Medical ultrasound imaging Introduction

J. Kybic¹

Department of cybernetics, FEE CTU http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz

2008-2023

¹Using images from J.Hozman, E.Dove, A. Stoylen

Introduction

Ultrasound acoustics

Waves

Wave equation

Reflection and refraction

Interface reflection

Attenuation

Medical ultrasound

Devices

Cardiologic US

Intravascular US

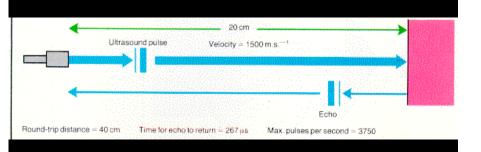
Generation/detection

Generation

Steering/Beamforming

Focusing

Processing and contro


Artefacts

Medical ultrasound basics

- ightharpoonup Acoustic waves, frequency 2 \sim 50 MHz
- ► Measure the time and intensity of the echo
- Harmless
- Stopped by air and dense tissues (bone)

Ultrasound Principle

Introduction

Ultrasound acoustics

Waves

Wave equation

Reflection and refraction

Interface reflection

Attenuation

Medical ultrasound

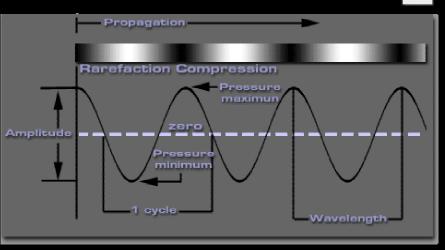
Devices

Cardiologic US

Intravascular US

Generation/detection

Generation


Steering/Beamforming

Focusing

Processing and contro

Artefacts

Sinusoidal pressure source

Physical quantities

Ultrasound

Property	Symbol	Unit	Usual values
Speed	С	m/s	$1350\sim1800\mathrm{m/s}$
Wavelength	λ	m	$0.1\sim0.8\text{mm}$
Frequency	f	Hz	$2\sim20\text{MHz}$
Density	ϱ	kg/m^3	$\sim 1000\mathrm{kg/m^3}$
Intensity	1	W/m^2	$1\sim 10\text{mW}/\text{cm}^2$

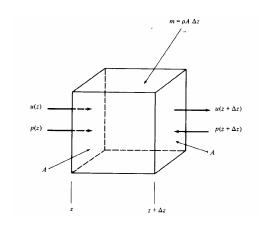
Introduction

Ultrasound acoustics

Waves

Wave equation

Reflection and refraction
Interface reflection


Medical ultrasound

Devices Cardiologic US Intravascular III

Generation/detection

Generation
Steering/Beamforming
Focusing
Processing and control
Artefacts

Elementary volume

Speed u, pressure p, density ϱ , area A, mass m.

Newton's law

Motion along z:

$$F = ma = m\frac{\mathrm{d}u}{\mathrm{d}t} = m\left(\frac{\partial u}{\partial t} + \frac{\partial u}{\partial z}\frac{\partial z}{\partial t}\right) \approx m\frac{\partial u}{\partial t}$$

force F = pA:

$$(p(z)-p(z+\Delta z))A=m\frac{\partial u}{\partial t}$$

for $\Delta z \ll z$:

$$-\frac{\partial p}{\partial z}\Delta z A = m\frac{\partial u}{\partial t}$$

as $m = \rho A \Delta z$

$$-\frac{\partial p}{\partial z} = \rho \frac{\partial u}{\partial t}$$

Conservation of mass law

Difference of entering and exiting mass, density change:

$$A\Big(u(z+\Delta z)\rho(z+\Delta z)-u(z)\rho(z)\Big)=-A\,\Delta z\frac{\partial\rho}{\partial t}$$

for $\Delta z \ll z$:

$$\frac{\partial \rho \mathbf{u}}{\partial \mathbf{z}} = -\frac{\partial \rho}{\partial \mathbf{t}}$$

density $\rho = \rho_0 + \rho_1$, $\rho_0 = \text{const}$, $\rho_1 \ll \rho_0$:

$$\rho_0 \frac{\partial u}{\partial z} = -\frac{\partial \rho_1}{\partial t}$$

Compressibility (stlačitelnost) $\frac{\rho_1}{\rho_0} = Kp$, K = 1/E:

$$\frac{\partial u}{\partial z} = -K \frac{\partial p}{\partial t}$$

1D wave equation

$$\rho \frac{\partial u}{\partial t} + \frac{\partial p}{\partial z} = 0 \quad \text{derive by } z$$

$$\frac{\partial u}{\partial z} + K \frac{\partial p}{\partial t} = 0 \quad \text{derive by } t$$

$$\rho \frac{\partial^2 u}{\partial t \partial z} + \frac{\partial^2 p}{\partial z^2} = 0$$

$$\frac{\partial^2 u}{\partial z \partial t} + K \frac{\partial^2 p}{\partial t^2} = 0$$

subtract

$$\frac{\partial^2 p}{\partial z^2} - K \rho \frac{\partial^2 p}{\partial t^2} = 0$$

similarly

$$\frac{\partial^2 u}{\partial z^2} - K\rho \frac{\partial^2 u}{\partial t^2} = 0$$

