Medical ultrasound imaging Modern ultrasound imaging

J. Kybic¹

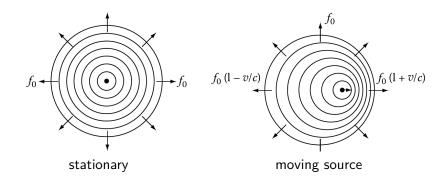
Department of cybernetics, FEE CTU
http://cmp.felk.cvut.cz/~kybic
kybic@fel.cvut.cz

2008-2023

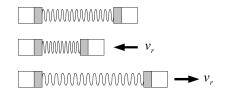
¹Using images from J.Hozman, E.Dove, A. Stoylen

Doppler ultrasound

US contrast agents

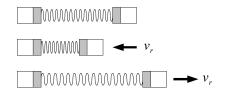

Harmonic imaging

3D US imaging


Christian Doppler 1803–1853

Doppler frequency shift

Stationary source, moving receiver

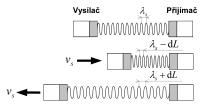


$$f_r = f_s + \frac{v_r}{\lambda_s} = f_s + \frac{v_r}{c}f_s = f_s + f_d$$
, since $\lambda_s = \frac{c}{f_s}$

Doppler shift

$$f_d = \frac{v_r}{c} f_s$$

Stationary source, moving receiver


$$f_r = f_s + \frac{v_r}{\lambda_s} = f_s + \frac{v_r}{c}f_s = f_s + f_d$$
, since $\lambda_s = \frac{c}{f_s}$

Doppler shift

$$f_d = \frac{v_r}{c} f_s$$

Example: For f = 5 MHz, $v_r = 1$ cm/s, $f_d = 33$ Hz.

Stationary receiver, moving source

Wavelength change

$$\delta \lambda = v_s T_s = \frac{v_s}{f_s}$$
$$\lambda_r = \lambda_s - \delta \lambda = \frac{c}{f_s} - \frac{v_s}{f_s}$$
$$f_r = \frac{c}{\lambda_r} = \frac{c}{c - v_s} f_s$$

Stationary receiver, moving source (2)

$$f_r = \frac{c}{\lambda_r} = \frac{c}{c - v_s} f_s = \frac{1}{1 - \frac{v_s}{c}} f_s$$

Stationary receiver, moving source (2)

$$f_r = \frac{c}{\lambda_r} = \frac{c}{c - v_s} f_s = \frac{1}{1 - \frac{v_s}{c}} f_s$$

From Taylor series, for $x \ll 1$

$$\frac{1}{1-x} = 1 + x + \frac{x^2}{2} + \dots \approx 1 + x$$

For $v \ll c$

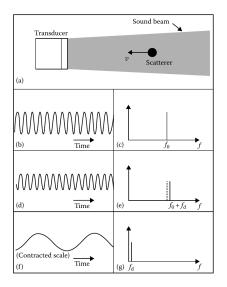
$$f_r pprox \left(1 + rac{v_s}{c}
ight) f_s = f_s + f_d$$

Doppler shift

$$f_d = \frac{V_s}{c} f_s$$

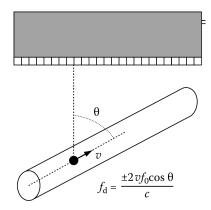
Blood flow speed measurement

Doppler effect: Frequence changes if the source moves with respect to the receiver.

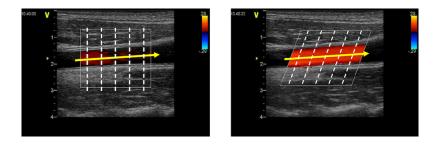

- Reflection from red blood cells
- Red blood cells
 - Moving receiver
 - Moving source
- Doppler shift

$$f_r = f_t + f_d$$

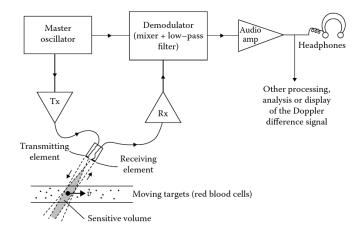
$$f_d \approx 2 \frac{v}{c} f_c$$


Moving scatterer

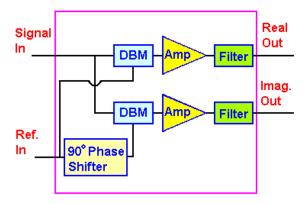
time and frequency domains


Angle dependency

We only measure the projection along the ray: $v \cos \theta$


 $f_0 = f_s$

Angle dependency (2)

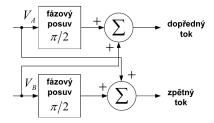

- ▶ Insonation angle $90^{\circ} \longrightarrow$ weak or no signal.
- $\blacktriangleright \text{ Known angle} \longrightarrow \text{ angle correction.}$

