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Iterative tomographic algorithms have been applied to the reconstruction of a 
two-dimensional object with internal defects from its projections. Nine distinct 
algorithms with varying numbers of projections and projection angles have 
been considered. Each projection of the solid object is interpreted as a path 
integral of the light-sensitive property of the object in the appropriate direction. 
The integrals are evaluated numerically and are assumed to represent exact 
data. Errors in reconstruction are defined as the statistics of difference between 
original and reconstructed objects and are used to compare one algorithm with 
respect to another. The algorithms used in this work can be classified broadly 
into three groups, namely the additive algebraic reconstruction technique 
(ART), the multiplicative algebraic reconstruction technique (MART) and the 
maximization reconstruction technique (MRT). Additive ART shows a systematic 
convergence with respect to the number of projections and the value of the 
relaxation parameter. MART algorithms produce less error at convergence 
compared to additive ART but converge only at small values of the relaxation 
parameter. The MRT algorithm shows an intermediate performance when 
compared to ART and MART. An increasing noise level in the projection data 
increases the error in the reconstructed field. The maximum and RMS errors are 
highest in ART and lowest in MART for given projection data. Increasing noise 
levels in the projection data decrease the convergence rates. For all algorithms, a 
20% noise, level is seen as an upper limit, beyond which the reconstructed field is 
barely recognizable. © 1997 Published by Elsevier Science Ltd. All rights reserved. 

Keywords: absorption, tomography, iterative algorithms, convergence rates, 
sensitivity to noise, errors 

Introduction 

There is continuing interest in the application of radiation 
techniques in non-destructive testing and inspection of 
many industrial products, namely composite materials, steel 
slabs produced by continuous casting and other processes, 
lumber processing, nuclear reactor cores, integrated circuits 
and printed circuit boards. Developments in computer-aided 
image acquisition and image processing have led to 

* Correspondence to Prof. P. Munshi  

accelerated usage of these methods. Progress in two- or 
three-dimensional reconstruction, tomographic techniques 
has permitted the generation of complete objects using the 
radiation data as one- or two-dimensional projections. 

Image reconstruction from projections can be viewed as a 
linear inverse problem with discrete data. Exact inversion 
has been commonly carded out in the past using the 
convolution backprojection algorithm. This algorithm 
requires projection data for a large number of angles and 
the projection data must be equal to the field to be 
reconstructed. In many problems it may not be possible to 
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acquire such a large amount of projection data. With limited 
data, one encounters an ill-posed problem in reconstruction 
of a field from an incomplete set of projections. Several 
iterative techniques have been proposed to address such 
problems. In the present work, three groups of iterative 
algorithms namely the algebraic reconstruction technique 
(ART), the multiplicative algebraic reconstruction 
technique (MART) and the maximization reconstruction 
technique (MRT) have been considered. They have been 
applied to the reconstruction of two-dimensional fields. 
Specifically, a cosGauss phantom has been employed for 
explicit determination of errors. This is followed by an 
application to a circular region with circular holes. The 
performance of the three sets of algorithms has been 
evaluated in terms of convergence rates, residual error and 
sensitivity to noise in the projection data. 

Reconstruction methods based on series expansions made 
their first appearance in the scientific literature and in the 
computerized tomography (CT) scanner industry around 
1970. ART is an example and is frequently used fl]. All 
algorithms that fall into the ART family are classified into 
two major groups, namely additive ART and multiplicative 
ART (MART). These algorithms are further classified into 
sub-groups based on how different parts of the algorithms 
are implemented. The major steps of an ART algorithm are 
the integration procedure to obtain approximate projections, 
the calculation of weighting functions, the structure of 
correction terms and the procedures used to correct the field 
value. 

As in the conventional ART method, additive or 
multiplicative corrections are possible in all the algorithms 
which belong into the ART family. Recent studies have 
indicated that, of the several classes of reconstruction 
algorithms applicable for limited data, those based on the 
multiplicative algebraic reconstruction technique (MART) 
are the fastest, most flexible and accurate. Verhoeven [2] 
presented various types of MART algorithms and suggested 
modifications for the reconstruction of multidirectional 
interferometric data. However all the algorithms suggested 
by the author require low relaxation parameters. 