Wave equation solution

Harmonic wave:

$$p = p_+ \cos(\underbrace{\omega t - kz}_{\phi})$$

where k is the wave number (vlnové číslo) [rad/m].

Wave speed (phase velocity):

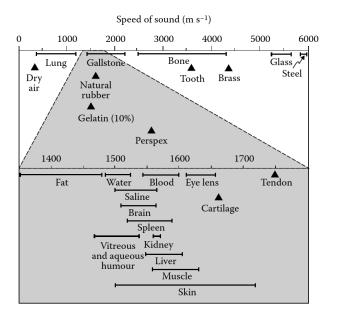
$$\phi_0 = \omega t - kz \quad \rightarrow \quad z = \frac{\omega}{k} t - \frac{\phi_0}{k}$$
 $c = \omega/k$ $c = \lambda f$ because $\omega = 2\pi f$, $c = \frac{2\pi}{k}$

Wave speed

$$p = p_{+} \cos(\underbrace{\omega t - kz}_{\phi})$$

$$\frac{\partial^{2} p}{\partial z^{2}} = -p_{+} k^{2} \cos(\omega t - kz)$$

$$\frac{\partial^{2} p}{\partial t^{2}} = -p_{+} \omega^{2} \cos(\omega t - kz)$$


The wave equation

$$\frac{\partial^2 p}{\partial z^2} = K \rho \frac{\partial^2 p}{\partial t^2}$$

holds if

$$k^2 = \rho K \omega^2 \quad o \quad c = \frac{1}{\sqrt{\rho K}} = \sqrt{\frac{E}{\rho}}$$
 because $c = \frac{\omega}{k}$

Speed of sound

Other wave equation solution

$$p = p_{-}\cos(\omega t + kz)$$

Any forward or backward wave (by linearity and harmonic decomposition).

$$p = f_+(z + ct) + f_-(z - ct)$$

Forward and backward wave combination:

$$p = p' \Big(\cos(\omega t - kz) + \cos(\omega t + kz) \Big)$$

Standing wave:

$$p = 2p'\cos(\omega t)\cos(kz)$$

Acoustic impedance

$$Z_a = \frac{p \text{ (pressure)}}{Q \text{ (flow)}} [\text{Pa} \cdot \text{s/m}^3]$$

"acoustic Ohm".

For an infinite tube:

$$Z_a = \frac{\rho_0 c}{S}$$

 $Z = \rho_0 c$ is a characteristic acoustic impedance.

Unit $[kg/s \cdot m^2]=1$ Rayl.

Acoustic impedance (2)

Acoustic impedance

$$Z=\frac{p}{Q}$$

Specific acoustic impedance

$$Z_{\rm sp} = Z_{\rm a}S = rac{p}{Q}S = rac{p}{u}$$
 as flow $Q = Su$

Characteristic acoustic impedance

$$Z = \varrho_0 c = \sqrt{\frac{\rho_0}{K}}$$

For plane waves in lossless medium

$$Z=Z_{\mathsf{sp}}$$

Wave intensity

Kinetic and potential energy density (phase shifted by 90°)

$$i = \frac{1}{2} \left(Zu^2 + \frac{p^2}{Z} \right) \quad [W/m^2]$$

Effective values

$$I=U^2Z=\frac{P^2}{7}$$

Often expressed in dB

$$10\log_{10}\frac{l_1}{l_2} = 20\log_{10}\frac{P_1}{P_2} = 20\log_{10}\frac{U_1}{U_2}$$

Speed and impedance variations

Material	Density ρ (kgm ⁻³)	Speed c (ms ⁻¹)	Characteristic impedance Z (kgm ⁻² s ⁻¹) × 10 ⁶	Absorption coefficient α (dB cm ⁻¹) at 1 MHz
Water	1000	1480	1.5	0.0022
Blood	1060	1570	1.62	(0.15)
Bone	1380-1810	4080	3.75-7.38	(14.2-25.2)
Brain	1030	1558	1.55-1.66	(0.75)
Fat	920	1450	1.35	(0.63)
Kidney	1040	1560	1.62	-
Liver	1060	1570	1.64-1.68	(1.2)
Lung	400	650	0.26	(40)
Muscle	1070	1584	1.65-1.74	(0.96-1.4)
Spleen	1060	1566	1.65-1.67	_

