Medical ultrasound imaging

J.Hozman, E.Dove, A. Stoylen, J.Kybic

2008-2022

Part I

Introduction to medical ultrasound

Introduction

Ultrasound acoustics

Waves Wave equation Reflection and refraction Interface reflection Attenuation

Medical ultrasound

Devices Cardiologic US Intravascular US

Generation/detection

Generation Steering/Beamforming Focusing Processing and control

Medical ultrasound basics

- $\blacktriangleright\,$ Acoustic waves, frequency 2 $\sim 50\,\rm MHz$
- Measure the time and intensity of the echo
- Harmless
- Stopped by air and dense tissues (bone)

Introduction

Ultrasound acoustics

Waves Wave equation Reflection and refraction Interface reflection Attenuation

Medical ultrasound

Devices Cardiologic US Intravascular US

Generation/detection

Generation Steering/Beamforming Focusing Processing and control

Sinusoidal pressure source

Physical quantities

Ultrasound

Property	Symbol	Unit	Usual values
Speed	С	m/s	$1350 \sim 1800\mathrm{m/s}$
Wavelength	λ	m	$0.1\sim 0.8\text{mm}$
Frequency	f	Hz	$2\sim 20\text{MHz}$
Density	ϱ	kg/m^3	$\sim 1000 { m kg}/{ m m}^3$
Intensity	1	W/m^2	$1\sim 10\mathrm{mW/cm^2}$

Introduction

Ultrasound acoustics

Waves

Wave equation

Reflection and refraction Interface reflection Attenuation

Medical ultrasound

Devices Cardiologic US Intravascular US

${\sf Generation}/{\sf detection}$

Generation Steering/Beamforming Focusing Processing and control

Elementary volume

Speed u, pressure p, density ρ , area A, mass m.

Newton's law

Motion along z:

$$F = ma = m\frac{\mathrm{d}u}{\mathrm{d}t} = m\left(\frac{\partial u}{\partial t} + \frac{\partial u}{\partial z}\frac{\partial z}{\partial t}\right) \approx m\frac{\partial u}{\partial t}$$

force F = pA:

$$(p(z) - p(z + \Delta z))A = m \frac{\partial u}{\partial t}$$

for $\Delta z \ll z$:

$$-\frac{\partial p}{\partial z}\Delta z A = m\frac{\partial u}{\partial t}$$

as $m = \rho A \Delta z$

$$-\frac{\partial p}{\partial z} = \rho \frac{\partial u}{\partial t}$$

Conservation of mass law

Difference of entering and exiting mass, density change:

$$A\Big(u(z+\Delta z)
ho(z+\Delta z)-u(z)
ho(z)\Big)=-A\,\Delta zrac{\partial
ho}{\partial t}$$
 for $\Delta z\ll z$:

$$\frac{\partial \rho u}{\partial z} = -\frac{\partial \rho}{\partial t}$$

density $\rho = \rho_0 + \rho_1$, $\rho_0 = \text{const}$, $\rho_1 \ll \rho_0$:

$$\rho_0 \frac{\partial u}{\partial z} = -\frac{\partial \rho_1}{\partial t}$$

Compressibility (stlačitelnost) $\frac{\rho_1}{\rho_0} = Kp$, K = 1/E:

$$rac{\partial u}{\partial z} = -K rac{\partial p}{\partial t}$$

1D wave equation

$$\rho \frac{\partial u}{\partial t} + \frac{\partial p}{\partial z} = 0 \quad \text{derive by } z$$
$$\frac{\partial u}{\partial z} + K \frac{\partial p}{\partial t} = 0 \quad \text{derive by } t$$
$$\rho \frac{\partial^2 u}{\partial t \partial z} + \frac{\partial^2 p}{\partial z^2} = 0$$
$$\frac{\partial^2 u}{\partial z \partial t} + K \frac{\partial^2 p}{\partial t^2} = 0$$

subtract

$$\frac{\partial^2 p}{\partial z^2} - K \rho \frac{\partial^2 p}{\partial t^2} = 0$$

similarly

$$\frac{\partial^2 u}{\partial z^2} - K\rho \frac{\partial^2 u}{\partial t^2} = 0$$

Wave equation solution

Harmonic wave:

$$p = p_+ \cos(\underbrace{\omega t - kz}_{\phi})$$

where k is the wave number (vlnové číslo) [rad/m].

