Nuclear imaging PET, SPECT

J. Kybic

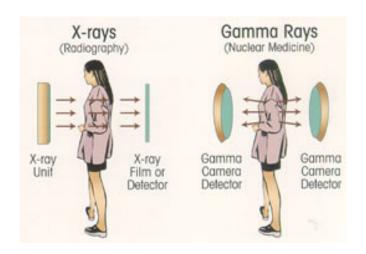
Department of cybernetics, FEE CTU http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz

2008-2022

Resources

- http://www.bic.mni.mcgill.ca/~louis/seminars/
 399-650/pet.html
- ▶ http:
 - //ocw.mit.edu/NR/rdonlyres/Nuclear-Engineering/
 22-01Introduction-to-Ionizing-RadiationFall2003/
 60AA5867-88AE-49C7-9478-2F4661B4EBBE/0/pet_spect.
 pdf
- http://www.pet.mc.duke.edu/rsna04/ turk-petspectphysicsRSNA2005.pdf
- http://www.nuclear.kth.se/courses/medphys/5A1414/ TOFPET1.pdf
- ▶ http://www.fmri.org,
- A. Webb: Introduction to Biomedical Imaging
- images by: Wikipedia, NIH, Moazemi et al., Rager et al., Virginia Commonwealth University...

Principles of nuclear imaging


Radioactivity

Gamma camera

SPECT

PET

Conclusions

- X-ray and CT
 - transmission imaging, external source

- ► PET, SPECT
 - emission imaging, source internal to body

X-ray and CT

- transmission imaging, external source
- Anatomic imaging (shape, fracture)

PET, SPECT

- emission imaging, source internal to body
- Functional imaging (metabolism, perfusion), tracer concentration

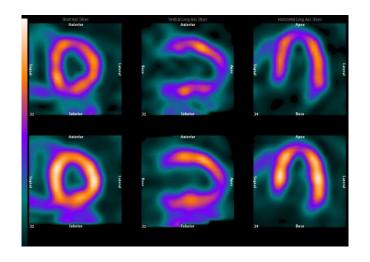
X-ray and CT

- transmission imaging, external source
- Anatomic imaging (shape, fracture)
- X-rays

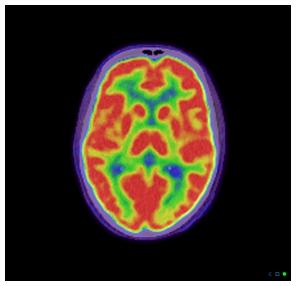
▶ PET, SPECT

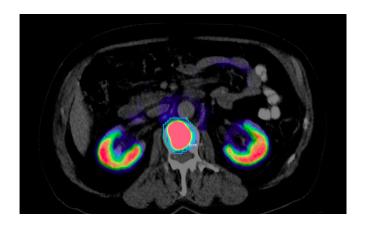

- emission imaging, source internal to body
- Functional imaging (metabolism, perfusion), tracer concentration
- $ightharpoonup \gamma$ rays

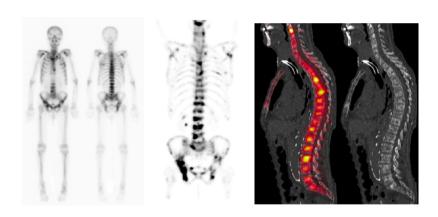
X-ray and CT


- transmission imaging, external source
- Anatomic imaging (shape, fracture)
- X-rays
- ► Good resolution, < 1 mm

PET, SPECT


- emission imaging, source internal to body
- Functional imaging (metabolism, perfusion), tracer concentration
- $ightharpoonup \gamma$ rays
- ► Lower resolution, $5 \sim 20 \, \text{mm}$


 $Hand,\ osteoarthritis,\ CT+SPECT$


Heart, myocardial perfusion, PET

Brain, FDG PET, metabolism

 $Renal \ (kidney) \ PET+CT, \ Ga-PSMA \ contrast \ agent.$

 ${\sf Metastases,\ SPECT+CT,\ MIP}$

Principles of nuclear imaging

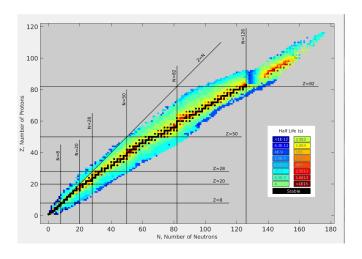
Radioactivity

Radioactive decay

Radionuclide production
Cyklotron
Radiopharmaceuticals

Gamma camera

SPECT


PET

Conclusions

Radioactivity

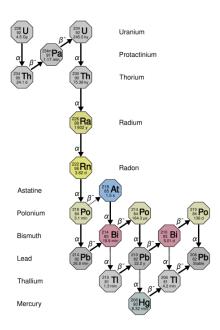
- ▶ element = same number of protons
- ▶ isotope/nuclide = same number of protons and neutrons
- \blacktriangleright excess of neutrons/protons \rightarrow instability \rightarrow radioactive decay chain \rightarrow stable isotope

Valley of stability

Isotopes with Z slightly smaller than N are stable.

Radioactive decay modes

Unstable parent nucleus → Daughter nucleus + particles (energy)


- ▶ Alpha decay (α)
- ightharpoonup Beta decay (β)
- ▶ Positron decay (β^+)
- Isomeric transition
- Electron capture
- ▶ Proton emission, neutron emission, . . .

Alpha decay

- **>** Spontaneous emission of α particles
 - ▶ 2 protons + 2 neutrons, ⁴₂He, charged
 - energy 4 \sim 8 MeV, speed 0.05c
 - strong interaction, low penetration (cm in air, μ m in tissue), easy shielding
 - important biological effects (relative biological effectiveness 20), DNA damage
 - no use in imaging, used in therapy
- happens in heavy nuclei and Be
- lacktriangle excess energy released as γ (electromagnetic) rays (photons)

$$\begin{array}{c} \overset{A}{Z}\mathsf{X} \stackrel{\alpha}{\longrightarrow} \overset{A-4}{Z-2}\mathsf{Y} + \overset{4}{\overset{}_{2}\mathsf{He}} \\ \underbrace{\overset{226}{88}\mathsf{Ra}} \stackrel{\alpha}{\longrightarrow} \underbrace{\overset{222}{86}\mathsf{Rn}} + \overset{4}{\overset{}_{2}\mathsf{He}} \\ \overset{radium}{\mathsf{radiom}} \stackrel{radon}{\longrightarrow} \underbrace{\overset{222}{86}\mathsf{Pb}} \end{array}$$

Decay chain

Beta decay

- \triangleright β particles = electrons e⁻
- Neutron conversion

$$n \xrightarrow{\beta} p + e^- + \bar{\nu}_e$$

 $\bar{\nu}_e$ — electron antineutrino

$$_{Z}^{A}X \xrightarrow{\beta} _{Z+1}^{A}Y + e^{-} + \bar{\nu_{e}}$$

- For neutron-rich (N > Z) isotopes
- ightharpoonup e $^-$ ejected with high energy (eta rays), continuous spectrum
- lacktriangleright remaining energy $=ar{
 u_e}$, nucleus recoil
- lackbox excited state nucleus $\longrightarrow \gamma$ rays

Beta decay

Examples

Isomeric transition

Excited state nucleus $\longrightarrow \gamma$ rays

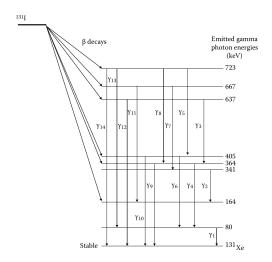
Metastable **Technetium** $^{99m}_{43}$ Tc

$$^{98}_{42}\text{Mo} \longrightarrow ^{99}_{42}\text{Mo}$$
 neutron bombardment

$$^{99}_{42} {
m Mo} \stackrel{eta}{\longrightarrow} ^{99m}_{43} {
m Tc} + {
m e}^- + ar{
u_e} \qquad {
m half-life} \ 2.7 \ {
m days}$$

$$^{99m}_{43}$$
Tc $\stackrel{\gamma}{\longrightarrow} ^{99}_{43}$ Tc half-life 6 h