Introduction

Ultrasound acoustics

Waves

Wave equation

Reflection and refraction

Interface reflection

Attenuation

Medical ultrasound

Devices

Cardiologic US

Intravascular US

Generation/detection

Generation

Steering/Beamforming

Focusing

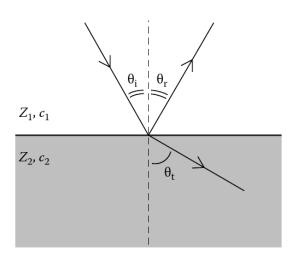
Processing and contro

Artefacts

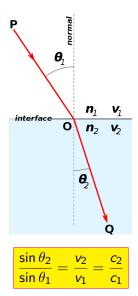
Ray/tissue interaction types

- $ightharpoonup d \gg \lambda$
 - ► Geometric (specular) reflection and refraction.
 - Strong reflection.
 - ▶ Diaphragm, vessels, tissue/bone interface, tissue/lung interface, . . .
- $ightharpoonup d \ll \lambda$
 - Scattered reflection. Stochastic non-directional scattering and interference.
 - ► Main tissue signal. Speckle.
 - Most soft tissues, blood.

Specular Reflection


 The first, specular echoes, originate from relatively large, strongly reflective, regularly shaped objects with smooth surfaces. These reflections are angle dependent, and are described by reflectivity equation. This type of reflection is called specular reflection.

Scattered Reflection


 The second type of echoes are scattered that originate from small, weakly reflective, irregularly shaped objects, and are less angle-dependent and less intense. The mathematical treatment of non-specular reflection (sometimes called "speckle") involves the Rayleigh probability density function. This type of reflection, however, sometimes dominates medical images, as you will see in the laboratory demonstrations.

Reflection and refraction

$$\theta_i = \theta_r$$

Snell's law

Fermat's principle of least time.

Reflectivity

Amplitude reflection coefficient for normal incidence $\theta_i = \theta_r = 0$

$$R_{a} = \frac{P_{r}}{P_{i}} = \frac{U_{r}}{U_{i}} = \frac{Z_{2} - Z_{1}}{Z_{2} + Z_{1}}$$

Reflectivity for Various Tissues

Materials at Interface	Reflectivity
Brain-skull bone	0.66
Fat-muscle	0.10
Fat-kidney	0.08
Muscle-blood	0.03
Soft tissue-water	0.05
Soft tissue-air	0.9995

Reflectivity (2)

Power/intensity reflection coefficient

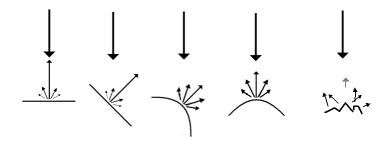
$$R = \frac{I_r}{I_i} = R_a^2 = \left(\frac{Z_2 - Z_1}{Z_2 + Z_1}\right)^2$$

Reflectivity (2)

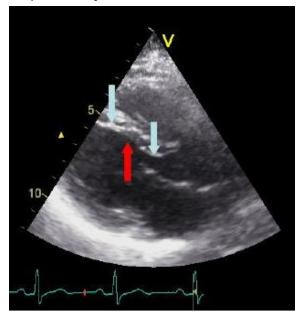
Power/intensity reflection coefficient

$$R = \frac{I_r}{I_i} = R_a^2 = \left(\frac{Z_2 - Z_1}{Z_2 + Z_1}\right)^2$$

Energy conservation law

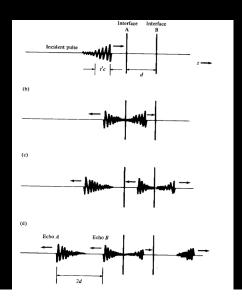

$$I_i = I_r + I_t \longrightarrow R = 1 - \frac{I_t}{I_i}$$

Reflectivity (3)

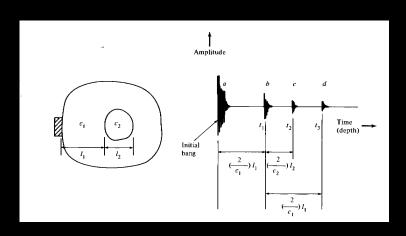

Reflection for arbitrary angle

$$R_a = \frac{Z_2 \cos \theta_i - Z_1 \cos \theta_t}{Z_2 \cos \theta_i + Z_1 \cos \theta_t}$$