As limited-data tomography does not have a unique 
solution, the reconstruction equations may be viewed as 
the equality constraints for maximization (or minimization) 
of a function such as entropy or energy. The problem of 
reconstruction using limited data will have an infinite 
number of solutions. This shows that one has to obtain an 
optimal solution out of these many solutions. The MENT 
algorithm produces a solution with maximum entropy to the 
problem of reconstruction. From the standpoint of 
information theory this approach is conceptually attractive: 
it yields the image with the lowest information content 
consistent with the available data [3'4]. Gull and Newton tS] 
have described other possible functions besides entropy 
which can be extremized to obtain reconstructed data. 
Herman [61 reconstructed the head phantom using MENT. 
Myers and Hanson [7] compared the performance of ART 
and MENT in the reconstruction of a source object with 10 
high-contrast and 10 low-contrast discs. Reis and Roberty tsl 

reconstructed solid objects with complex internal features 
using a limited number of projections. 

Absorption tomography 

Tomography is the process of recovery of a 'function' from 
a set of its integrals along well-defined directions called 
'hyperplanes 't91. In absorption methods, the attenuation of 
the intensity of radiation traversing a transparent fluid or 
solid is measured. Consider the application of tomography 
with absorption. The local field here is taken as the 
coefficient of absorption/z(x, y, z). The generally applicable 
Lambert-Beer absorption law can be written as 

I = Io e-~s (1) 

The integral measurement is the attenuation of the intensity 
of radiation I(r,O)/l o which is related to the absorption 
coefficient as 

ln( I(r'O~ \ io j=  slX(x,y,z)ds=--p (2) 

where I0 is the initial intensity of the radiation at the 
entrance into the investigated volume and I is the local 
intensity dependent upon the absorption coefficients # and s. 
It is possible to generate the complete two-dimensional field 
using projections of/x defined by Equation (2). In general, 
reconstruction is performed by using as many integral 
measurements as possible. 

The absorption technique produces one-dimensional images 
containing information regarding the average intensity of 
the radiation. The absorption coefficient is, apart from being 
a function of the physical properties of the substance, also a 
function of the wavelength of radiation. For this reason, 
monochromatic waves, namely X-rays or r-rays, are used in 
absorption measurements and suitable corrections are 
employed when X-rays (polyenergetic) are used. The 
images can be viewed as projections of the absorption 
coefficient field through Equation (2). The absorption 
coefficient field is recovered by inverting Equation (2) 
using the central slice theorem Ll°] as 

/x(r, 0 )=  ~ ~_~[ I~_ pe-i2rrS dr]e i2~r(xX+zz) dXdZ 

(3) 

Explicit reconstruction methods that employ Equation (3) 
use the convolution-back projection algorithm t111. Analy- 
tical methods show that errors in reconstruction are small 
only if a large number of views and a large number of rays 
per view are employed and a proper choice of parameters is 
made tl2j. If  this requirement is difficult to fulfil, iterative 
techniques discussed in the present study show the potential 
for reconstruction with a limited number of views. 

The iterative reconstruction methods are based on the 
discretization of the cross-sectional plane by a square grid 
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(Figure 1). The length of the intercept of a ray with the flh 
cell in a given projection is called the weight function. In 
construction of fields wlith a large number of grids, a weight 
of 1 if a ray passes through a cell and 0 otherwise is used. A 
more accurate procedure is to calculate weights (Figure 1) 
as 

lij (4) 
wi'j  : v / ( d x  2 --t- dz 2) 

Ifj~ is the field value in thejth cell, the ith projection is given 
as 

N 
C~i: Z wijfj i= 1,2 ...... M 

j = l  
(5) 

This discretization produces a matrix equation 

[wij]{fi} = {q~i} (6) 

The problem of tomographic reconstruction thus reduces to 
inversion of this matrix. Iterative techniques can be thought 
of as a solution of Equation (6) through a generalized 
inverse of matrix [wij]. 