Isomeric transition


Excited state nucleus $\longrightarrow \gamma$ rays

Metastable **Technetium** $^{99m}_{43}$ Tc

- most commonly used medical radioisotope
- $ightharpoonup \gamma$ (photon) energy 140 keV

Multiple decay processes

lodine

Positron decay

 β^+ decay

- \triangleright β^+ particles = positrons e⁺
- Proton conversion

$$p \xrightarrow{\beta^+} n + e^+ + \nu_e$$

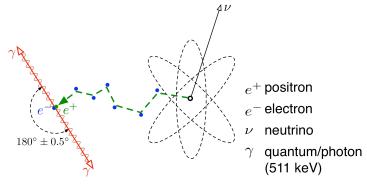
 ν_e — electron neutrino

$$_{Z}^{A}X \xrightarrow{\beta} _{Z-1}^{A}Y + e^{+} + \nu_{e}$$

▶ For proton-rich (N < Z) isotopes

Positron decay

 β^+ decay


Examples

$$\begin{array}{l} ^{23}_{12} {\rm Mg} \xrightarrow{\beta^+} \overset{23}{11} {\rm Na} + {\rm e}^+ + \nu_e \qquad \ \ \, {\rm half-life} \,\, 11 \, {\rm s} \\ ^{68}_{31} {\rm Ga} \xrightarrow{\beta^+} \overset{68}{30} {\rm Zn} + {\rm e}^+ + \nu_e \qquad \ \ \, {\rm half-life} \,\, 68 \, {\rm min} \end{array}$$

Positron decay

 β^+ decay

▶ Positron e^+ is **annihilated**: $e^+ + e^+ \longrightarrow \gamma + \gamma$

- ▶ two photons with energy 511 keV
- lacktriangle Parent/daughter nuclide energy difference $\gtrsim 1\,\mathrm{MeV}$

Electron capture

Proton absorbs inner electron


$$\begin{aligned} p + \mathrm{e}^- & \xrightarrow{\mathsf{EC}} n + \nu_e \\ {}_Z^A \mathrm{X} + \mathrm{e}^- & \xrightarrow{\mathsf{EC}} {}_{Z-1}^A \mathrm{Y} + \nu_e \end{aligned}$$

Example:

$$\underbrace{\overset{51}{24}\mathsf{Cr}}_{\mathsf{chromium}} + \mathsf{e}^{-} \xrightarrow{\mathsf{EC}} \underbrace{\overset{51}{23}\mathsf{V}}_{\mathsf{vanadium}} + \nu_{\mathsf{e}}$$

- Neutrino carries all energy (characteristic spectrum)
- ► Can occurr for smaller energy differences
- ightharpoonup Excited state nucleus $\longrightarrow \gamma$ rays

Decay mode chart

black: stable, light blue: β , green: β^+ or electron capture, orange: α , dark blue: fission, red: neutron emission, brown: proton emission

Nuclear imaging methods

▶ SPECT

- $ightharpoonup \gamma$ camera (2D)
- single photon emission computed tomography (3D)
- $ightharpoonup \gamma$ photon emitters

▶ PET

- positron emission tomography (3D)
- positron emitters

Ideal radionuclides for SPECT imaging

- Physical half-life long enough to allow preparation
- Physical half-life short enough to minimize long-term effects
- Pure γ emitter (isomeric transition, electron capture)
- ▶ Photon energy high-enough to penetrate tissue
- ▶ Photon energy low-enough for efficient shielding and detection

Single photon emitters

for SPECT nuclear imaging

	Half-life	$E_{ m photon}$ [keV]	
⁹⁹ ^{<i>m</i>} Tc	6 h	140	most used
¹²³ ₅₃	13 h	159	thyroid imaging
$_{53}^{111}$ In	2.8 d	171, 245	good, expensive
²⁰¹ TI	3 d	$70\sim80$	cardiac perfussion
$^{67}_{31}Ga$	3.25 d	$90 \sim 400$	tumor localization
¹³¹ ₅₃	8.1 d	$364\sim606$	radiotherapy
	¹¹¹ ₅₃ In ²⁰¹ TI	99mTc 6 h 123 l 13 h 131 ln 2.8 d 201 Tl 3 d 67 Ga 3.25 d	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Positron emitters

for PET nuclear imaging

ng
ation
ed, FDG
otherapy

Mostly short half-time — need to be produced in-situ.

Activity

- ▶ Activity A[Bq], 1Bq = 1 desintegration/s,
- ▶ Older unit $1 \text{ Ci} = 3.7 \cdot 10^{10} \text{ Bq} 1 \text{ g of radium}$

Activity

- ► Activity A[Bq], 1Bq = 1 desintegration/s,
- ▶ Older unit $1 \text{ Ci} = 3.7 \cdot 10^{10} \text{ Bq} 1 \text{ g of radium}$
- \blacktriangleright For N nuclei and a decay constant λ

$$A = \lambda N = -\frac{\mathrm{d}N}{\mathrm{d}t}$$

Exponential decay

► Exponential decay of *N*

$$N = N_0 e^{-\lambda t}$$

Exponential decay

► Exponential decay of *N*

$$N = N_0 e^{-\lambda t}$$

► Half-life

$$T_{1/2} = \log 2/\lambda \approx 0.693/\lambda$$
 [s]
$$N = N_0 \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}}$$

Exponential decay

Exponential decay of N

$$N = N_0 e^{-\lambda t}$$

► Half-life

$$T_{1/2} = \log 2/\lambda \approx 0.693/\lambda \text{ [s]}$$

$$N = N_0 \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}}$$

Exponential decay of A

$$A = A_0 e^{-\lambda t}$$
, with $A_0 = \lambda N_0$, $A = \lambda N$

Effective half-life

- ightharpoonup Physical half-life T_p
- ► Biological half-life T_b
- ► Effective half-life T_e

$$\frac{1}{T_e} = \frac{1}{T_p} + \frac{1}{T_b}$$

Effective half-life

- ▶ Physical half-life T_p
- ► Biological half-life T_b
- ► Effective half-life T_e

$$\frac{1}{T_e} = \frac{1}{T_p} + \frac{1}{T_b}$$

Note: $T_e < T_p$, $T_e < T_b$

Effective Half-Life

E.g., for an isotope with a 6-hr half life attached to various carrier molecules with different biological half-lives.

T _P	T_B	T _E	
6 hr	1 hr	0.86 hı	
6 hr	6 hr	3 hr	
6 hr	60 hr	5.5 hr	
6 hr	600 hr	5.9 hr	

Effective Half-Life

Assume 106 Bq localized in a tumor site, vary T

Nuclide	Half-life (T)	λ (sec ⁻¹)	N
1	6 sec	0.115	8.7 x 10 ⁷
2	6 min	1.75 x 10 ⁻³	5.7 x 10 ⁹
3	6 hrs	3.2 x 10 ⁻⁵	3.1 x 10 ¹¹
4	6 days	1.3 x 10 ⁻⁶	7.7 x 10 ¹²
5	6 years	4 x 10 ⁻⁹	2.5 x 10 ¹⁵

Effective Half-Life

Assume 1010 atoms of radionuclide localized in a tumor site, vary T

Nuclide	Half-life (T)	λ (sec ⁻¹)	Activity (Bq)
1	6 sec	0.115	1.15 x 10 ⁹
2	6 min	1.75 x 10 ⁻³	1.7 x 10 ⁷
3	6 hrs	3.2 x 10 ⁻⁵	3.2 x 10 ⁶
4	6 days	1.3 x 10 ⁻⁶	1.3 x 10 ⁴
5	6 years	4 x 10 ⁻⁹	40