Continuous wave Doppler

- separate transmitter and receiver
- can measure high velocities
- no spatial information

Quadrature detector

Input: g_a = cos(at), g_b = cos(bt)
Output: g = g_ag_b = ¹/₂ cos((a + b)t) + ¹/₂ cos((a - b)t)
Signal cos((a + b)t) can be filtered (low-pass filter)
Difference frequence signal s_r = cos((a - b)t)
"Imaginary" signal s_i shifted by 90°: sin((a - b)t)

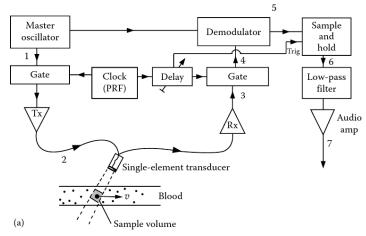

Directional demodulation

To distinguish positive/negative flow direction, $\pm f_d$. Method 1: Phase-domain processing

• Quadrature mixer with f_s

• Phase offset
$$\angle s_r = \angle s_i = \pm 90^\circ$$

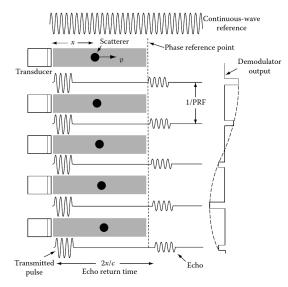
	$f_d > 0$	$f_{d} < 0$
$s_r + T_{90}s_i$	0	2 <i>s</i> r
$T_{90}s_r + s_i$	2 <i>s</i> r	0


To distinguish positive/negative flow direction, $\pm f_d$. Method 2: Frequency shift

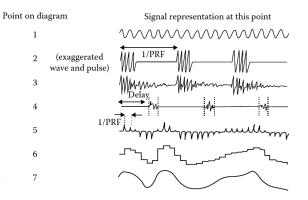
• Quadrature mixer with $f_s + f_o$

•
$$f_d = 0 \longrightarrow \text{mixer output } f_o$$

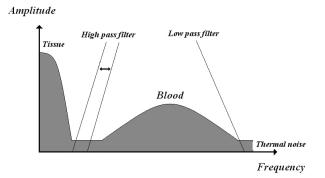
$$\blacktriangleright f_d = \operatorname{freq}(s_r) - f_o$$


Pulsed wave Doppler (PW)

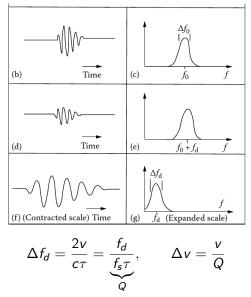
- single transducer
- repeated pulses


- spatial information
- limited velocity

Sampled Doppler shift signal

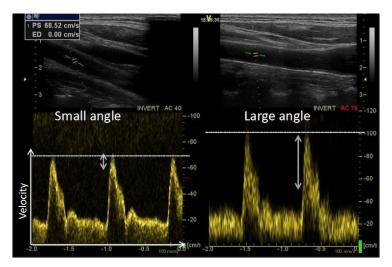

 $PRF = pulse repetition frequency f_p$,

PW Doppler shift signals

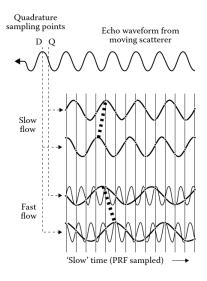


PRF:pulse repetition frequency, 2:transmitted signal, 3:received signal, 4:gated signal, 5:demodulated signal, 6:interpolated signal, 7:output

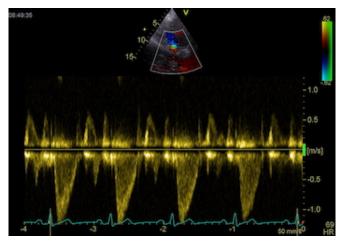
PW Doppler spectrum


Speed uncertainty

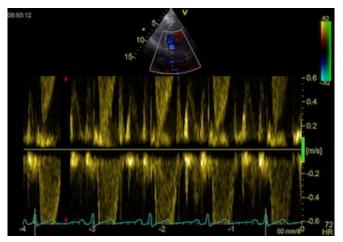
 τ — pulse length, Q — quality factor, number of cycles in a pulse