Directional dependency of reflection



Directional dependency of reflection


Echoes from Two Interfaces

Echoes from Internal Organ

Attenuation

Signal attenuation reasons:

- ► Wavefront divergence
- Scattering (elastic)
- ► Absorption (tissue heating)

► Amplitude attenuation

$$P(x) = P_0 e^{-\mu x}$$

► Amplitude attenuation

$$P(x) = P_0 e^{-\mu x}$$

► Power/intensity attenuation

$$I(x) = I_0 \mathrm{e}^{-2\mu x}$$

► Amplitude attenuation

$$P(x) = P_0 e^{-\mu x}$$

► Power/intensity attenuation

$$I(x) = I_0 e^{-2\mu x}$$

► Half-value layer (HVL)

$$\frac{\log 2}{\mu}$$

► Amplitude attenuation

$$P(x) = P_0 e^{-\mu x}$$

► Power/intensity attenuation

$$I(x) = I_0 e^{-2\mu x}$$

► Half-value layer (HVL)

$$\frac{\log 2}{\mu}$$

► Half-power distance (HPD)

$$\frac{\log 2}{2\mu}$$

Attenuation and frequency

Attenuation increases approximately linearly with frequency

$$\mu \propto f$$

Penetration (approximate)

frequency	[MHz]	depth [cm]
	3.5	$10\sim20$
	5.0	$5\sim 10$
	7.5	$2.5\sim5$
	10.0	$1\sim 4$

Ultrasound Attenuation

Material Half-power distance (cm)

Water 380
Blood 15
Soft tissue 5 to 1
except muscle 1 to 0.6
Bone 0.7 to 0.2

Air 0.08 Lung 0.05

Tissue attenuation variations

Material	Density ρ (kgm ⁻³)	Speed c (ms ⁻¹)	Characteristic impedance Z (kgm ⁻² s ⁻¹) × 10 ⁶	Absorption coefficient α (dB cm ⁻¹) at 1 MHz
Water	1000	1480	1.5	0.0022
Blood	1060	1570	1.62	(0.15)
Bone	1380-1810	4080	3.75-7.38	(14.2-25.2)
Brain	1030	1558	1.55-1.66	(0.75)
Fat	920	1450	1.35	(0.63)
Kidney	1040	1560	1.62	-
Liver	1060	1570	1.64-1.68	(1.2)
Lung	400	650	0.26	(40)
Muscle	1070	1584	1.65-1.74	(0.96-1.4)
Spleen	1060	1566	1.65-1.67	-

Half amplitude

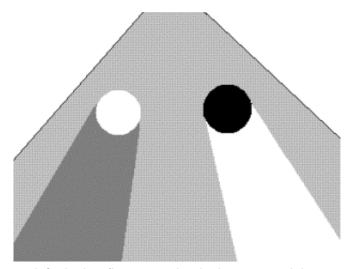
$$20\log_{10}\frac{1}{2}\approx-6\,\mathrm{dB}$$

Half power

$$20\log_{10}\frac{1}{\sqrt{2}} = 10\log_{10}\frac{1}{2} \approx -3\,\mathrm{dB}$$

Tissue attenuation variations

Half amplitude


$$20\log_{10}\frac{1}{2}\approx -6\,\mathrm{dB}$$

Half power

$$20 \log_{10} \frac{1}{\sqrt{2}} = 10 \log_{10} \frac{1}{2} \approx -3 \, dB$$

At
$$f=3.5\,\rm MHz,~\mu/f=0.0022\,dB/cm/MHz$$
 corresponds to HPD $=\frac{3\,\rm dB}{0.0022\cdot3.5\,\rm MHz}\approx390\,\rm cm$

