X-Rays

Jan Kybic

2005-2020

Overview

- ► Fundamentals of X-rays
- ► Generation of X-rays
- Detection of X-rays
- ► Imaging and diagnostic methods

Invention

1895, W. Röntgen

B. Röntgen hand

modern hand

Electromagnetic spectrum

Energy (eV)	Frequency (Hz)		Wavelength (m
4×10^{-11}	104		10 ⁴
4×10^{-10}	105 —	AM radio waves	10 ³
4×10^{-9}	106		10 ²
4×10^{-8}	107	Short radio waves	101
		FM radio waves and TV	
4×10^{-7}	108		10°
4×10^{-6}	109 —		-10^{-1}
4×10^{-5}	1010	Microwaves and radar	10-2
4×10^{-4}	1011		-10^{-3}
4×10^{-3}	1012	Infrared light	10^{-4}
4×10^{-2}	1013		10-5
4×10^{-1}	1014	Visible light	10-6
4×10^{0}	1015	Ultraviolet light	10-7
4×10^{1}	1016		10-8
4×10^{2}	1017		10-9
4×10^{3}	1018	X-ray	10-10
4×10^{4}	1019		10-11
4×10^{5}	1020		10-12
4×10^{6}	1021	Gamma ray	10-13
4×10^{7}	10 ²²	Cosmic ray	10-14

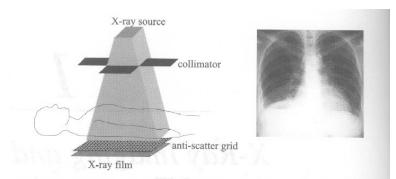
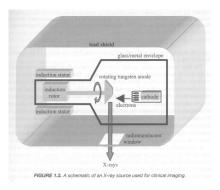
Particles and waves

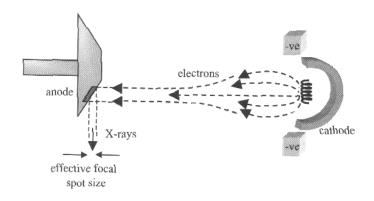
- reflection, scattering, refraction, diffraction
- \triangleright photons with energy E = hf, $h \approx 6.6 \cdot 10^{-34} \text{ J} \cdot \text{s} \approx 4.1 \cdot 10^{-15} \text{ eV} \cdot \text{s}$ $1 \text{ eV} \approx 1.6 \cdot 10^{-19} \text{ J}$ $c = f\lambda \approx 3 \cdot 10^8 \,\mathrm{m/s}$ $\lambda = 1 \, \text{nm} \approx 1.2 \cdot 10^3 \, \text{eV} = 1.2 \, \text{keV}$
- ionizing radiation (above 10 eV, $\lambda = 120 \, \text{nm}$)

Chest X-rays radiography machine

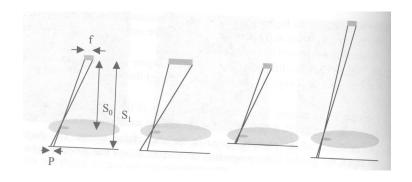
Chest X-ray

X-ray scanner

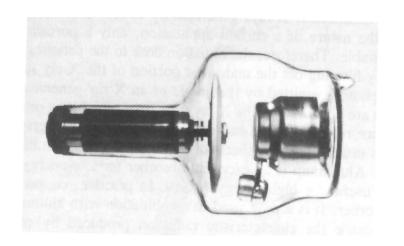




FIGURE 1.1. (Left) The basic setup for X-ray imaging. The collimator restricts the beam of X-rays so as to irradiate only the region of interest. The antiscatter grid increases tissue contrast by reducing the number of detected X-rays that have been scattered by tissue. (Right) A typical planar X-ray radiograph of the chest, in which the highly attenuating regions of bone appear white.