Principles of nuclear imaging

Radioactivity

Radioactive decay

Radionuclide production

Cyklotron

Radiopharmaceuticals

Gamma camera

SPECT

PET

Conclusions

Radionuclide production

- Neutron capture
- Nuclear fission
- Radionuclide generator
- ► (Poisitive) ion bombardment
 - Linear accelerator
 - Cyclotron

Neutron capture

Neutron activation/neutron bombardment

- lacktriangle Nuclear reactor, "thermal" neutrons, low energy $0.03\sim 100\,\mathrm{eV}$
- ▶ Yield depends on neutron flow ϕ , cross section σ , decay constant λ , amount of carrier (source) material
- Chemical/physical purification

Neutron capture

Neutron activation/neutron bombardment

- lacktriangle Nuclear reactor, "thermal" neutrons, low energy $0.03\sim 100\,\mathrm{eV}$
- ▶ Yield depends on neutron flow ϕ , cross section σ , decay constant λ , amount of carrier (source) material
- Chemical/physical purification

$$\mathsf{n} + {}^{98}_{42}\mathsf{Mo} \longrightarrow {}^{99}_{42}\mathsf{Mo} + \gamma$$

with proton emission

$$n + {}^{32}_{16}S \longrightarrow {}^{32}_{15}P + p$$
 half-life 14 days

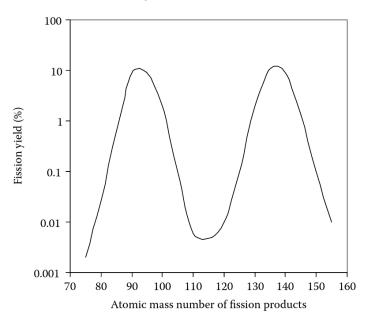
Radionuclides produced by neutron capture

Radionuclides produced by neutron absorption.

Radionuclide	Production Reaction	Gamma-Ray Energy (keV)	Half-Life	σ (Barn)
⁵¹ Cr	⁵⁰ Cr(n, γ) ⁵¹ Cr	320	27.7 days	15.8
⁵⁹ Fe	⁵⁸ Fe(n, γ) ⁵⁹ Fe	1099	44.5 days	1.28
⁹⁹ Mo	98 Mo(n, γ) 99 Mo	740	66.02h	0.13
131 I	$^{130}\text{Te}(n, \gamma)$ $^{131}\text{Te} \rightarrow ^{131}\text{I}$	364	8.04 days	0.29

Source: From Mughabghab et al., 1981.

Mostly used for radiotherapy (except \$\frac{99}{42}\$Mo)


Nuclear fission

- ► Heavy nuclei (A > 92) $^{235}_{92}$ U, $^{237}_{92}$ U, $^{239}_{94}$ Pu, $^{232}_{90}$ Th irradiated by neutrons unstable
- ► Fission example

$$^{235}_{92}$$
U + 1_0 n \longrightarrow $^{99}_{42}$ Mo + $\overset{133}{\underbrace{50}}$ Sn 1_0 n

Chemical/physical purification

Fission product yield for $^{235}_{92}\text{U}$

Radionuclides produced by nuclear fission

Isotope	Gamma-Ray Energy (keV)	Half-Life	Fission Yield (%)
⁹⁹ Mo	740	66.02h	6.1
^{131}I	364	8.05 days	2.9
¹³³ Xe	81	5.27 days	6.5
¹³⁷ Cs	662	30 a	5.9

Source: From BRH, 1970.

Radionuclide generator

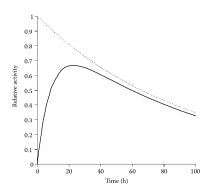
- ► Long half-time parent isotope
- ▶ Short half-time daughter isotope, $\lambda_2 > \lambda_1$

Radionuclide generator

- Long half-time parent isotope
- ▶ Short half-time daughter isotope, $\lambda_2 > \lambda_1$
- ▶ Daughter activity (for $A_{20} = 0$)

$$A_2 = \frac{\lambda_2}{\lambda_2 - \lambda_1} A_{10} \left(e^{-\lambda_1 t} - e^{-\lambda_2 t} \right)$$

Radionuclide generator

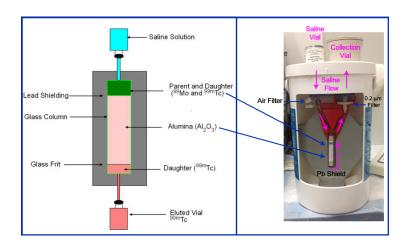

- Long half-time parent isotope
- ▶ Short half-time daughter isotope, $\lambda_2 > \lambda_1$
- ▶ Daughter activity (for $A_{20} = 0$)

$$A_2 = \frac{\lambda_2}{\lambda_2 - \lambda_1} A_{10} \left(e^{-\lambda_1 t} - e^{-\lambda_2 t} \right)$$

▶ After $\sim 10 T_{1/2}$, transient equilibrium

$$A_1 = A_{10}e^{-\lambda_1 t}, \qquad A_2 = A_1 \frac{\lambda_1}{\lambda_2 - \lambda_1}$$

Transient equilibrium



 $^{99}_{42} \mathrm{Mo}/^{99m}_{43} \mathrm{Tc}$ generator, $\textit{A}_{1},~\textit{A}_{2}$

Technetium generator

- 99/42 Mo produced by fission or neutron bombardment, half-life 67 h
- ► Adsorbed to alumina Al₂O₃
- $ightharpoonup {99 \over 42} Mo \stackrel{\beta}{\longrightarrow} {99 \over 43} Tc$ (and 15% to ${99 \over 43} Tc$),
- ▶ ^{99m}Tc half-life 6 h
- 99mTc is eluted by physiological saline solution
- 99mTc can by chemically manipulated
- ▶ When unused, the ratio $^{99}_{43}$ Tc/ $^{99m}_{43}$ Tc increases

Technetium generator (2)

Radionuclides produced by generators

Parent P	Parent Half-Life	$\begin{array}{c} \textbf{Mode of} \\ \textbf{Decay} \\ \textbf{P} \rightarrow \textbf{D} \end{array}$	Daughter D	Mode of Decay of D	Daughter Half-Life	Daughter γ Energy (keV)
⁶² Zn	9.1 h	β+	⁶² Cu	β+	9.8 min	511
		EC		EC		1173
⁶⁸ Ge	280 days	EC	⁶⁸ Ga	β^+	68 min	511
				EC		1080
81Rb	4.7 h	EC	$^{81}\mathrm{Kr^m}$	IT	13 s	190
82Sr	25 days	EC	82Rb	EC	76s	777
				β +		511
⁹⁹ Mo	66.02 h	β^-	99Tcm	IT	6.02 h	140
¹¹³ Sn	115.1 days	EC	113 In m	IT	1.66 h	392
¹⁹⁵ Hg ^m	40 h	IT	$^{195}Au^{m}$	IT	30.6s	262
_		EC				

Principles of nuclear imaging

Radioactivity

Radioactive decay

Cyklotron

Radiopharmaceuticals

Gamma camera

SPECT

PET

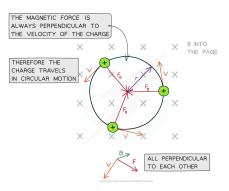
Conclusions

Ion bombardment

- ► Charged particles: mostly $p = {}^{1}_{1}H^{+}$, also ${}^{2}_{1}D^{+}$, ${}^{3}_{2}He^{2+}$, ${}^{4}_{2}He^{2+}$
- Accelerated to high energies by a linear accelerator or cyclotron (typical $E_p \sim 18\,\mathrm{MeV})$
- hit target, get absorbed in the nucleus, knock out a neutron
- ► Typical reactions