Series expansion methods 

Series expansion methods are iterative and consist necessa-. 
rily of four major steps: assumption of the test field, 
calculation of correction, application of correction and test 
for convergence. These algorithms differ in the manner in 
which corrections are applied and presented in brief below 
(for details, see Subbarao and Muralidhart13]). 

Simple ART 

Mayinger [14] has suggested the simplest possible iterative 
reconstruction algorithm which in many ways resembles the 
algebraic reconstruction algorithm. Let ~iO be the projection 
due to the ioth ray with angle of irradiation 0 andfi  be the 
initial guess of the fieldL value, We compute the approxima- 
tion projection ~i0 using the test field as 

N 
~io: Z Wio,jfJ i0 = 1 ' 2  ...... MO (7) 

j=l  

where  io denotes the ith ray of an irradiation with angle 0, 
and 1 -< io <- Mo. The subsequent steps are as follows. 

• For each angle of radiation 0 

(1) For each ray io calculate the correction A4~io = 4~io - ~io 
(2) Compute the total value of the weight function along N 

each ray as Wio = Z j = i  Wio,j 
(3) Calculate the average value of correction 

A~i e 
A~i 0 - -  Wi 0 

(4) Repeat Steps 1-3 for all rays. 
(5) Apply a correction for each cell j of the test field as 

?jnew =?jold ..~ )kA~io 

where  k is the relaxation factor. 
(6) Repeat Step 5 for all the rays of the irradiation with 

angle 0. 

• Update the approximate projection using Equation (7). 
• Repeat the above procedure for all angles of irradiation. 

This completes the kth global iteration. 
• Iterate until 

fk + 1 --fk 
- - ×  100_<e 

fk 
where e is the stopping criterion, say 0.01%. 

Gordon ART 

The ART algorithm originally proposed for CT applications 
by Gordon et al.[1]is considered. In this method corrections 
are applied to all the cells through which the ith ray passes, 
before calculating the correction for next ray. Hence the 
number of rays per angle of irradiation is not important. As 
in Equation (5), the approximate projection data is 
computed as 

N 
(°i= Z wofJ i= 1,2...,M (8) 

j = l  

where  M is the grand total number of rays and N is the 
number of cells. The remaining part of the algorithm can be 
stated as follows. 

• For each iteration k 

(1) For each ray i calculate the correction A~b; = ~b i -- ~i 
~t....~ pt/ 

(2) Compute the correction coefficient c~i= ~.)'---1 w/~ 
(3) Apply a correction to each cellj  of the test field through 

which the present ray passes as 

?jnew =j~jold _1_ )kwijA~i 
(9/i 

(4) Repeat Steps 1-3 for all the rays. 

This completes the kth iteration. 

361 



P. M. V. Subbarao, P. Munshi and K. Mural idhar 

• Iterate until 

f~ + 1 _ fk  
- -  × 1 0 0 _ < e  

f t  

• Calculate again the approximate projection using 
Equation (8) and iterate until the stopping rule is satisfied. 

Gilbert ART 

Gilbert [15] has developed independently a form of an ART, 
called the simultaneous iterative reconstruction technique 
(SIRT). In SIRT, the elements of the field function are 
modified after all the correction values corresponding 
to individual rays have been calculated. The algorithm 
is similar to ART but the correction is applied as given 
below. 

• For each iteration k 

(1) For each ray i calculate the correction A(9~.~N~ i -- @i 
(2) Compute the correction coefficient Ol i = Z j = i  W 2 
(3) Repeat Steps 1 and 2 to all the rays. 

• Identify all the rays (Ncj) passing through a given cell and 
the corresponding wij and Aq~ i. 

• For each cell j apply the algebraic sum of all possible 
correction terms as 

Ncj 
j~jnew =j~jold .~_ ~ )kwijA(gi 

ic= 1 °li 

This completes the kth iteration. 
• Iterate until 

f +l 
- -  × 100--<e 

• Calculate a new value of the approximate projection 
using Equation (8) until the stopping criterion is 
satisfied. 