Shadows and enhancements

left: high reflexivity, right: high transmissibility

Shadows and enhancements

Introduction

Ultrasound acoustics

Waves

Wave equation

Reflection and refraction

Interface reflection

Attenuation

Medical ultrasound

Devices

Cardiologic US

Intravascular US

Generation/detection

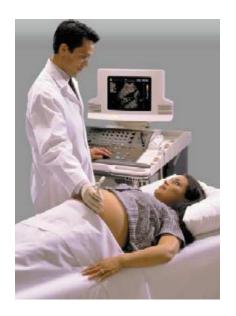
Generation

Steering/Beamforming

Focusing

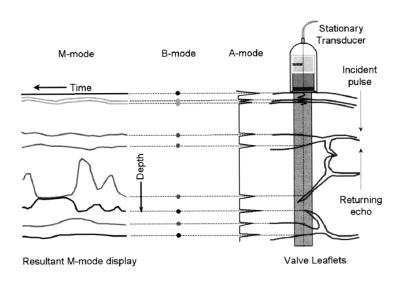
Processing and contro

Artefacts

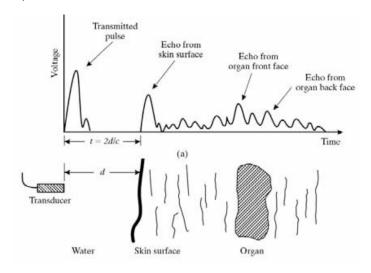

Medical ultrasound devices

Medical ultrasound devices

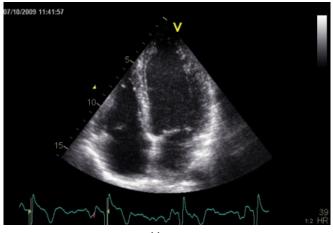
Medical ultrasound devices

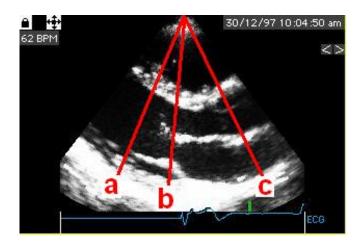

Medical applications of ultrasound imaging

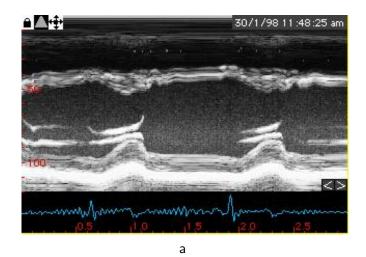
- Cardiology (heart)
- Gynecology: breast, fetus (pregnancy)
- Internal organs: liver, kidney, thyroid gland
- Intravascular ultrasound
- ► Therapeutic ultrasound: shock wave (kidney stone), thermal effects (rehabilitation)

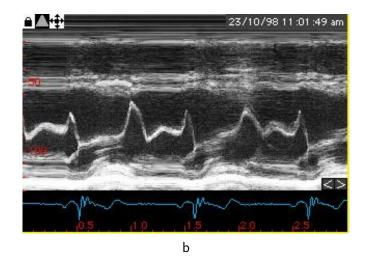

Imaging modes

- A osciloscopic, intensity/time
- **B** 2D in the probe plane
- C 2D perpendicular
- M/TM 1D+time
 - Q Doppler (speed)


Imaging modes (2)


A-mode (Amplitude)