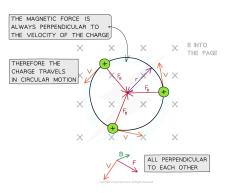
$${}^{11}_{5}B + p \longrightarrow {}^{11}_{6}C + n$$

$${}^{68}_{30}Zn + p \longrightarrow {}^{67}_{31}Ga + 2n$$

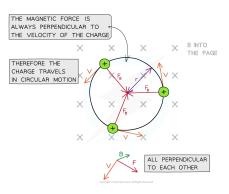

$${}^{18}_{8}O + p \longrightarrow {}^{18}_{9}F + n$$

▶ neutron deficit $\longrightarrow \beta^+$ emitters (or EC), mostly short-lived

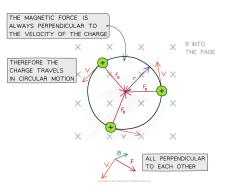
Radionuclides produced by ion bombardment


Radionuclide	Principal Gamma-Ray Energy (keV)	Half-Life	Production Reaction	
¹¹ C	511 (β+)	20.4 min	¹⁴ N(p, α) ¹¹ C	
^{13}N	511 (β ⁺)	9.96 min	¹³ C(p, n) ¹³ N	
¹⁵ O	511 (β ⁺)	2.07 min	¹⁵ N(p, n) ¹⁵ O	
18 F	511 (β+)	109.7 min	¹⁸ O(p, n) ¹⁸ F	
⁶⁷ Ga	93, 184, 300	78.3 h	⁶⁸ Zn(p, 2n) ⁶⁷ Ga	
¹¹¹ In	171, 245	67.9 h	¹¹² Cd(p, 2n) ¹¹¹ In	
$^{120}\mathrm{I}$	511 (β ⁺)	81 min	$^{127}\text{I}(p, 8n)^{120}\text{Xe} \rightarrow ^{120}\text{I}$	
¹²³ I	159	13.2h	$^{124}\text{Te}(p, 2n)^{123}\text{I}$ $^{127}\text{I}(p, 5n)^{123}\text{Xe} \rightarrow ^{123}\text{I}$	
$^{124}\mathrm{I}$	511 (β ⁺)	4.2 days	¹²⁴ Te(p, n) ¹²⁴ I	
²⁰¹ Tl	68–80.3	73 h	$^{203}\text{Tl}(p, 3n)^{201}\text{Pb} \rightarrow ^{201}\text{Tl}$	

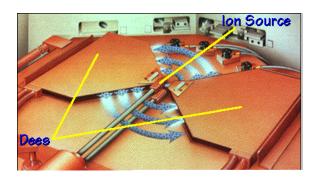
Cyclotron principle


▶ Magnetic (Lorentz) force $\mathbf{F} = q\mathbf{v} \times \mathbf{B}$, perpendicular to \mathbf{v} and $\mathbf{B} \longrightarrow \text{circular motion}$

Cyclotron principle


- ▶ Magnetic (Lorentz) force $\mathbf{F} = q\mathbf{v} \times \mathbf{B}$, perpendicular to \mathbf{v} and $\mathbf{B} \longrightarrow \text{circular motion}$
- ► Centripetal=centrifugal force $F = mv^2/r$

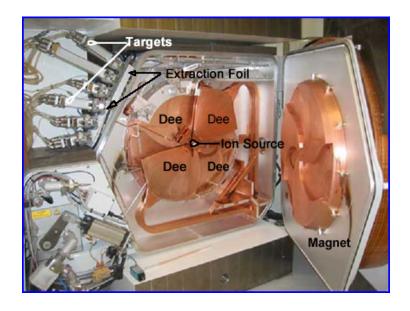
Cyclotron principle


- ▶ Magnetic (Lorentz) force $\mathbf{F} = q\mathbf{v} \times \mathbf{B}$, perpendicular to \mathbf{v} and $\mathbf{B} \longrightarrow$ circular motion
- ► Centripetal=centrifugal force $F = mv^2/r$
- $ightharpoonup r = rac{mv}{Bq}$, since $v \sim r \sim I \longrightarrow \text{constant } f$

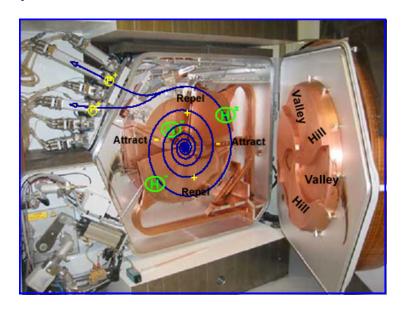
Cyclotron principle

- ▶ Magnetic (Lorentz) force $\mathbf{F} = q\mathbf{v} \times \mathbf{B}$, perpendicular to \mathbf{v} and $\mathbf{B} \longrightarrow$ circular motion
- ► Centripetal=centrifugal force $F = mv^2/r$
- $ightharpoonup r = rac{mv}{Ba}$, since $v \sim r \sim I \longrightarrow$ constant f
- Neglecting relativistic mass increase, electrode shape

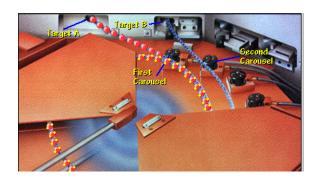
Cyclotron


- Vacuum
- ► Ion source (batch), mostly H⁻
- ► Hollow 'D' electrodes, high frequency AC voltage (MHz)
- ► Magnetic field (oriented vertically)

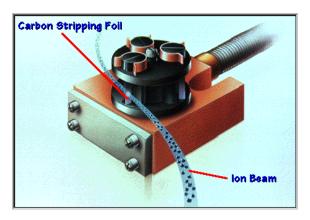
Cyclotron



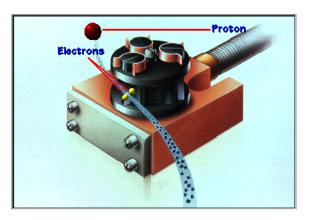
- Vacuum
- ► Ion source (batch), mostly H⁻
- ► Hollow 'D' electrodes, high frequency AC voltage (MHz)
- Magnetic field (oriented vertically)


Real cyclotron

Real cyclotron

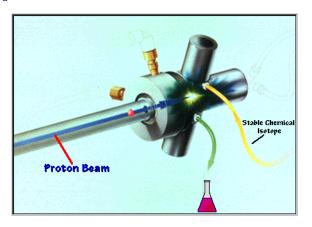


Carousel


- ightharpoonup after \sim 100s of cycles
- ▶ H[−] ion hits a thin carbon foil
- ightharpoonup looses electrons, converted $p = H^+$
- ▶ → opposite curvature
- ▶ Only part of the beam is deviated
- Foil lasts ~ 100 hours

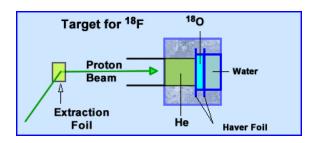
Carousel

- ightharpoonup after $\sim 100 \mathrm{s}$ of cycles
- ▶ H⁻ ion hits a thin carbon foil
- ightharpoonup looses electrons, converted p = H^+
- ▶ → opposite curvature
- ▶ Only part of the beam is deviated
- ► Foil lasts ~ 100 hours


Carousel

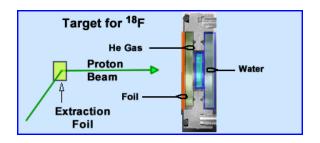
- ightharpoonup after $\sim 100 \mathrm{s}$ of cycles
- ▶ H[−] ion hits a thin carbon foil
- ightharpoonup looses electrons, converted p = H⁺
- ▶ → opposite curvature
- Only part of the beam is deviated
- ► Foil lasts ~ 100 hours