Anderson ART 

Anderson and Kak []6] has proposed a new algorithm, 
simultaneous ART (SART) which combines the ART and 
SIRT algorithms. It was found to be very efficient and 
superior in implementation. The method of applying a 
correction is similar to simple ART but the structure is 
similar to ART. The algorithm is as follows. 

• For each angle of radiation 0 

(1) For each ray io calculate the correction A4)_~-~ (~i -- @i ~--~v 0 2 0 
(2) Compute the correction coefficient Otio = ~ . j = i  Wio,j 
(3) Repeat steps 1-2 for all rays belong to irradiation with 

angle 0. 
(4) Apply a correction to each cell j of the test field as 

j~jnew =j~jold _.1_ )k Wi°jA~i° 
OLi 0 

Here X is the relaxation factor. 

(5) Repeat Step 4 to all rays of the irradiation with angle 0. 

• Calculate the new value of the approximate projection 
using Equation (7). 

• Repeat the above procedure to all angles of irradiation. 
This complete the kth global iteration. 

• Iterate until 

f~+,  _ fk  
- -  × 100_<e 

• Continue iterations until the stopping rule is satisfied. 

Multiplicative ART 

The correction strategies presented in above are called 
additive ART (or simply ART). When the correction is 
multiplicative, the ART is called multiplicative ART 
(MART). In the present work, MART with three different 
types of correction formulae have been implemented. The 
initial approximate projection is computed using Equation 
(8). The MART algorithms considered in the present study 
are as follows. 

• For each iteration k 

(1) For each ray i calculate the approximate projection ~i 
(2) Identify all the rays passing through a given cell 

(the total number of rays per cell being Ncj) and 
corresponding i, wij, (9i and ~i 

(3) For each cell j compute the product of all possible 
correction terms. This can be accomplished in three 
different ways as 

MARTI"  j~jnew =jTjol,:l × [- I  [ 1 - - k ( 1 - -  ~. ')] 
Ncj 

M A R T 2 :  jcjnew:j?j°ldM I - I [ 1 - - ~ k W i j ( 1 - - ~ 9 ~ ) ]  
Ncj 

Ncj 

This completes the kth iteration. 

• Iterate until 

fk + 1 _ f k  
E - -  - -  × 100--<e 

fk 

• Update the approximate projection using Equation (8) 
• Continue iterations until E -< e. 

Maximum entropy 

Maximum entropy techniques (MENT) have been receiving 
increasing attention in the literature on image processing. 
They produce an unbiased solution and are maximally non- 
committal about unmeasured parameters ESI. This algorithm 
is outlined below. 

Consider a continuous function f (x ,  y, z) which satisfies the 
condition 

f (x ,  y, Z) >-- 0 
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Then, entropy optimization refers to the mathematical 
problem of maximizing the functional 

F(x,y,z)= -II~f(x,y,x)ln[f(x,y,z)]dzdydx (9) 

over various sets of constraints. 

If3~ is the discrete form off(x, y, z), then Equation (9) can be 
rewritten as 

n 

F j = -  ~)~ln[])] (10) 
j=l  

In image reconstruction the collected data and any other a 
priori information comprise the constraints over which 
entropy is maximized. A typical problem would be 

max  se 

N 

subject to f~i = ~ .  wijfj 
j = l  

and 3~ -> 0 

The accuracy of the computed field data depends on the 
optimization technique used to solve for the object function. 
In the present work, the Lagrange multiplier technique has 
been used to impose tlhe constraints. This converts the 
MENT procedure to a relaxation scheme for solving a 
system of non-linear equations with the Lagrange 
multipliers as unknowns. The Gauss-Siedel method has 
been found to be adequate to solve for the unknowns. As in 
other algorithms, the three-dimensional field has been 
reconstructed plane-by-l:,lane. 