B-mode

Heart

Introduction

Ultrasound acoustics

Waves

Wave equation

Reflection and refraction

Interface reflection

Attenuation

Medical ultrasound

Devices

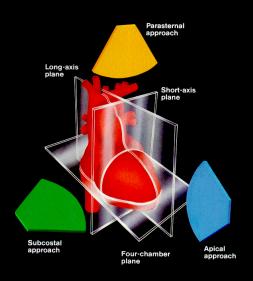
Cardiologic US

Intravascular US

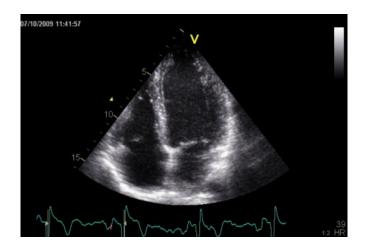
Generation/detection

Generation

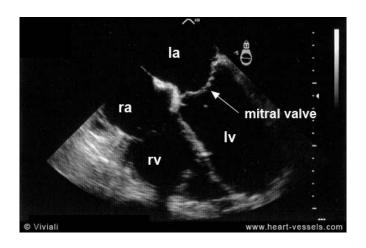
Steering/Beamforming


Focusing

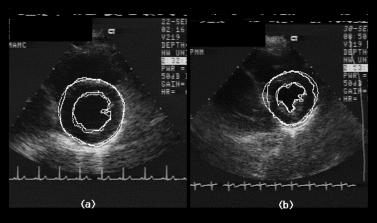
Processing and contro


Artefacts

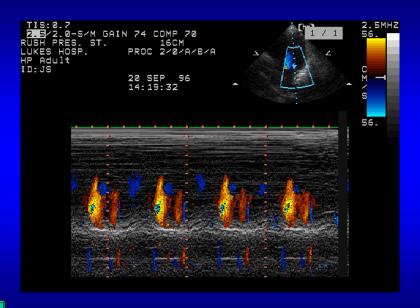
Conventional Cardiac 2D Ultrasound



Heart



Heart


Traditional Ultrasound Images

End-diastole

End-systole

Introduction

Ultrasound acoustics

Waves

Wave equation

Reflection and refraction

Interface reflection

Attenuation

Medical ultrasound

Devices

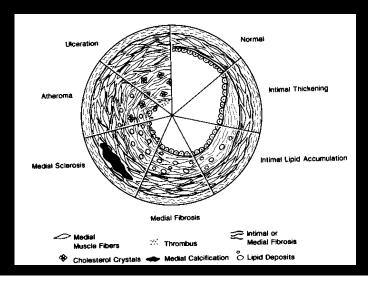
Cardiologic US

Intravascular US

Generation/detection

Generation

Steering/Beamforming


Focusing

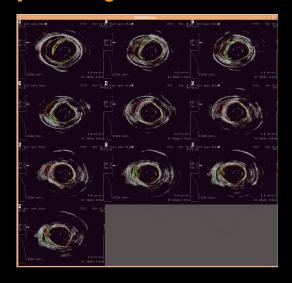
Processing and contro

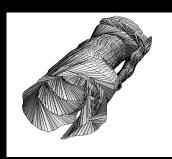
Artefacts

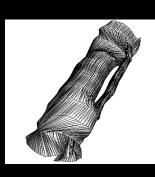

Progression of Vascular Disease

IVUS Catheter

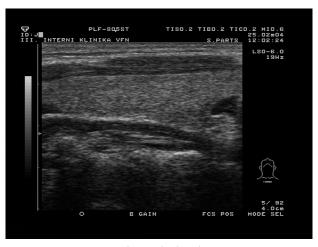
- 1 Rotating shaft
- 2 Acoustic window
- 3 Ultrasound crystal
- 4 Rotating beveled acoustic mirror

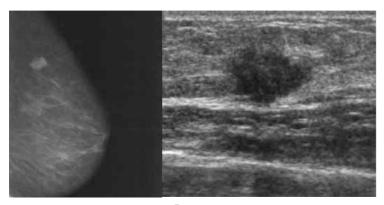

Slightly Diseased Artery in Cross-section


An array of Images



3D IVUS




Early fetus

Bigger fetus

Thyroid gland

Breast

Introduction

Ultrasound acoustics

Waves

Wave equation

Reflection and refraction

Interface reflection

Attenuation

Medical ultrasound

Devices

Cardiologic US

Intravascular US

Generation/detection

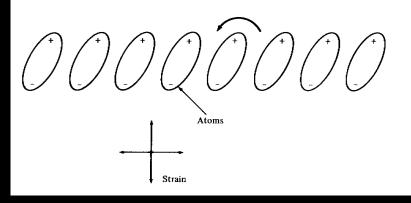
Generation

Steering/Beamforming

Focusing

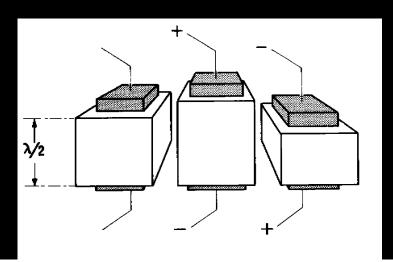
Processing and control

Artefacts


Pressure Generation

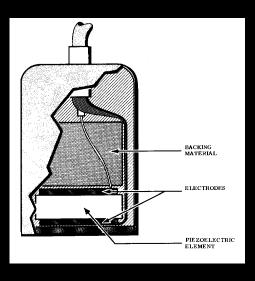
- Piezoelectric crystal
- 'piezo' means pressure, so piezoelectric means
 - pressure generated when electric field is applied
 - electric energy generated when pressure is applied

Charged Piezoelectric Molecules

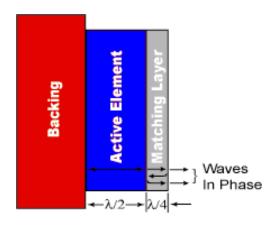


Highly simplified effect of E field

Piezoelectric Effect



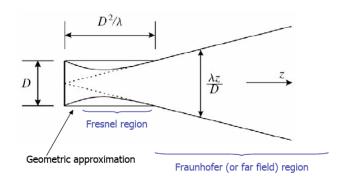
Transducer materials

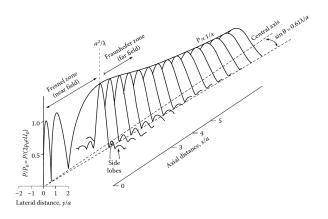

- ▶ PZT lead zirconate titanate, ceramic
 - ▶ High Z \longrightarrow strong reflection
 - ightharpoonup high resonance quality Q frequency selective, high sensitivity
- ▶ **PVDF** polyvinylidine difluoride, plastic
 - ightharpoonup Low $Z \longrightarrow \text{low reflection}$
 - ▶ low resonance quality *Q* wider bandwith, lower sensitivity
- Composite materials
- Capacitive transducers