Target chamber

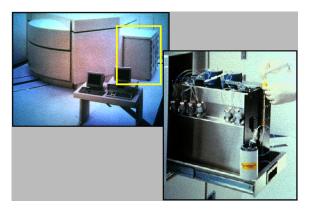

Reakční komora

- ► Filled with a stable isotope
- ► Radioactive isotope is created
- ► Shielded, small, easy to change

Target chamber


Reakční komora

- ▶ $^{18}_{8}$ O rare (0.2%), enrichment needed (distillation, very small ΔT_{boil})
- Cooling needed (by water)
- ► Thin cobalt alloy foils (havar)
- \triangleright Every few hours, ${}_{9}^{18}$ F can be extracted


Target chamber

Reakční komora

- ▶ $^{18}_{8}$ O rare (0.2%), enrichment needed (distillation, very small ΔT_{boil})
- Cooling needed (by water)
- Thin cobalt alloy foils (havar)
- \triangleright Every few hours, ${}_{9}^{18}$ F can be extracted

Biosynthesizer

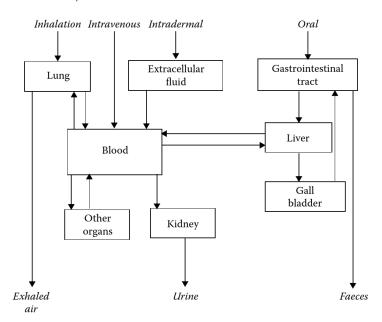
- Radiopharmaceutical radioactively labeled biologically active/compatible chemical compound.
- ▶ Quantitative & qualitative imaging of physiological processes.

Principles of nuclear imaging

Radioactivity

Radioactive decay Radionuclide production Cyklotron

Radiopharmaceuticals


Gamma camera

SPECT

PET

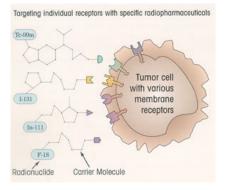
Conclusions

Administration, distribution and excretion

Administration of radiopharmaceuticals

- ► Mostly physiological (saline) solution
- ► Blood-brain barrier
 - Intravenously administered contrast agent does not get to the brain
 - Contrast agent administered to the cerebro-spinal fluid only gets to the brain and spine.

Administration of radiopharmaceuticals


- ► Mostly physiological (saline) solution
- Blood-brain barrier
 - Intravenously administered contrast agent does not get to the brain
 - Contrast agent administered to the cerebro-spinal fluid only gets to the brain and spine.
- Other metabolic barriers (blood-ocular, blood-air, ...)

Administration of radiopharmaceuticals

- ► Mostly physiological (saline) solution
- Blood-brain barrier
 - Intravenously administered contrast agent does not get to the brain
 - Contrast agent administered to the cerebro-spinal fluid only gets to the brain and spine.
- ▶ Other metabolic barriers (blood-ocular, blood-air, ...)
- Imaging afinity and metabolism speed

Radiopharmaceutical construction

Radionuclide + carrier molecule (+ probe)

Radionuclide	Pharmaceutical	Indication/Use	Administered Activity (MBq)
⁶⁷ Ga	Citrate	Tumour imaging, infection/ inflammation imaging	150a
81Kr ^m	Krypton gas	Lung ventilation imaging	6000a
⁹⁹ Tc ^m	Albumin	Cardiac blood-pool imaging, peripheral vascular imaging	800a
⁹⁹ Tc ^m	Colloids, including tin colloid and sulphur colloid	Oesophageal transit and reflux Liver imaging Bone marrow imaging, GI bleeding	40 ^a 80 ^a , 200 (SPECT) ^a 400 ^a
99Tcm	DTPA	Lung ventilation imaging (aerosol)	80a
		Renal imaging/renography	300a
		Brain imaging (static)	500a, 800 (SPECT)a
		First-pass blood-flow studies	800a
⁹⁹ Tc ^m	DMSA	Renal imaging (DMSA(III)) Tumour imaging (DMSA(V))	80 ^a 400 ^a
99Tcm	ECD	Brain imaging	500a
99Tcm	Erythrocytes (normal)	GI bleeding	400a
		Cardiac blood-pool imaging or peripheral vascular imaging	800a
99Tcm	Erythrocytes (heat denatured)	Spleen imaging	100a
⁹⁹ Tc ^m	Exametazime	Cerebral blood-flow imaging (SPECT)	500a
⁹⁹ Tc ^m	Iminodiacetates (IDAs)	Functional biliary system imaging	150a
99Tcm	Leucocytes	Infection/inflammation imaging	200a

Typical

Radionuclide	Pharmaceutical	Indication/Use	Typical Administered Activity (MBq)	
99Tcm	Macroaggregated albumin	Lung perfusion imaging	100a, 200 (SPECT)a	
⁹⁹ Tc ^m	MAG3	Renal imaging/renography	100a	
		First-pass blood-flow imaging	200a	
99Tcm	Nanocolloids	Lacrimal drainage	4ª	
		Sentinel node or lymph node imaging	20a	
99Tcm	Pertechnetate	Micturating cystogram	25a	
		Thyroid uptake	40a	
		Thyroid imaging, salivary gland imaging	80 ^a	
		Ectopic gastric mucosa imaging (Meckel's)	400°	
		First-pass blood-flow imaging	800a	
⁹⁹ Tc ^m	Phosphonate and phosphate compounds	Bone imaging	600a, 800 (SPECT)a	
99Tcm	Sestamibi	Myocardial imaging	300a, 400 (SPECT)a	
		Tumour imaging, breast imaging	900a	
99Tcm	Sulesomab	Infection/inflammation imaging	750a	
99Tcm	Technegas	Lung ventilation imaging	40a	
99Tcm	Tetrofosmin	Myocardial imaging	300a, 400 (SPECT)a	
		Parathyroid imaging	900a	
¹¹¹ In	Capromab Pendetide	Biopsy-proven prostate carcinoma imaging	185 ^b	
¹¹¹ In	DTPA	GI transit	10 ^a	
		Cisternography	30 ^a	

Radionuclide	Pharmaceutical	Indication/Use	Typical Administered Activity (MBq)	
111In Leucocytes		Infection/inflammation imaging	20 ^a	
¹¹¹ In	Pentetreotide	Somatostatin receptor imaging	110a, 220 (SPECT)	
¹¹¹ In	Platelets	Thrombus imaging	20a	
123 I	Iodide	Thyroid uptake	2 ^a	
		Thyroid imaging	20a	
		Thyroid metastases imaging	400a	
¹²³ I	Ioflupane	Striatal dopamine transporter visualisation	185ª	
^{123}I	mIBG	Neuroectodermal tumour imaging	400a	
^{131}I	mIBG	Neuroectodermal tumour imaging	20a	
131 I	Iodide	Thyroid uptake	0.2a	
		Thyroid metastases imaging	400a	
¹³³ Xe	Xenon gas	Lung ventilation studies	400a	
²⁰¹ Tl	Thallous chloride	Myocardial imaging	80-120a	
		Parathyroid imaging	80a	
		Tumour imaging	150a	

Radionuclide	Pharmaceutical	Indication/Use	Typical Administered Activity (MBq)	
¹¹¹ In	Leucocytes	Infection/inflammation imaging	20ª	
¹¹¹ In	Pentetreotide	Somatostatin receptor imaging	110a, 220 (SPECT)a	
¹¹¹ In	Platelets	Thrombus imaging	20a	
¹²³ I	Iodide	Thyroid uptake	2 ^a	
		Thyroid imaging	20a	
		Thyroid metastases imaging	400a	
123 I	Ioflupane	Striatal dopamine transporter visualisation	185ª	
¹²³ I	mIBG	Neuroectodermal tumour imaging	400a	
^{131}I	mIBG	Neuroectodermal tumour imaging	20a	
^{131}I	Iodide	Thyroid uptake	0.2a	
		Thyroid metastases imaging	400a	
¹³³ Xe	Xenon gas	Lung ventilation studies	400a	
²⁰¹ Tl	Thallous chloride	Myocardial imaging	80-120 ^a	
		Parathyroid imaging	80a	
		Tumour imaging	150a	

and others: selenium ⁷⁵Se...