Wave speed (phase velocity):

$$\phi_0 = \omega t - kz \quad \rightarrow \quad z = \frac{\omega}{k}t - \frac{\phi_0}{k}$$
$$c = \omega/k$$
$$c = \lambda f \quad \text{because} \quad \omega = 2\pi f, \quad k = \frac{2\pi}{\lambda}$$

Wave speed

$$p = p_{+} \cos(\underbrace{\omega t - kz}_{\phi})$$
$$\frac{\partial^{2} p}{\partial z^{2}} = -p_{+}k^{2} \cos(\omega t - kz)$$
$$\frac{\partial^{2} p}{\partial t^{2}} = -p_{+}\omega^{2} \cos(\omega t - kz)$$

The wave equation

$$\frac{\partial^2 p}{\partial z^2} = K \rho \frac{\partial^2 p}{\partial t^2}$$

holds if

$$k^2 =
ho K \omega^2 \quad
ightarrow \qquad c = rac{1}{\sqrt{
ho K}} = \sqrt{rac{E}{
ho}} \quad ext{because} \quad c = rac{\omega}{k}$$

Speed of sound

Other wave equation solution

$$p = p_{-}\cos(\omega t + kz)$$

Any forward or backward wave (by linearity and harmonic decomposition).

$$p = f_+(z + ct) + f_-(z - ct)$$

Forward and backward wave combination:

$$p = p' \Big(\cos(\omega t - kz) + \cos(\omega t + kz) \Big)$$

Standing wave:

$$p = 2p'\cos(\omega t)\cos(kz)$$

Acoustic impedance

$$Z_a = rac{p \text{ (pressure)}}{Q \text{ (flow)}} \text{ [Pa} \cdot \text{s/m}^3 \text{]}$$

"acoustic Ohm".

For an infinite tube:

$$Z_a = \frac{\rho_0 c}{S}$$

 $Z = \rho_0 c$ is a characteristic acoustic impedance.

Unit $[kg/s \cdot m^2] = 1$ Rayl.

Acoustic impedance (2)

Specific acoustic impedance

$$Z_{\rm sp} = Z_{\rm a}S = rac{p}{Q}S = rac{p}{u}$$
 as flow $Q = Su$

Characteristic acoustic impedance

$$Z = \varrho_0 C = \sqrt{\frac{\rho_0}{\kappa}}$$

For plane waves in lossless medium

$$Z = Z_{sp}$$

Wave intensity

Kinetic and potential energy density (phase shifted by 90°)

$$i = \frac{1}{2} \left(Zu^2 + \frac{p^2}{Z} \right) \quad [W/m^2]$$

Effective values

$$I = U^2 Z = \frac{P^2}{Z}$$

Often expressed in dB

$$10\log_{10}\frac{I_1}{I_2} = 20\log_{10}\frac{P_1}{P_2} = 20\log_{10}\frac{U_1}{U_2}$$

Speed and impedance variations

Material	Density ρ (kgm ⁻³)	Speed c (ms ⁻¹)	Characteristic impedance Z $(kgm^{-2}s^{-1}) \times 10^{6}$	Absorption coefficient α (dB cm ⁻¹) at 1 MHz
Water	1000	1480	1.5	0.0022
Blood	1060	1570	1.62	(0.15)
Bone	1380-1810	4080	3.75-7.38	(14.2-25.2)
Brain	1030	1558	1.55-1.66	(0.75)
Fat	920	1450	1.35	(0.63)
Kidney	1040	1560	1.62	-
Liver	1060	1570	1.64 - 1.68	(1.2)
Lung	400	650	0.26	(40)
Muscle	1070	1584	1.65 - 1.74	(0.96 - 1.4)
Spleen	1060	1566	1.65 - 1.67	-

Introduction

Ultrasound acoustics

Waves Wave equation Reflection and refraction Interface reflection Attenuation

Medical ultrasound

Devices Cardiologic US Intravascular US

${\sf Generation}/{\sf detection}$

Generation Steering/Beamforming Focusing Processing and control

Ray/tissue interaction types

► $d \gg \lambda$

- Geometric (specular) reflection and refraction.
- Strong reflection.
- Diaphragm, vessels, tissue/bone interface, tissue/lung interface, ...
- $d \ll \lambda$
 - Scattered reflection. Stochastic non-directional scattering and interference.
 - Main tissue signal. Speckle.
 - Most soft tissues, blood.

Specular Reflection

 The first, specular echoes, originate from relatively large, strongly reflective, regularly shaped objects with smooth surfaces. These reflections are angle dependent, and are described by reflectivity equation. This type of reflection is called specular reflection.

Scattered Reflection

 The second type of echoes are scattered that originate from small, weakly reflective, irregularly shaped objects, and are less angle-dependent and less intense. The mathematical treatment of non-specular reflection (sometimes called "speckle") involves the Rayleigh probability density function. This type of reflection, however, sometimes dominates medical images, as you will see in the laboratory demonstrations.

Reflection and refraction

$$\theta_i = \theta_r$$

Snell's law

Fermat's principle of least time.