Transducer

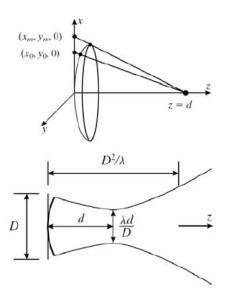


Impedance matching layer


Pressure Radiated by Sharp Pulse

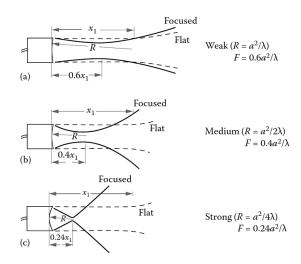

Beam pattern

Plane/unfocused source

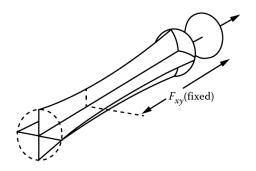


Beam pattern

Plane/unfocused source



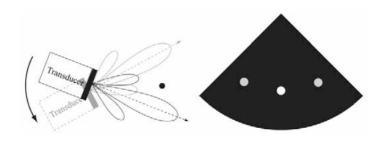
Focused beam pattern



Ultrasound lens 70/93

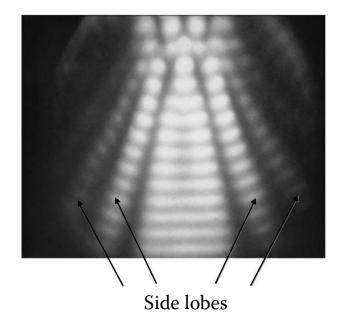
Focused beam pattern

Focused beam pattern



3D profile. Axial, transversal and lateral resolution

Lobes


Lobes

Main lobe — contains 84 % energy, angle

$$\sin\theta \approx \frac{1.22\lambda}{D}$$

Lobes

Introduction

Ultrasound acoustics

Waves

Wave equation

Reflection and refraction

Interface reflection

Attenuation

Medical ultrasound

Devices

Cardiologic US

Intravascular US

Generation/detection

Generation

Steering/Beamforming

Focusing

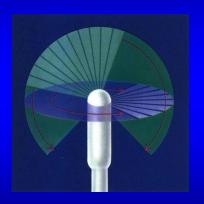
Processing and contro

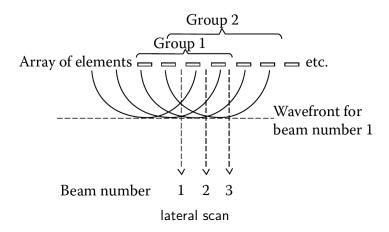
Artefacts

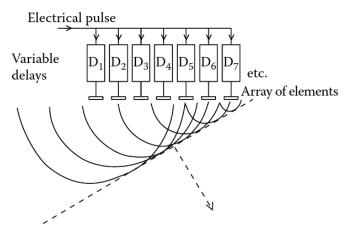
Beam steering

- Mechanical
- ► Electrical

UZV sonda s mech. rozkladem - Siemens




UZV sonda s mech. rozkladem - Siemens



Electronic beam steering

Electronic beam steering

Resultant wavefront

sector steering

Introduction

Ultrasound acoustics

Waves

Wave equation

Reflection and refraction

Interface reflection

Attenuation

Medical ultrasound

Devices

Cardiologic US

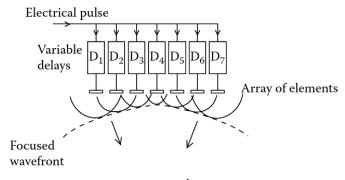
Intravascular US

Generation/detection

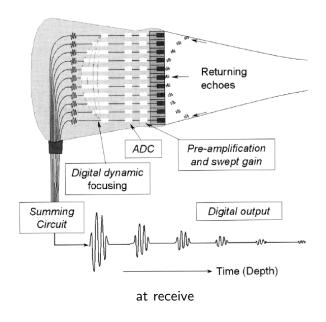
Generation

Steering/Beamforming

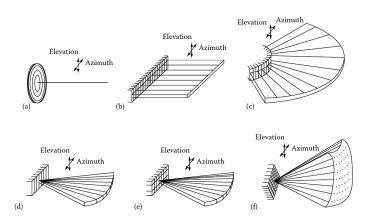
Focusing


Processing and contro

Artefacts


Focusing types

- ► Ultrasound lens
- ► Electronic


Electronic beam focusing

Electronic beam focusing

Transducer array configurations

annular, linear, sector, phased-array, 1.5D phased array, 2D phased array

Introduction

Ultrasound acoustics