Pharmaceuticals for PET imaging

Oxygen ¹⁵O

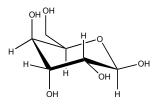
- ► Half-life ¹⁵O is 2.5 min.
- **▶ Carbon dioxide (**CO₂**)** brain blood flow
- **Oxygen** (O_2) oxygen consumption in myocardium, tumors
- ▶ Water (H₂O) myocardium perfusion
 - + not influenced by metabolism
 - background ¹⁵O activity in lungs and blood vessels

Nitrogen ¹³N

- ► Half-life ¹³N is 10 min.
- ▶ Ammonia (NH₃) myocardium perfusion, blood flow
 - metabolized in v tissue

Carbon ¹¹C

- ► Half-life ¹¹C is 20.4 min.
- ▶ Acetic acid (CH₃COOH) myocardium perfusion, tumor metabolism
- ▶ Cocain, carfentanil,... brain opiod receptor mechanisms
- Deprenyl monoamine oxidase inhibitor, to study Parkinson disease
- Leucin, methionine... amino acid tracer, brain tumor detection


Fluorine ¹⁸F

- ► Half-time ¹⁸F is 109 min.
- ► Haloperidol neuroreceptor ligand, drug effects
- ▶ Sodium fluoride Na $^{18}\mathrm{F}^-$ skeletal imaging, osseous blood-flow, metastases. Better signal than $^{99m}\mathrm{Tc}$
- Fluorodopa... metabolised to dopamine, neurotransmiter studies
- ▶ Flourouracil... drug, nucleic acid tracer, chemotherapy dosage
- Fluorodeoxyglucose (FDG) glucose metabolism; neurology, cardiology, oncology. Penetrates blood-brain barier

Delivery Strategies: Metabolic pathways

FDG 2-fluoro-2-deoxy-glucose

B-D-glucose

FDG usage

- ► Brain function mapping
- \blacktriangleright ... glucose provides energy to the brain (for adults $\sim 100\,\mathrm{g/den})$

FDG usage

- ► Brain function mapping
- \blacktriangleright glucose provides energy to the brain (for adults $\sim 100\,\mathrm{g/den})$
- ► Tumor mapping
- ... tumors have no metabolic barier

FDG in Oncology

- FDG transport into tumors occurs at a higher rate than in the surrounding normal tissues.
- FDG is de-phosphorylated and can then leave the cell.
- The dephosphorylation occurs at a slower rate in tumors.

Applications of FDG

- ·Locating unknown primaries
- •Differentiation of tumor from normal tissue
- Pre-operative staging of disease (lung, breast, colorectal, melanoma, H&N, pancreas)
- ·Recurrence vs necrosis
- •Recurrence vs post-operative changes (limitations with FDG)
- ·Monitoring response to therapy

Rubidium 82Rb

- ► Half-life ⁸²Rb is 1.25 min.
- + Produced by a generator from Sr, (no cyclotron needed)
- Long positron free path \longrightarrow low spatial spatial resolution.
- + Short half-life → good temporal resolution
- Short half-life → weak signal
- Myocard perfusion
- Blood-brain barrier study

Principles of nuclear imaging

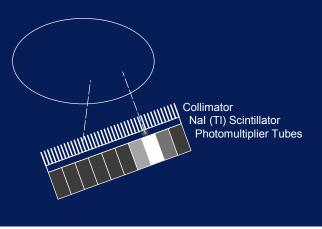
Radioactivity

Gamma camera

SPECT

PET

Conclusions


Gamma camera

Scintigraphy

2D imaging 65/153

Single Photon Detection with Gamma Camera

Scintillator materials

Scintillator	Density (g cm ⁻³)	Effective Z	Relative light yield	Decay constant (ns)	Wavelength of emission (nm)
Sodium Iodide (NaI)	3.67	50	100	230	410
Bismuth Germanate (BGO)	7.13	74	12	300	480
Barium Fluoride (BaF ₂)	4.89	54	5 15	0.6 - 0.8 630	220 (195) 310

- ► High Z advantageous
- ▶ BGO good for 511 keV
- ► For speed, use BaF₂ UV light produced

Principles of nuclear imaging

Radioactivity

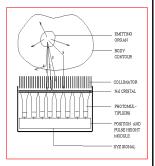
Gamma camera

Artefacts

Clinical applications of gamma camera

SPECT

PET


Conclusions

Artifacts: scattering

Scattering of photons in patient

- Because of limited energy resolution of the detector, primary and scattered photons which pass the collimator can not be classified properly. (In the ideal case, only primary photons are used to contribute to the image)
- Effects: haziness of images, quantization is degraded.

Artifacts: collimator blur

Collimator blur

- Because of the size of the holes, photons which are not entering the detector exactly perpendicular to the detector surface are also detected. This introduces uncertainty about the exact path the photon traveled.
- Effect: blurring which increases with larger holes. Trade off between sensitivity and resolution has to be found.

Artifacts: noise


Noise due to limited number of detected photons

- Doses and scanning time are limited while the efficiency of the collimator is also limited.
- Effects: Noise in the images. Low pass digital filtering required. This results in reduced resolution. Tradeoffs between dose, scanning time and collimator hole size have to be made.

Phantom experiments

Ground truth phantom

Detector + attenuation

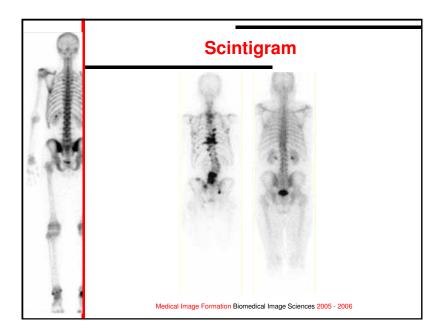
Detector + attenuation + scatter

Detector + attenuation + scatter + noise

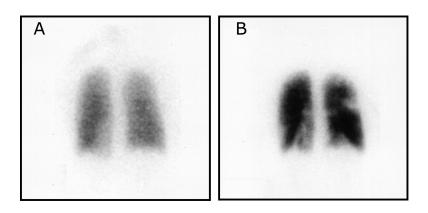
Principles of nuclear imaging

Radioactivity

Gamma camera


Artefacts

Clinical applications of gamma camera


SPECT

PET

Conclusions

Lung scintigraphy

Most frequent use. Ventilation (Xe), perfusion (99m Tc). Pulmonary embolism (blocked artery)

Principles of nuclear imaging

Radioactivity

Gamma camera

SPECT

PET

Conclusions

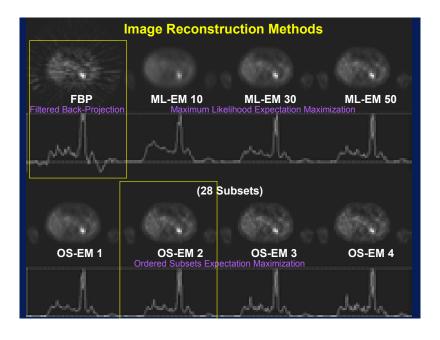
SPECT

Single Photon Emission Computed Tomography (SPECT)

Image is acquired by rotating the $\gamma\text{-camera}$ around the patient and taking images at different angles

SPECT

- Patient is injected with a γ-emitting radio-pharmaceutical
- Preferred energy: 100-250 keV
- Use of collimaters
- Collimated camera projections are acquired from different equidistant angles (30-120 projections over 180-360 degrees)
- Images are reconstructed using Filtered Back Projection (FBP) or Iterative Reconstruction
- Resolution: 12-20 mm
- To increase count-rate often two or three γ-camera heads are used