X-ray source

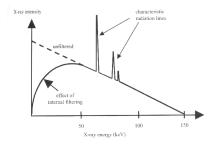

- ▶ $15 \sim 150 \, \text{kV}$, rectified AC
- ightharpoonup 50 \sim 400 mA anode current
- \blacktriangleright tungsten wire (200 μ m) cathode, heated to \sim 2200°C
- ▶ anode rotates at 3000 rpm
- molybdenum or thungsten-rhenium anode
- thermoionic emission

Beam focusing


ightharpoonup Focal spot size 0.3 mm \sim 1.2 mm

Penumbra

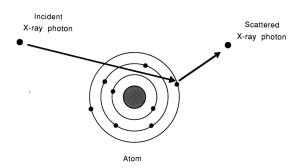
- geometric unsharpness
- ► small focal spot
- ► large distance


X-ray tube

X-ray parameters

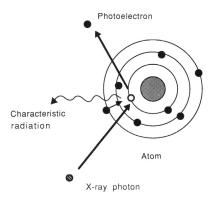
Intensity: $[W/m^2]$: $\propto U^2I$

Spectrum: (150 kV)

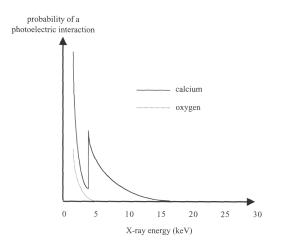


- Bremsstrahlung
- Characteristic radiation
- ► Filter low-energy rays that would not penetrate the patient *AI* sheets. (skin dose reduced 80×)

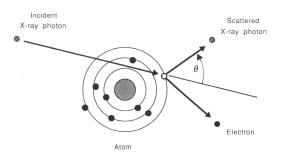
Interaction between X-rays and matter


- Coherent scattering
- ► Photoelectric effect
- Compton scattering
- ► (Pair production)
- ► (Photodisintegration)

Coherent (Rayleigh) scattering

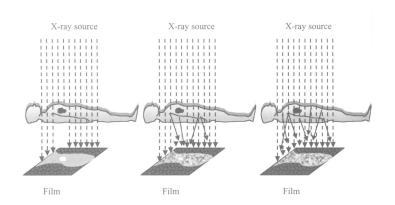

- ightharpoonup Photon \longrightarrow photon
- Low-energy radiation
- ▶ Probability $\propto Z_{\rm eff}^{8/3}/E^2$.
 - $ightharpoonup Z_{\rm eff}$ effective atomic number
 - ▶ muscle $Z_{\rm eff} \approx 7.4$, bone $Z_{\rm eff} \approx 20$
- ightharpoonup About 5 \sim 10 % of tissue interactions

Photoelectric effect


- ► High-energy radiation
- ▶ Photon → characteristic radiation, photo-electron / Auger electron, positive ion
- ightharpoonup ionization
- ▶ Desirable, X-ray photon completely absorbed

Photoelectric interaction wrt E

- ► K-edge
- ▶ Probability $\propto Z_{\rm eff}^3/E^3$ (above *K*-edge)
- ► Excellent contrast bone/tissue at low *E*


Compton scattering

$$E_{\text{scatt}} = \frac{E_{\text{inc}}}{1 + \frac{E_{\text{inc}}}{m_e c^2} (1 - \cos \theta)}$$

- ▶ photon → photon + electron, ionization
- ightharpoonup most frequent in X-ray imaging, especially for high $E_{\rm inc}$
- ightharpoonup independent to atomic number \longrightarrow small contrast
- background noise, health hazard