Speed uncertainty

Angle dependency


small angle \longrightarrow higher number of cycles Q

Aliasing


Nyquist $\longrightarrow f_d < f_p/2$

Aliasing example

B-mode+Doppler+velocity spectrum — high PRF f_p

Aliasing example

B-mode+Doppler+velocity spectrum — low PRF f_p

Range-velocity tradeoff

$$f_d < f_p/2$$

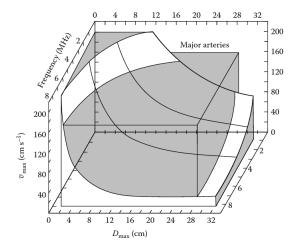
$$f_d = \frac{2f_s v}{c} < \frac{f_p}{2} \longrightarrow v < \frac{f_p c}{4f_s}$$

$$z = \frac{T_p c}{2} = \frac{c}{2f_p}$$

$$v_{\text{max}} z_{\text{max}} = \frac{c^2}{8f_s}$$

Range-velocity tradeoff

$$f_d < f_p/2$$


$$f_d = \frac{2f_s v}{c} < \frac{f_p}{2} \longrightarrow v < \frac{f_p c}{4f_s}$$

$$z = \frac{T_p c}{2} = \frac{c}{2f_p}$$

$$v_{\text{max}} z_{\text{max}} = \frac{c^2}{8f_s}$$

Limitation is for $(v \cos \theta)_{\max}$.

Range-velocity tradeoff

Minimum velocity

Observe at least one period of f_d

 $T_d < NT_p$

with N transmissions per line

$$f_d > \frac{f_p}{N}$$
$$v_{\min} = \frac{f_p c}{2Nf_s}$$

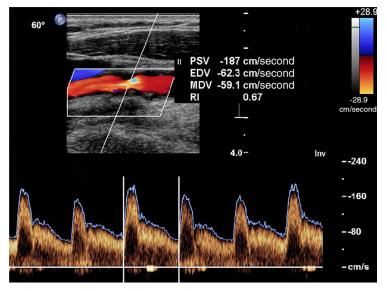
Minimum velocity

Observe at least one period of f_d

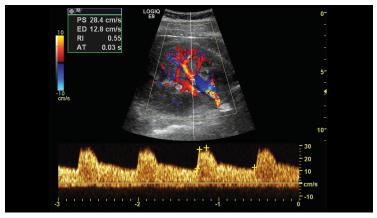
 $T_d < NT_p$

with N transmissions per line

$$f_d > \frac{f_p}{N}$$
$$v_{\min} = \frac{f_p c}{2Nf_s}$$


- $N = 5 \sim 10$ or more
- Temporal averaging
- \blacktriangleright \longrightarrow slow f_p

Doppler US — examples


heart

Doppler US — examples

artery

Doppler US — examples

liver

Doppler ultrasound

US contrast agents

Harmonic imaging

3D US imaging

Contrast agents

- ▶ 1968, Gramiak, saline injection
- Microbubbles (2 \sim 5 μ m)
- Asymmetric compression/expansion
- Stabilization (synthetic polymers), up to 5 10 min.
- Injection
- Albunex, Optison, Echovist, Levovist...

Flash contrast imaging

US bubble destabilization.

normal

Flash contrast imaging

US bubble destabilization.

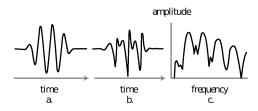
flash, bubbles broken

Flash contrast imaging

US bubble destabilization.

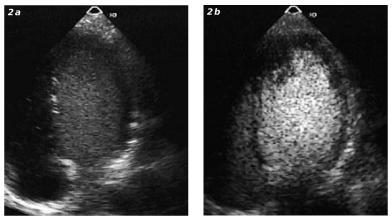
filling up

Myocardial perfusion evaluation.


Doppler ultrasound

US contrast agents

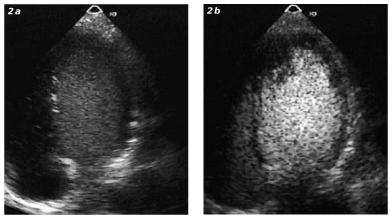
Harmonic imaging


3D US imaging

Assymetric bubble compression

Harmonic imaging

Transmit f_0 , receive $2f_0$

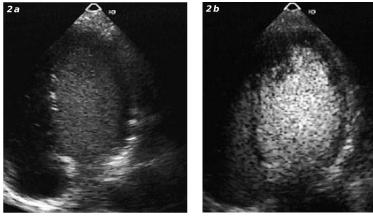


standard US

2nd harmonic

Harmonic imaging

- Transmit f_0 , receive $2f_0$
- Bandwith limitation

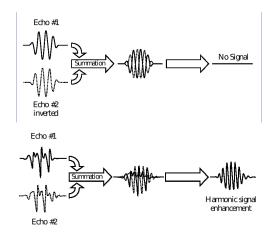


standard US

2nd harmonic

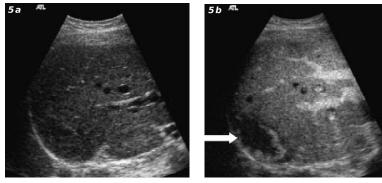
Harmonic imaging

- Transmit f_0 , receive $2f_0$
- Bandwith limitation
- Bubbles not needed, tissue nonlinearity