SPECT

SPECT, brain imaging

Principles of nuclear imaging

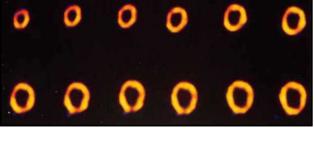
Radioactivity

Gamma camera

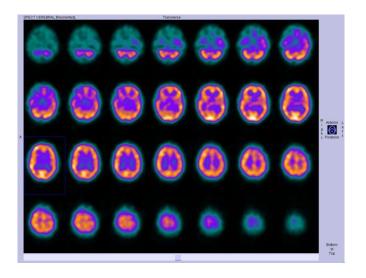
SPECT

Princip

Clinical applications of SPECT


PET

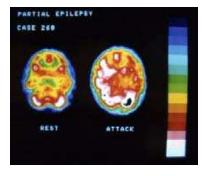
Conclusions



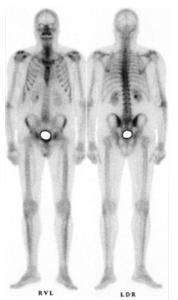
SPECT: Applications

Cardiac Imaging

SPECT, Brain perfusion



check for blocked vessels



SPECT: Applications

Epilepsy

SPECT, Whole-body imaging

Bone healing/fractures, cancer progression

SPECT, Whole-body imaging

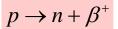
Increased activity in the knee

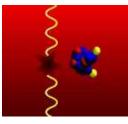
Principles of nuclear imaging

Radioactivity

Gamma camera

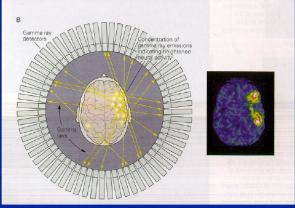
SPECT


PET


Conclusions

Principle of PET A2 Positron and electron annihilation A₁ Positron emission in the brain and emission of gamma rays Gamma ray Site of positron annihilation Electron (imaged point) Gamma ray 0-9mm Unstable Positron photon resolution radionuclide limit From: Principles of Neural Science (4th. Ed.) Kandel, Schwartz, & Jessell, p. 377. Columbia fMRI

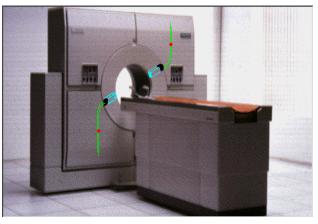
PET: annihilation



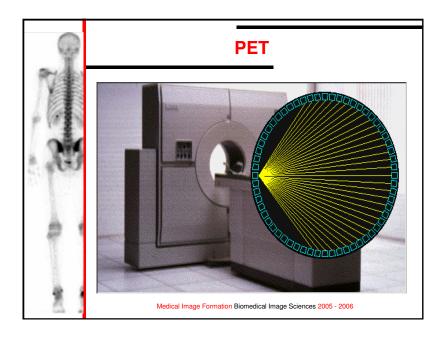
Annihilation Coincidence Detection

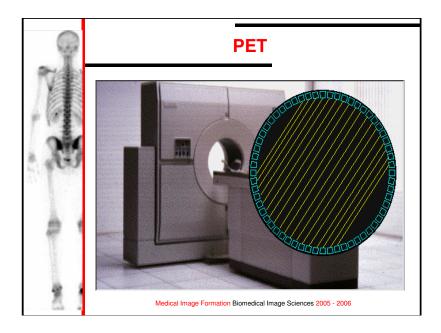
Isotope	Maximum
	Positron Range (mm)
F-18	2.6
C-11	3.8
Ga-68	9.0
Rb-82	16.5

Gamma Ray Detections to Location of Function

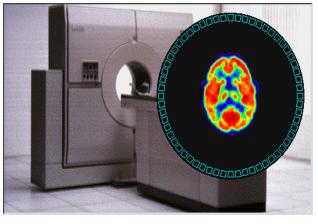

From: Principles of Neural Science (4th. Ed.) Kandel, Schwartz, & Jessell, p. 377.

Columbia fMRI



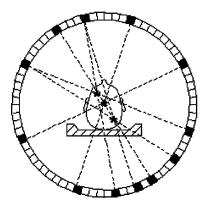



PET


Medical Image Formation Biomedical Image Sciences 2005 - 2006

PET

Medical Image Formation Biomedical Image Sciences 2005 - 2006


Coincidence Event

Electronic collimation

- Associate detections within interval τ (a few ns)
- lackbox Start timer and wait for the second detection \longrightarrow increment count
- ► *List mode* store detections with time stamps, postprocess
- No lead collimators → higher sensitivity wrt SPECT

Time of Flight PET

▶ Measure time interval between coincident photones

Multiple Rings, 2D - 3D For *n* detector rings: 2D 3D cross slices (n) slices (n-1)

total slices = 2n-1

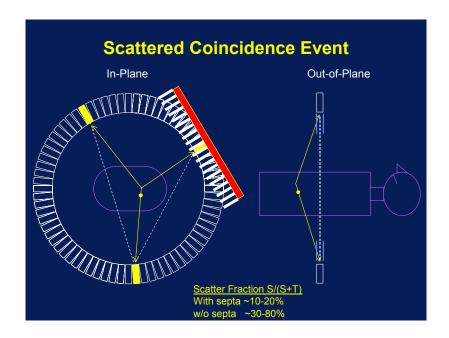
direct

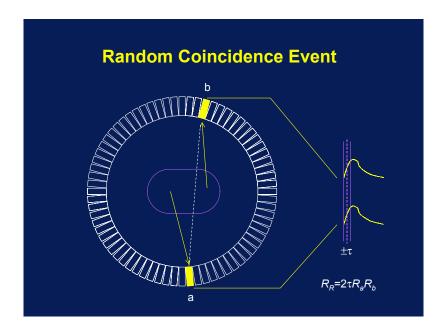
Principles of nuclear imaging

Radioactivity

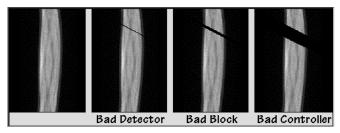
Gamma camera

SPECT

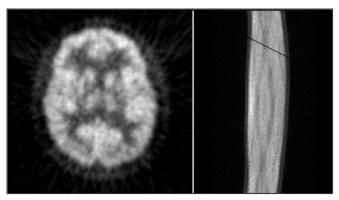

PET


Principle

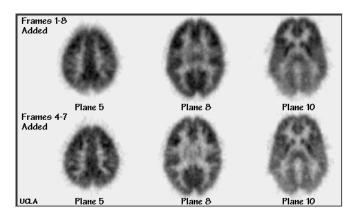
Artefacts and corrections


Clinical applications of PET Kinetic studies

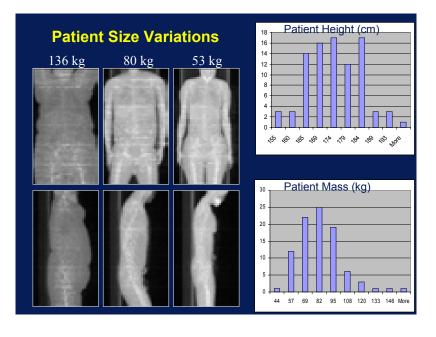
Conclusions



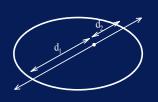
Detector failure


Sinogram

Detector failure

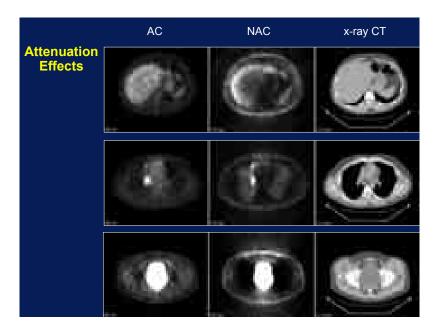


Rekonstrukce

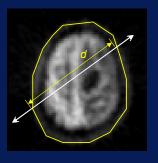

Patient motion

Lower row only uses images without motion.