Waves

Wave equation

Reflection and refraction

Interface reflection

Attenuation

Medical ultrasound

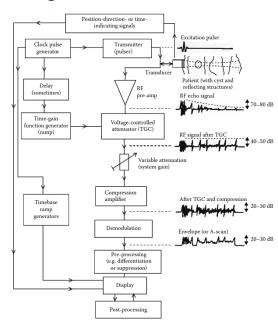
Devices

Cardiologic US

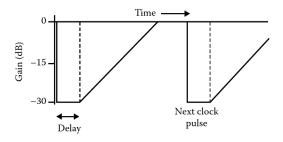
Intravascular US

Generation/detection

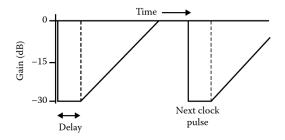
Generation


Steering/Beamforming

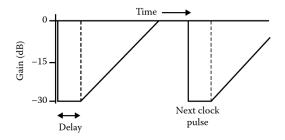
Focusing


Processing and control

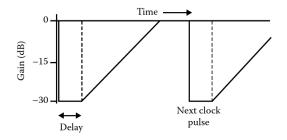
Artefacts


Scanner block diagram

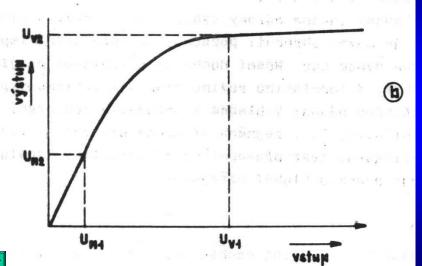
► Time gain control



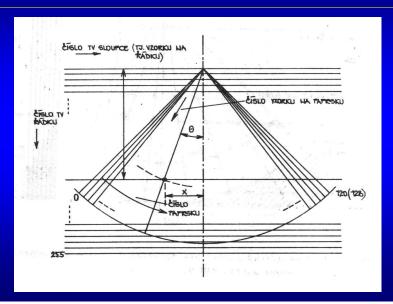
► Time gain control


Demodulation — RF to envelope, (quadrature) detector

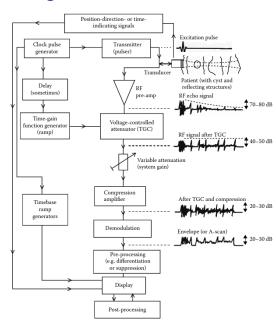
► Time gain control


- ▶ Demodulation RF to envelope, (quadrature) detector
- ightharpoonup Compression amplifier (50 dB range to 20 \sim 30 dB range)

► Time gain control


- Demodulation RF to envelope, (quadrature) detector
- ightharpoonup Compression amplifier (50 dB range to 20 \sim 30 dB range)
- ► Geometry conversion (interpolation)

Amplitudově řízené zesilovače



Geom. vztah sekt. sním. a TV zobr. rastru

Scanner block diagram

Introduction

Ultrasound acoustics

Waves

Wave equation

Reflection and refraction

Interface reflection

Attenuation

Medical ultrasound

Devices

Cardiologic US

Intravascular US

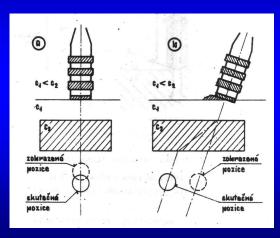
Generation/detection

Generation

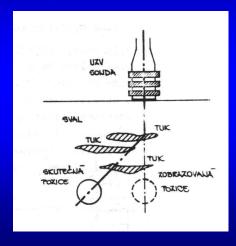
Steering/Beamforming

Focusing

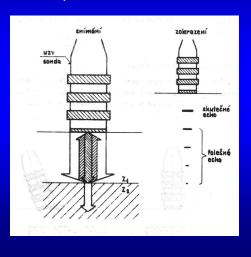
Processing and contro

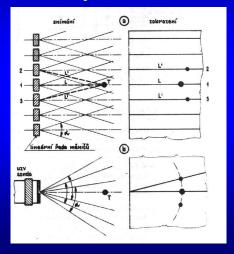

Artefacts

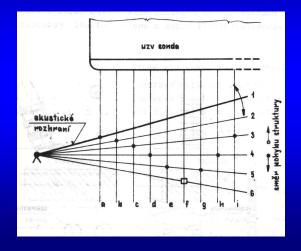
Artefacts


Due to

- ► Ultrasound speed variability
- ► Reflection
- Finite beam width
- Movement


- změnou rychlosti šíření UZV vlny,


- skladbou tkání,


- násobnou reflexí,

- vlivem konečné šířky UZV svazku,

- pohybem tkáňových struktur,