standard US

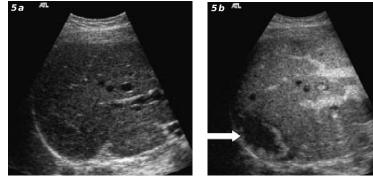
2nd harmonic


Pulse Inversion Harmonic Imaging

- Two pulses, second inverted
- Responses summed
- Filtration not needed

Pulse Inversion Harmonic Imaging

- Two pulses, second inverted
- Responses summed
- Filtration not needed



standard image (liver)

pulse inversion

Pulse Inversion Harmonic Imaging

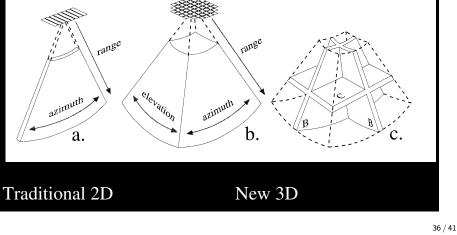
- Two pulses, second inverted
- Responses summed
- Filtration not needed
- Several pulses (Power Pulse Inversion)

standard image (liver)

pulse inversion

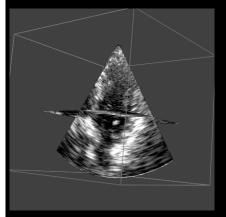
Doppler ultrasound

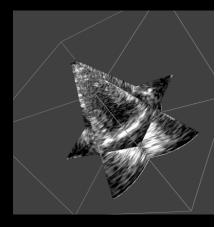
US contrast agents

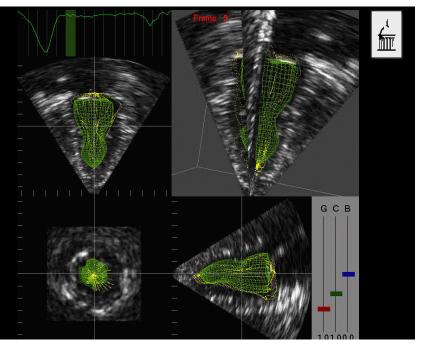

Harmonic imaging

3D US imaging

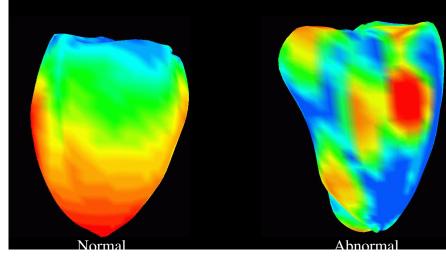
3D Reconstruction




3D Ultrasound



Real-time 3D Ultrasound



Velocity of Contraction

Biological effects

Thermal effects

- $1.5 \,^{\circ}\text{C}$ indefinitely or $6 \,^{\circ}\text{C}$ for $1 \,\text{min}$
- highest risk in bones (transcranial imaging)
- Cavitation growth/collapse of bubbles
 - for long pulse lengths or high pressure
 - may damage cells
 - unlikely to occur in vivo

Radiation pressure — makes tissues/fluids move

Biological effects

Thermal effects

- $1.5 \,^{\circ}\text{C}$ indefinitely or $6 \,^{\circ}\text{C}$ for $1 \,\text{min}$
- highest risk in bones (transcranial imaging)
- Cavitation growth/collapse of bubbles
 - for long pulse lengths or high pressure
 - may damage cells
 - unlikely to occur in vivo
- Radiation pressure makes tissues/fluids move
- Clinical studies found no harmful effects

Biological effects

Thermal effects

- $1.5 \,^{\circ}\text{C}$ indefinitely or $6 \,^{\circ}\text{C}$ for $1 \,\text{min}$
- highest risk in bones (transcranial imaging)
- Cavitation growth/collapse of bubbles
 - for long pulse lengths or high pressure
 - may damage cells
 - unlikely to occur in vivo
- Radiation pressure makes tissues/fluids move
- Clinical studies found no harmful effects
- Is ultrasound power output is increasing.

Conclusions

- Non-invasive, affordable and portable imaging technique
- Excellent soft tissue imaging
- Lower image quality (wrt CT or MRI) due to speckle but improving
- Low penetration depth versus resolution
- Does not pass through air or gas
- Does not pass through bones, shadows
- Modern techniques 3D, contract agents, Doppler