Minimum energy 

The MENT algorithm can be generalized as an extremiza- 
tion of any functional F(x, y, z) related to the field function 
f(x,y,z). Gull and Newton tS] have suggested four such 
functions which can be extremized to solve the problem of 
reconstruction. Entropy and energy functions are attractive 
and natural in engineering. The minimum energy method as 

implemented is described below: 

maximize - j 

subject to t~i = X wijfj 
j = l  

Compared to MENT, the energy minimization is simple to 
formulate. However, Gull and Newton tS] have concluded 
that this method produces a field which is negatively 
correlated and hence biased. 

Model object 

The algorithms presented above have been tested with a 
phantom object that is generated using the equation i2] 

cosGauss(x, y) = 1.09 [0.3cos(x, y) 

+ 0.8 (e { - [9(x-0.2)] 2 - [6(y-  0.1)] 2 } 

+ e ] - [8(x + 0.2)] 2 - [6(y + 0.35)]2 })] 

where 

cos(x, y) = 0.25 { 1 -- cos [27r(x + 0.5) 4/5] } 

X { 1 - -  COS [ 2 ~ ( y  -~- 0 .5)4/5]  } 

A numerically generated view of the phantom is shown in 
Figure 2. 
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Figure 2 Schematic of the cosGauss phantom object 

Table 1 Phantom object: performance of ART 

Algorithm Absolute max. error RMS error (%) CPU time (s) No. of iterations 

Simple ART 0.632 8.00 408.61 5001 
Gordo n ART 0.790 10.78 105.90 3379 
Gilbert ART 0.634 8.00 191.84 5001 
Anderson ART 0.634 8.00 216.08 5001 
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Table 2 Errors and convergence rates of simple ART 

No. of Total no. Angle of Absolute RMS Time No. of 
projections of rays view max. error error (%) (s) iterations 

2 100 90 0.852 13.18 0.88 53 
3 199 90 0.687 9.01 2.34 118 
5 496 90 0.632 8.00 408.61 5001 
10 1383 90 0.350 5.11 1529.78 5001 
5 418 180 0.583 7.22 4.26 118 
9 932 180 0.466 6.25 263.18 3001 
19 2726 180 0.143 3.38 312.74 2001 

Table 3 Phantom object: performance of MART 

5 Projections, 418 rays and 180 ° v iew angle 

Algor i thm Absolute RMS CPU time No. of 
max. error error (%) (s) iterations 

MART 1 0.238 2.70 10.57 288 
MART 2 0.238 2.70 8.44 187 
MART 3 0.238 2.70 6.71 115 

Table 4 Errors and convergence rates of MART3 

No. of Total no. Angle of Absolute RMS error (%) Time (s) No. of 
projections of rays v iew max. error iterations 

2 100 90 0.783 11.37 1.93 86 
3 199 90 0.338 3.85 3.48 101 
5 496 90 0.230 2.69 183.89 3001 
10 1383 90 0.106 1.76 686.49 1602 
5 418 180 0.238 2.70 6.71 115 
9 932 180 0.141 1.70 121.43 597 
10 1383 180 0.074 1.17 271.80 855 
19 2726 180 0.031 0.48 574.01 712 

Table 5 Phantom object: performance of MENT 

No. of No. of Angle of Absolute RMS Time No. of 
projections rays v iew max. error error (%) (s) iterations 

Maximum entropy: X = 0.05 

2 100 90 0.784 11.37 0.84 108 
3 199 90 0.342 3.87 4.19 114 
5 496 90 0.362 3.82 61.51 238 
10 1383 90 0.168 2.88 1451.23 622 
5 418 180 0.238 2.70 17.11 168 
9 932 180 0.348 3.22 90.95 1000 

Table 6 Phantom object: performance of minimum energy 

No. of No. of Angle of Absolute RMS Time No. of 
projections rays v iew max. error error (%) (s) iterations 

Maximum energy: X = 1.0 

2 100 90 0.952 14.06 0.41 20 
3 119 90 0.744 10.02 0.82 46 
5 496 90 0.738 9.77 4.91 59 
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Figure 3 A cosGauss phantom object: (a) reconstructed data 
using two views, 0 and 90°; (b) reconstructed data using nine 
views, 0-180 ° 

Numerical  data 

In the present work, the object field is discretized into 
50 × 50 cells of equal size. Assuming Mo uniformly spaced 
rays and No views, the total number of algebraic equations 
(P~NeMo) is typically 413 for five views. These equations are 
used to reproduce values of absorption coefficient at 2500 
locations. 