Reflectivity

Amplitude reflection coefficient for normal incidence $\theta_i = \theta_r = 0$

$$R_{a} = \frac{P_{r}}{P_{i}} = \frac{U_{r}}{U_{i}} = \frac{Z_{2} - Z_{1}}{Z_{2} + Z_{1}}$$

Reflectivity for Various Tissues

Materials at Interface	Reflectivity
Brain-skull bone	0.66
Fat-muscle	0.10
Fat-kidney	0.08
Muscle-blood	0.03
Soft tissue-water	0.05
Soft tissue-air	0.9995

Reflectivity (2)

Power/intensity reflection coefficient

$$R = \frac{I_r}{I_i} = R_a^2 = \left(\frac{Z_2 - Z_1}{Z_2 + Z_1}\right)^2$$

Reflectivity (2)

Power/intensity reflection coefficient

$$R = \frac{I_r}{I_i} = R_a^2 = \left(\frac{Z_2 - Z_1}{Z_2 + Z_1}\right)^2$$

Energy conservation law

$$I_i = I_r + I_t \longrightarrow R = 1 - \frac{I_t}{I_i}$$

Reflectivity (3)

Reflection for arbitrary angle

$$R_{a} = \frac{Z_{2}\cos\theta_{i} - Z_{1}\cos\theta_{t}}{Z_{2}\cos\theta_{i} + Z_{1}\cos\theta_{t}}$$

Directional dependency of reflection

Directional dependency of reflection

Echoes from Two Interfaces

f
Echoes from Internal Organ

Attenuation

Signal attenuation reasons:

- Wavefront divergence
- Scattering (elastic)
- Absorption (tissue heating)

Amplitude attenuation

$$P(x) = P_0 e^{-\mu x}$$

Amplitude attenuation

$$P(x) = P_0 e^{-\mu x}$$

Power/intensity attenuation

$$I(x) = I_0 \mathrm{e}^{-2\mu x}$$

Amplitude attenuation

$$P(x) = P_0 e^{-\mu x}$$

Power/intensity attenuation

$$I(x) = I_0 \mathrm{e}^{-2\mu x}$$

► Half-value layer (HVL)

$$\frac{\log 2}{\mu}$$

Amplitude attenuation

$$P(x) = P_0 e^{-\mu x}$$

Power/intensity attenuation

$$I(x) = I_0 \mathrm{e}^{-2\mu x}$$

► Half-value layer (HVL)

► Half-power distance

$$\frac{\log 2}{\mu}$$
$$\log 2$$

 2μ

Attenuation and frequency

Attenuation increases approximately linearly with frequency

 $\mu \propto f$

Penetration (approximate)

frequency [MHz]	depth [cm]
3.5	$10\sim 20$
5.0	$5\sim 10$
7.5	$2.5\sim 5$
10.0	$1\sim4$

Ultrasound Attenuation

Half-power distance (cm
380
15
5 to 1
1 to 0.6
0.7 to 0.2
0.08
0.05

Tissue attenuation variations

Material	Density ρ (kgm ⁻³)	Speed c (ms ⁻¹)	Characteristic impedance Z $(kgm^{-2}s^{-1}) \times 10^{6}$	Absorption coefficient α (dB cm ⁻¹) at 1 MHz
Water	1000	1480	1.5	0.0022
Blood	1060	1570	1.62	(0.15)
Bone	1380-1810	4080	3.75-7.38	(14.2-25.2)
Brain	1030	1558	1.55-1.66	(0.75)
Fat	920	1450	1.35	(0.63)
Kidney	1040	1560	1.62	-
Liver	1060	1570	1.64 - 1.68	(1.2)
Lung	400	650	0.26	(40)
Muscle	1070	1584	1.65-1.74	(0.96 - 1.4)
Spleen	1060	1566	1.65-1.67	-

Half amplitude

$$20\log_{10}rac{1}{2}pprox -6\,\mathrm{dB}$$

Half power

$$20 \log_{10} \frac{1}{\sqrt{2}} = 10 \log_{10} \frac{1}{2} \approx -3 \, \mathrm{dB}$$

Tissue attenuation variations

Half amplitude

$$20\log_{10}\frac{1}{2}\approx-6\,\text{dB}$$

Half power

$$20 \log_{10} \frac{1}{\sqrt{2}} = 10 \log_{10} \frac{1}{2} \approx -3 \, \mathrm{dB}$$

At f = 3.5 MHz, $\mu/f = 0.0022$ dB/cm/MHz corresponds to HPD = $\frac{3}{0.0022\cdot3.5} \approx 390$ cm

