k.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 30 / 44



Finite state machine testing Characterization Set Construction

Characterization set W [SP10, Mat13]

Let M(X,Y,Q, q0, δ, O) be a minimal and complete Mealy machine with a
finite number of states.

W is a finite set of input sequences that distinguishes any pair of
different states qi, qj ∈ Q.

Each input sequence γ ∈ W has a finite length.

For each pair of different states qi, qj ∈ Q the set W contains at least
one input sequence γ such that

λ(qi, γ) ̸= λ(qj , γ)

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 31 / 44



Finite state machine testing Characterization Set Construction

Characterization Set Example [HI98]

Input = {a, b}
W = {baaa, aa, aaa}
λ(q1, baaa) = 1 . . . (1101)

λ(q2, baaa) = 0 . . . (1100)

λ(q1, baaa) ̸= λ(q2, baaa) =⇒ baaa distinguishes the states q1 a q2
Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 32 / 44



Finite state machine testing Characterization Set Construction

k-equivalence Partition of States Q [Mat13]

k-equivalence partition of states Q, denoted as Pk, is a collection of n
finite sets Σk,1,Σk,2, . . . ,Σk,n such that

∪n
i=1Σk,i = Q

The states in Σk,i are k-equivalent.

If states qℓ1 ∈ Σk,j and qℓ2 ∈ Σk,j for i ̸= j, then qℓ1 and qℓ2 are
k-distinguishable.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 33 / 44



Finite state machine testing Characterization Set Construction

W Set Construction [Mat13]

The Algorithm

1 Create a sequence of k-equivalence partitions of states Q denoted as
P1, P2, . . . , Pm,m > 0

2 Backward search k-equivalence partitions while constructing
distinguishing sequences for each pair of the states.

Algorithm convergence is guaranteed.

When the algorithm stops each class ΣK,j of the finite partition PK

defines a class of equivalent states (1 for minimal machines).

Informally:

First, find what can be distinguished in one step,

then in two steps,

etc.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 34 / 44



Finite state machine testing Characterization Set Construction

W Set Construction [Mat13]

Tabular representation M .
0-equivalence partition P0 = {Σ1 = {q1, q2, q3, q4, q5}}

Current state
Output Next state

a b a b

q1 0 1 q1 q4
q2 0 1 q1 q5
q3 0 1 q5 q1
q4 1 1 q3 q4
q5 1 1 q2 q5

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 35 / 44



Finite state machine testing Characterization Set Construction

1-equivalence Partition P1 Construction
[Mat13]

1-equivalence partition P1 = {Σ1 = {q1, q2, q3},Σ2 = {q4, q5}} .

Σ Current state
Output Next state

a b a b

1
q1 0 1 q1 q4

q2 0 1 q1 q5

q3 0 1 q5 q1

2
q4 1 1 q3 q4

q5 1 1 q2 q5

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 36 / 44



Finite state machine testing Characterization Set Construction

2-equivalence Partition Construction: P1 Rewrite
[Mat13]

Rewrite P1, state qi is replaced by qi,j if qi ∈ Σj .

Σ Current state
Next state

a b

1
q1 q1,1 q4,2

q2 q1,1 q5,2

q3 q5,2 q1,1

2
q4 q3,1 q4,2

q5 q2,1 q5,2

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 37 / 44



Finite state machine testing Characterization Set Construction

2-equivalence Partition Construction: P2 Construction
[Mat13]

Construct P2. Divide Σ1,j with regard to the groups of next states.

Σ Current state
Next state

a b

1
q1 q1,1 q4,3

q2 q1,1 q5,3

2 q3 q5,3 q1,1

3
q4 q3,2 q4,3

q5 q2,1 q5,3

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 38 / 44



Finite state machine testing Characterization Set Construction

3-equivalence Partition Construction: P3 Construction
[Mat13]

Construct P3. Divide Σ2,j with regard to the groups of next states.

Σ Current state
Next state

a b

1
q1 q1,1 q4,3

q2 q1,1 q5,4

2 q3 q5,4 q1,1

3 q4 q3,2 q4,3

4 q5 q2,1 q5,4

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 39 / 44



Finite state machine testing Characterization Set Construction

4-equivalence Partition Construction: P4 Construction
[Mat13]

Construct P4. Divide Σ3,j with regard to the groups of next states.

Σ Current state
Next state

a b

1 q1 q1,1 q4,4

2 q2 q1,1 q5,5

3 q3 q5,5 q1,1

4 q4 q3,3 q4,4

5 q5 q2,2 q5,5

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 40 / 44



Finite state machine testing Characterization Set Construction

Distinguishing Sequence Construction: Example [Mat13]

1 Find a distinguishing sequence of the states q1 a q2.
2 Init the distinguishing sequence: z = ϵ.
3 Find tables Pi and Pi+1 such that (q1, q2) are in the same group in Pi

and in different groups in Pi+1:
P3 and P4 are obtained.

4 Find the input symbol distinguishing q1 and q2 in table P3

b is the distinguishing symbol.
Update the distinguishing sequence: z := z.b = ϵ.b = b.

5 Find the next states if the symbol b is applied to q1 and q2,
q4 and q5 are obtained.

6 Find tables Pi and Pi+1 such that (q4, q5) are in the same group in Pi

and in different groups in Pi+1:
P2 and P3 are obtained.

7 (q4, q5) → P2, P3 → a → z = ba
8 (q3, q2) → P1, P2 → a → z = baa
9 (q1, q5) → P0, P1 → a → z = baaa
10 Repeat for each pair (qi, qj): W = {a, aa, aaa, baaa}

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 41 / 44



Finite state machine testing Characterization Set Construction

Summary

Finite state machines

How to test finite state machines

Test set construction using Chow’s W method

Characterization set construction

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 42 / 44



Finite state machine testing Characterization Set Construction

Competencies

Define finite state machine.

Describe the concept of hidden states.

Describe Chow’s W method of test set construction.

Define characterization set and describe its construction algorithm.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 43 / 44



Finite state machine testing Characterization Set Construction

References I

[Bei95] Boris Beizer. Black-Box Testing, Techniques for Functional Testing of Software and Systems. John Wiley & Sons, Inc.,
New York, 1995.

[Cho78] T.S. Chow. Testing software design modeled by finite-state machines. IEEE Transactions on Software Engineering,
SE-4(3):178–187, May 1978.

[Chy84] Michal Chytil. Automaty a gramatiky. SNTL Praha, 1984.

[Gil60] A. Gill. Characterizing experiments for finite-memory binary automata. IRE Transactions on Electronic Computers,
EC-9(4):469–471, Dec 1960.

[HI98] Mike Holcombe and Florentin Ipate. Correct Systems: Building a Business Process Solution. Springer, 1998.

[Mat13] Aditya P. Mathur. Foundations of software testing 2e, slides, 2013.

[Mea55] George H. Mealy. A method for synthesizing sequential circuits. Bell System Technical Journal, The, 34(5):1045–1079,
Sept 1955.

[Ner58] A. Nerode. Linear automaton transformations. Proc. Amer. Math. Soc., 9:541–544, 1958.

[SP10] A. Simao and A. Petrenko. Checking completeness of tests for finite state machines. IEEE Transactions on Computers,
59(8):1023–1032, Aug 2010.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Testing and Checking Sequences October 17, 2023 44 / 44


	Finite State Machine
	Definitions

	Finite state machine testing
	Terminology
	Formal FSM Testing
	Example
	Characterization Set Construction