All algorithms considered here are iterative and a stopping 
criterion of 0.01% has been uniformly used. At conver- 
gence, the reconstructed and the original fields are separated 
by an amount, called error. Two error measures, namely 

E, = l f (x ,y ,z)- f (x ,y ,z)[  

and the normalized rms error 

E 2 

N 
y .  - 2 

[f(x, y, Z) --/(X, y, Z)] 
j = l  

N 

1/2 

have 

× 100 
f(x, y, z) 

been calculated in tlais study. Numerical computations 
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Figure 4 Projections of a cosGauss phantom object: (a) 0 ° 
projections, (b) 45 ° projections. -I1-, noise level 0%; - + -, noise 
level 1%; , noise level 5% 
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Figure 5 Reconstructed phantom using noisy data 

were carried out on a DEC 3000/400 workstation with 32 MB 
RAM and a 175 MHz processor in single precision arithmetic. 

Results 

Results have been presented here for the reconstruction 
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Figure 7 Circular plate wi th  a circular hole: (a) d ist r ibut ion of  
or iginal  f ield tz; (b) contours of  or ig inal  f ield 

algorithms described above, in terms of errors  E 1 and E 2, 
number of iterations and sensitivity to noise in projection 
data. 

Reconstruct ion  errors 

Errors due to reconstruction are examined here. The ART, 
MART and MENT group of algorithms are separately 
considered. A given algorithm works well within a range of 
relaxation parameters. The best value of the relaxation 
parameter which gives minimum error and fastest decay of 
error has been determined through numerical experiments 
and has been reported for each algorithm. 

Errors in A R T  
Table 1 compares the performance of the ART family of 
algorithms. Simple ART reconstructs the field with lowest 
RMS as well as maximum absolute error. The error in the 
field predicted by Gilbert ART and Anderson ART are close 
to each other. Gordon ART has the largest maximum and 
RMS errors, but requires fewer iterations and a smaller CPU 
time. Simple ART is seen to require the largest number of 
iterations and the greatest CPU time. In the present work, 

simple ART is used for further analysis because of its 
simplicity and relatively better accuracy. 

Simple ART is further analyzed by varying the number of 
projections, number of rays, noise level and angle of view. 
Table 2 is a summary of results obtained in this context at 
zero noise level. It can be seen that ART displays a 
systematic behaviour. An increase in the number of rays for 
a given total angle of view decreases the maximum and 
RMS errors. The location of the maximum error coincides 
with the jump surface in the field variable. Further, results 
predicted by three projections with a 90 ° view angle and five 
projections with a 180 ° view angle show that the errors are 
less in the latter. Similar results are seen in 10(90°) - 
10(180 ° ) and 5(90°)-9(180 ° ) projection sets. This shows 
that increasing the angle of view decreases the error levels. 
Errors also depend on the combination of projection angles. 
Numerical experiments show that meaningful results are 
obtained when at least two projections are orthogonal to 
each other. 

Errors in M A R T  
As described earlier, three forms of MART have been 
implemented. The largest relaxation factor that avoids 
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F i g u r e  8 Circulate plate with a circular hole: contours of 
reconstructed field. (a) nurnber of projections = 2 and angle of 
view = 90°; (b) number of projections = 5 and angle of v iew = 
180°; (c) number of projections = 9 and angle of v iew = 180 ° 

divergence has been used for computation. The three 
MART algorithms thus require different values of X. The 
error estimates computed using 5(180 ° ) projections for three 

forms of MART algorithms are given in Table 3. All the 
algorithms predict the shape of the phantom object with 
comparable error. However, convergence with MART3 is 
rapid and works with a high value of relaxation parameter. 
The overall error levels are much smaller than in ART 
algorithms. Table 4 shows the detailed performance 
MART3 with respect to the number of projections and 
angle of view. Error levels with a smaller number of views is 
high and these decay fast with increasing number of views. 