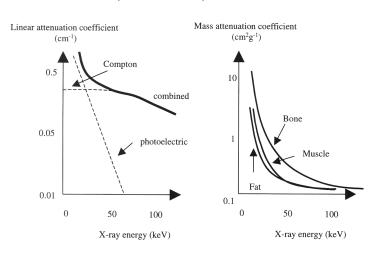
Effects of Compton scattering

Attenuation

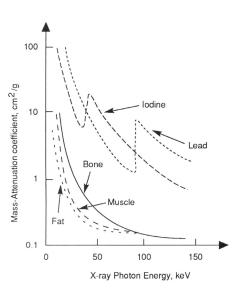
$$dI = -\mu I dx \qquad \mu = n\sigma$$

$$I_x = I_0 e^{-\mu x}$$

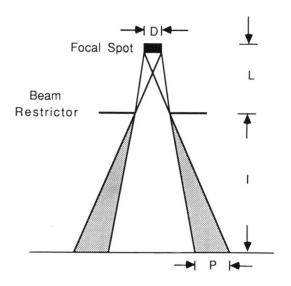
 μ — linear attenuation coefficient Half-value layer $\log 2/\mu \approx 0.693/\mu$

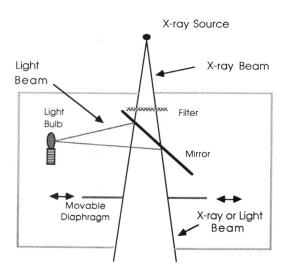

TABLE 1.2. The Half-Value Layer (HVL) for Muscle and Bone as a Function of the Energy of the Incident X-Rays

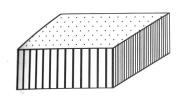
HVL, muscle (cm)	HVL, bone (cm)
1.8	0.4
3.0	1.2
3.9	2.3
4.5	2.8
	1.8 3.0 3.9

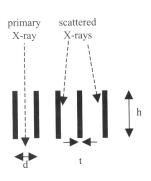

Mass attenuation coefficient μ/ρ

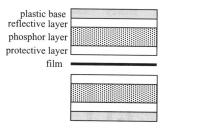
Attenuation factors wrt E

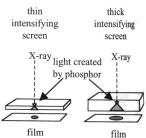

$$\mu = \mu_{\mathrm{photoel}} + \mu_{\mathrm{Compton}} + \mu_{\mathrm{coherent}}$$


Attenuation wrt E(2)


$Beam\ restrictor\ /\ Collimator$

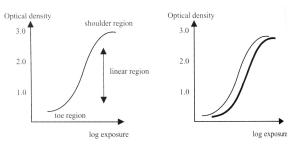

Beam restrictor / Collimator (2)


Antiscatter grid



 ${\sf Bucky\ factor} = {\sf efficiency}$

Intensifier screen



- ▶ 50× sensitivity increase
- thickness; trade-off resolution/sensitivity
- ► Gd green, La blue
- efficiency 20 %

Film

- monochromatic (sensitive to blue), ortochromatic (sens. to green)
- ightharpoonup double emulsion (10 $\mu \mathrm{m}$), silver bromide in gelatin
- **b** blackening, optical density (OD) $\log_{10}(I_i/I_t)$
- contrast $\gamma = \frac{OD_2 OD_1}{\log_{10} E_2 \log_{10} E_1}$, slope of the linear region
- latitude (dynamic range), range of useful exposure values
- grain size sensitivity/resolution trade-off
- ▶ mixed-particle size → high contrast
- automatic exposure control, ionization chamber

Digital Sensors

- ► Computed radiography (CR)
 - Phosphor-based storage plate
 - chemical storage (oxidation of Eu)
 - laser scanning, light erasure

Digital Sensors

- Computed radiography (CR)
 - Phosphor-based storage plate
 - chemical storage (oxidation of Eu)
 - laser scanning, light erasure
- Digital radiography (DR)
 - ► flat-panel detectors (FPD)
 - thin-film transistor (TFT) array
 - ► CsI scintillator → photo-diode/transistor
 - ightharpoonup 41 imes 41 cm, 2048 imes 2048 pixels
 - better dynamic range, quantum efficiency, and latitude wrt film