Shadows and enhancements

left: high reflexivity, right: high transmissibility

Shadows and enhancements

Introduction

Ultrasound acoustics

Waves Wave equation Reflection and refraction Interface reflection Attenuation

Medical ultrasound

Devices Cardiologic US Intravascular US

Generation/detection

Generation Steering/Beamforming Focusing Processing and control

Medical ultrasound devices

Medical ultrasound devices

Medical ultrasound devices

Medical applications of ultrasound imaging

- Cardiology (heart)
- Gynecology: breast, fetus (pregnancy)
- Internal organs: liver, kidney, thyroid gland
- Intravascular ultrasound
- Therapeutic ultrasound: shock wave (kidney stone), thermal effects (rehabilitation)

Imaging modes

- A osciloscopic, intensity/time
- **B** 2D in the probe plane
- C 2D perpendicular
- M/TM 1D+time
 - Q Doppler (speed)

Imaging modes (2)

A-mode (Amplitude)

B-mode

Heart

Introduction

Ultrasound acoustics

Waves Wave equation Reflection and refraction Interface reflection Attenuation

Medical ultrasound

Devices Cardiologic US Intravascular US

${\sf Generation}/{\sf detection}$

Generation Steering/Beamforming Focusing Processing and control

Conventional Cardiac 2D Ultrasound

hr

Heart

Heart

Traditional Ultrasound Images

End-diastole

End-systole

Introduction

Ultrasound acoustics

Waves Wave equation Reflection and refraction Interface reflection Attenuation

Medical ultrasound

Devices Cardiologic US Intravascular US

${\sf Generation}/{\sf detection}$

Generation Steering/Beamforming Focusing Processing and control

Progression of Vascular Disease

IVUS Catheter

- 1 Rotating shaft
- 2 Acoustic window
- 3 Ultrasound crystal
- 4 Rotating beveled acoustic mirror

Slightly Diseased Artery in Cross-section

An array of Images

3D IVUS

Early fetus

Bigger fetus

Thyroid gland

Breast

Introduction

Ultrasound acoustics

Waves Wave equation Reflection and refraction Interface reflection Attenuation

Medical ultrasound

Devices Cardiologic US Intravascular US

Generation/detection

Generation Steering/Beamforming Focusing Processing and control

Pressure Generation

- Piezoelectric crystal
- 'piezo' means pressure, so piezoelectric means
 - pressure generated when electric field is applied
 - electric energy generated when pressure is applied

Charged Piezoelectric Molecules

Highly simplified effect of E field

Piezoelectric Effect

Transducer materials

PZT — lead zirconate titanate, ceramic

- High $Z \longrightarrow$ strong reflection
- high resonance quality Q frequency selective, high sensitivity
- **PVDF** polyvinylidine difluoride, plastic
 - $\blacktriangleright \text{ Low } Z \longrightarrow \text{ low reflection}$
 - Iow resonance quality Q wider bandwith, lower sensitivity
- Composite materials
- Capacitive transducers

Transducer

Impedance matching layer

Pressure Radiated by Sharp Pulse

Beam pattern

Plane/unfocused source

Beam pattern

Plane/unfocused source

Focused beam pattern

Ultrasound lens

Focused beam pattern

Focused beam pattern

3D profile. Axial, transversal and lateral resolution

Lobes

Lobes

Main lobe — contains 84 % energy, angle

$$\sin\theta\approx\frac{1.22\lambda}{D}$$

Lobes

Introduction

Ultrasound acoustics

Waves Wave equation Reflection and refraction Interface reflection Attenuation

Medical ultrasound

Devices Cardiologic US Intravascular US

${\sf Generation}/{\sf detection}$

Generation Steering/Beamforming Focusing

Processing and control

Beam steering

Electrical

UZV sonda s mech. rozkladem - Siemens

UZV sonda s mech. rozkladem - Siemens

Transducer array configurations

annular, linear, sector, phased-array, 1.5D phased array, 2D phased array

Electronic beam steering

Electronic beam steering

Resultant wavefront

sector steering

Introduction

Ultrasound acoustics

Waves Wave equation Reflection and refraction Interface reflection Attenuation

Medical ultrasound

Devices Cardiologic US Intravascular US

${\sf Generation}/{\sf detection}$

Generation Steering/Beamforming Focusing Processing and control

Focusing types

Ultrasound lens

Electronic

Electronic beam focusing

at transmit

Electronic beam focusing

at receive

Phased Linear Array

Beam Direction

Introduction

Ultrasound acoustics

Waves Wave equation Reflection and refraction Interface reflection Attenuation

Medical ultrasound

Devices Cardiologic US Intravascular US

Generation/detection

Generation Steering/Beamforming Focusing Processing and control

Scanner block diagram

85 / 89
Gain control

Time gain control

Gain control

Time gain control

Demodulation — RF to envelope, quadrature detectora

Gain control

Time gain control

- Demodulation RF to envelope, quadrature detectora
- Compression amplifier (50 dB range to $20 \sim 30$ dB range)

Amplitudově řízené zesilovače

Geom. vztah sekt. sním. a TV zobr. rastru

Scanner block diagram