A qualitative feel for the reconstructed object can be seen in 
Figure 3. Figure 3(a) and 3(b) show the reconstructed fields 
of the phantom that use two and nine projections, 
respectively. There are significant structural differences 
between Figures 2 and 3(a) while Figures 2 and 3(b) are 
quite similar. 

Errors in MENT 
Although MENT is an optimization-type of algorithm, 
MART converges to the MENT solution TM. However, 
MENT reduces the problem of reconstruction to a solution 
of non-linear simultaneous equations which can be solved 
by a Gauss-Siedel iteration scheme. Table 5 shows the error 
levels observed using MENT. When the number of 
projections is high, the error levels in MENT are seen to 
be high when compared to MART. However the overall 
characteristics of convergence are similar to MART. 

The minimum energy method (Section 3.6) has also been 
tested using two to five projections. It converges rapidly but 
its performance is poor and error levels are high (Table 6). 

Ef fec t  o f  n o i s e  leve ls  o n  r e c o n s t r u c t i o n  e r ro rs  

The performance of the algorithms given above has been 
determined using perfect (projection) data. An overall 
conclusion that can be drawn is that MART3 is better 
when compared to the other algorithms. In experiments, 
the projection data will be superimposed with noise. 
Since the reconstruction algorithms address inversion of 
ill-conditioned matrices, it is reasonable to expect each of 
them to be sensitive to noise in the data. In the present study, 
the issue of amplification of noise during reconstruction is 
addressed. For definiteness, MART3 is used to invert the 
noisy data. 

Noise in data comes from various sources, such as the 
method of the experimental technique and types of source 
and detector. For example, for a "y-ray source the initial 
intensity I 0 has a Poisson distribution in time. This 
introduces noise in the projections and this will also have 
a Poisson distribution since the projection operator (the path 
integral) is linear. In the present work, noise (up to 20%) 
using a Poisson random number generator has been added to 
projection data. Figure 4(a) and 4(b) compare the 0 - 4 5  ° 

projections of the phantom object with 0, 1 and 5% noise 
levels. Errors in reconstruction have been determined 
consistently with respect to the original model (noise-free) 
object. 

Figure 5 shows a reconstructed phantom using noisy data. 
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Figure 9 Square plate with five circular holes: (a) distribution of 
original field #; (b) contours of original field u; (c) contours of 
reconstructed field # 

At 5% noise, the reconstructed image is clearly recognizable 
in terms of peaks and valleys. Figure 6 shows the extent of 
reconstruction errors in MART3 as a function of noise in the 
projection data. Several combinations of views and projec- 
tion angles have been considered. The results shown 
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Figure 10 Square plate with five circular inclusions: (a) 
distribution of original field u; (b) distribution of reconstructed 
field/~; (c) contours of reconstructed field/~ 

increase in error (El as well as E2) with noise in the input 
data. The RMS error in reconstruction is consistently larger 
than the noise level in the projections, varying by a factor of 
1.1-2. A large number of views with a limited projection 
angle (10 and 90 °, for example) in fact leads to deterioration 
of errors from the projections. While no clear trend is seen 
in the maximum error, the RMS error shows the following 
result. Fewer views with a larger view angle amplify noise 
in the input data to a minimum extent. In contrast, a greater 
number of views and a smaller view angle amplify noise 
significantly. 

The algorithms presented above are now used to reconstruct 
physical objects with internal features. 