Digital Sensors

- Computed radiography (CR)
 - Phosphor-based storage plate
 - chemical storage (oxidation of Eu)
 - laser scanning, light erasure
- Digital radiography (DR)
 - ► flat-panel detectors (FPD)
 - thin-film transistor (TFT) array
 - ► CsI scintillator photo-diode/transistor
 - ightharpoonup 41 × 41 cm, 2048 × 2048 pixels
 - better dynamic range, quantum efficiency, and latitude wrt film
- Charge coupled device (CCD)
 - Phosphor screen, fiber-optic cables, CCD sensor
 - good sensitivity, low noise

X-ray image characteristics

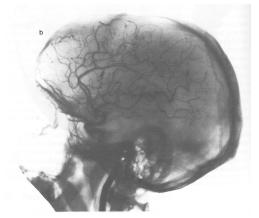
► Signal-to-noise ratio (SNR)

- Discrete photons, Poisson distribution
- ► SNR $\propto \sqrt{\lambda}$, λ intensity/photons per area/pixel
- exposure time and current, SNR $\propto \sqrt{TI}$
- ightharpoonup X-ray filtering \longrightarrow smaller SNR
- patient size, antiscatter grid, intensifying screen, film

X-ray image characteristics

- ► Signal-to-noise ratio (SNR)
- Spatial resolution
 - point spread function (PSF), line spread function (LSF), edge spread function (ESF), modulation transfer function (MTF)
 - thickness of the intensifier screen
 - speed of the X-ray film
 - geometric unsharpness
 - ightharpoonup magnification factor (patient \longrightarrow film). Place patient as close as possible.

X-ray image characteristics


- ► Signal-to-noise ratio (SNR)
- Spatial resolution
- ► Contrast-to-noise ratio
 - $\qquad \mathsf{CNR} = \frac{|S_A S_B|}{\sigma_N} = |\mathsf{SNR}_A \mathsf{SNR}_B|$

X-ray contrast agents

▶ barium sulfate, gastrointestinal tract

X-ray angiography

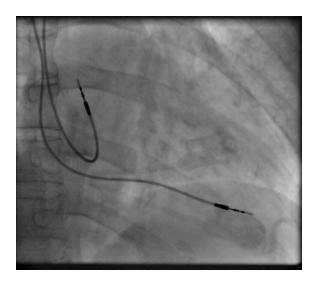


- ► Stenosis, clotting of arteries
- ▶ lodine-based contrast agent (danger of kidney failure)
- ▶ Time series

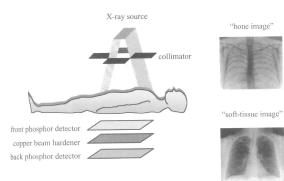

X-ray angiography

- Stenosis, clotting of arteries
- lodine-based contrast agent (danger of kidney failure)
- Time series
- Excellent resolution (100 μ m)
- ▶ Digital subtraction angiography (DSA)
- Registration needed

DSA example

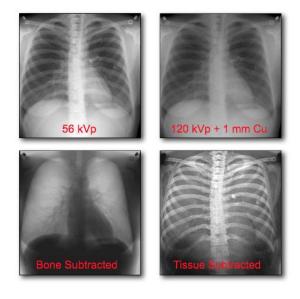


Fluoroscopy / Intra-operative imaging



▶ Now a FPD/CCD instead of the fluorescent screen.

Fluoroscopy example



Dual-Energy Imaging

- Two exposures
- ▶ Two detectors
- ▶ Beam hardening

Dual-energy example

Mamography

- ▶ low U (25 \sim 30 kV), filter high-energy rays
- ▶ digital mamography, CCD sensor (1024 × 1024 pixels)

X-ray Advantages / disadvantages

- Advantages
 - ► Widely used and available
 - Experts available
 - High-spatial resolution
 - Excelent imaging of hard tissues (bones)
- Disadvantages
 - Radiation exposure
 - Difficulty in imaging soft-tissues
 - ▶ 2D projection, hidden parts

New trends

- ► FPD/CCD sensors replace film
- higher sensitivity, faster exposure, lower dose
- dynamic imaging
- ► CT