Appl icat ion  1: circular p la te  w i t h  a centra l  hole 

A circular plate with a circular hole is simulated as an object 
with an absorption coefficient of 1 everywhere outside the 
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hole and 0 inside the hole. Figure 7(a) shows the discretized 
object field for the circular plate and Figure 7(b) shows 
the contours of Figure 7(a). The circular plate with 50 
units diameter has a hole of 20 units. Numerical 
integration is carried out to generate projections. MART3 
with 2(90°), 5(180 °) and 9(180 °) projections is used to 
reconstruct the object. Figure 8 shows the reconstructed 
contours of the absorption coefficient using two, five and 
nine projections. 

Figure 8(a) shows the absorption coefficient of the plate 
reconstructed using two projections. It shows many 
contours of the absorption coefficient, the innermost contour 
having a value of 0.2,$4. The value of the absorption 
coefficient is much higher outside this contour and lower 
than 0.244 inside. Therefore, this contour can be assumed to 
be the edge of the circle. The original circular hole is 
predicted as a square hole with rounded comers. Figure 8(b) 
shows the reconstructed object using five projections. The 
innermost contour whose., value is 0.220 has a circular shape. 
However its size is less; than the actual size of the hole. 
Finally, Figure 8(c) (with nine projections) shows a contour 
which is nearly circular in shape and is close to the actual 
size of the hole. 

Application 2: square plate with five holes 

The object studied in Application l is simple in shape. 
General industrial objects will have complex geometries 
and a greater number of voids and inclusions. Figure 9(a) 
and 9(b) shows the simulation of field data for square plate 
with five holes. The plate is square of 50 × 50 units and has 
five holes, each having a radius of 5 units. The field is 
represented as an absorption coefficient equal to 1 every- 
where outside the holes and 0 inside the holes. Figure 9(c) 
shows the contours of the absorption coefficient in the 
reconstructed field using MART3 with five projections. Five 
small, nearly circular, contours with an identical value of 
0.225 are seen in this figure. 

Application 3: squarE: plate with five circular 
inclusions 

In Applications 1 and 2, the field has a value of 0 and 1 
which clearly distinguishes the holes from the objects. In 
this section circular holes are replaced by circular inclusions 
whose absorption coeffic, ient is slightly larger than the plate 
material. Figure 10(a) shows the distribution of field value; a 
value of 1 is given outside the inclusions and 1.2 within the 
inclusions. Figure 10(b) shows the reconstructed field using 
MART3 and Figure 10(c) shows the contours of recon- 
structed field. Five circular regions are clearly seen in the 
figure. The innermost circular contours have a field value of 
1.19, while it is less than 1.1 outside these contours. Hence 
the algorithms are seen to predict the presence of inclusions 
in the plate. 

Conclusions 

The performance of ART, MART and MENT family of 

algorithms under limited data conditions (when applied to 
simulated objects in NDT) is presented. The major 
observations of the study are as follows. 

• MART3 performs better than all other algorithms. 
• All algorithms considered show a systematic behaviour 

with respect to the number of projections, view angle and 
noise level. 

• Simple ART accommodates with a high value of relaxa- 
tion. However, its performance is poor when compared to 
MART. 

• The minimum energy method predicts a field with high 
elTor. 

• Noise amplification is reduced for all algorithms if fewer 
views and a large view angle are considered. 

• The size and shape of the voids and inclusions (present 
inside solid objects) are predicted reasonably well. 

Nomenclature 

dx, dz 

e 
E1 
E2 
fJ2 
fj 
Fj 
/0 

I( r,O ) 
lii 
M 
Mo 
N 
r 

s 
wij 
x , y , z  
X,Y,S 

cell sizes respectively in the xand  z 
directions 
stopping criterion 
absolute maximum error 
RMS value of error 
field value of the/~h cell 
energy of field f/ 
entropy of field fj 
Initial intensity of the radiation at the 
entrance 
intensity of the radiation at the exit 
length of intercept 
grand total number of rays 
total number of rays per view 
total number of cells 
coordinate normal to the direction of 
irradiation 
path along measuring beam 
weight function 
Cartesian coordinates 
Fourier wavenumber 

Greek letters 

q~/e 

# 

projection due to the i0th ray 
correction due to the ieth ray 
relaxation parameter 
absorption coefficient 
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