Coincidence Attenuation

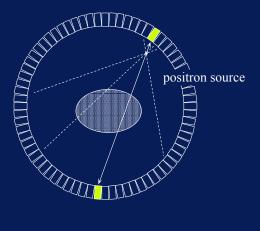


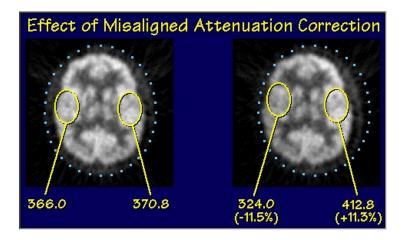
$$P_C = P_1 P_2$$

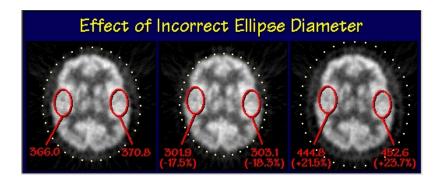

$$= e^{-\mu \cdot d_1} e^{-\mu \cdot d_2}$$

$$= e^{-\mu \cdot (d_1 + d_2)}$$

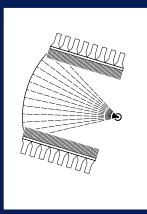
Annihilation radiation emitted along a particular line of response has the same attenuation probability, regardless of where it originated on the line.

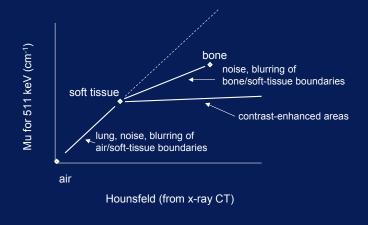



Calculated Attenuation Correction



$$I = I_0 e^{-\mu d}$$


Transmission Attenuation Measurement



SPECT/CT

Converting Attenuation Map from Hounsfeld to 511 keV attenuation Coefficients

PET — parametry

- ▶ Effective resolution $8 \sim 10 \, \text{mm}$
- ► Isotropic sampling 3 mm
- ➤ Transaxial FOV 60 cm, axial 10 cm. Increase axial FOV by increasing number of detectors (=higher cost), or shift the patient (=longer time, higher dose).
- $ightharpoonup 16 \sim$ 64 detector planes zachování linearity.

Principles of nuclear imaging

Radioactivity

Gamma camera

SPECT

PET

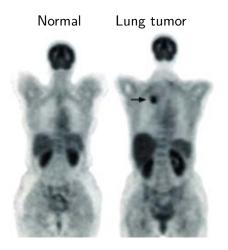
Principle

Artefacts and corrections

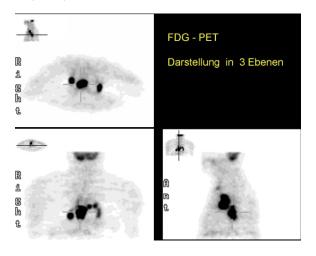
Clinical applications of PET

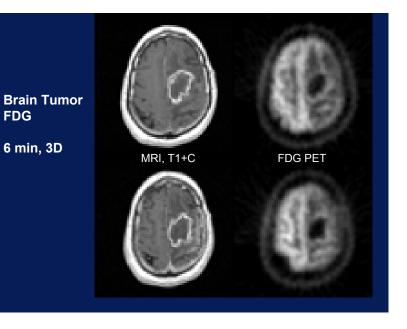
Kinetic studies

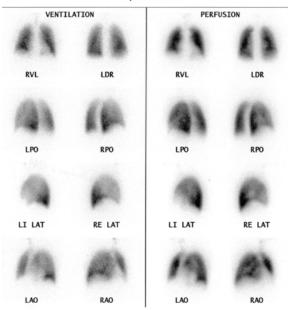
Conclusions


PET, whole body imaging

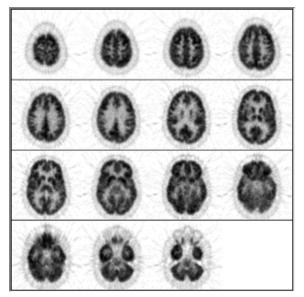
Tumor has faster metabolism \longrightarrow contrast agents accumulates there


PET + FDG


 $^{18}\mathrm{F}$ glucose (FDG)

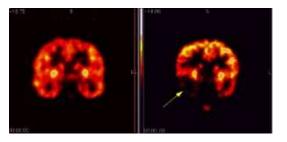

PET + FDG

¹⁸F glucose (FDG). Tumor detection.

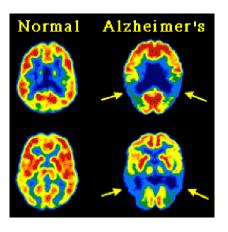


PET. Lung ventilation and perfussion

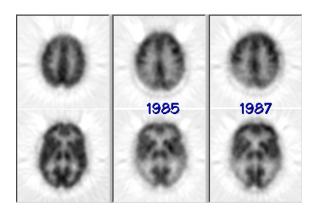
PET, head



perfusion, glucose metabolism

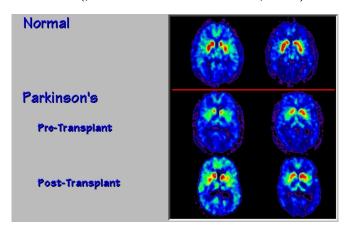

PET: Applications

Brain imaging

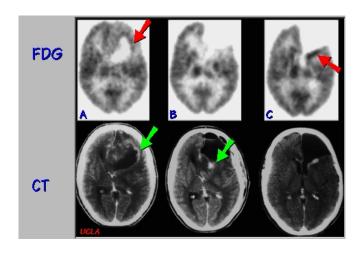


Medical Image Formation Biomedical Image Sciences 2005 - 2006

PET, brain

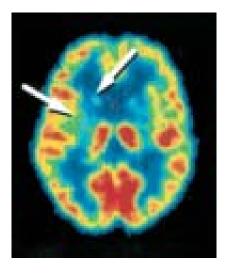

Alzheimer disease

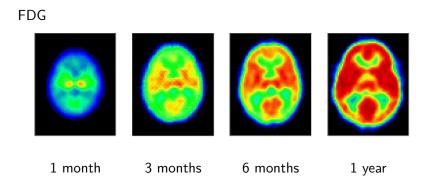
Hypometabolismus.


Parkinson disease

 $^{18}\mathrm{F}-\mathrm{DOPA}$ PET (precursor of neurotransmiter dopamine)

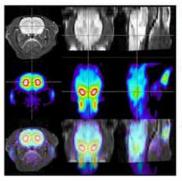
Transplantation of dopamin producing cells.


Brain tumor


Surgical removal

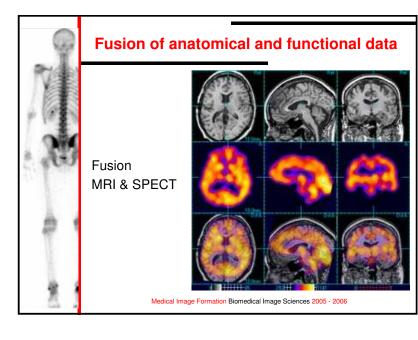
PET, Huntington disease

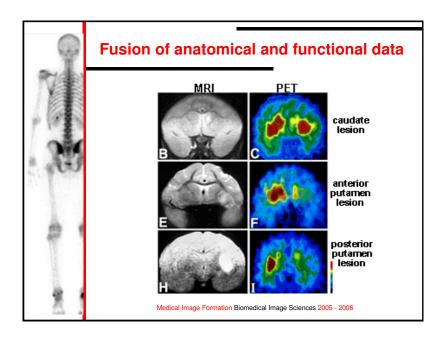
Reduced glucose metabolism

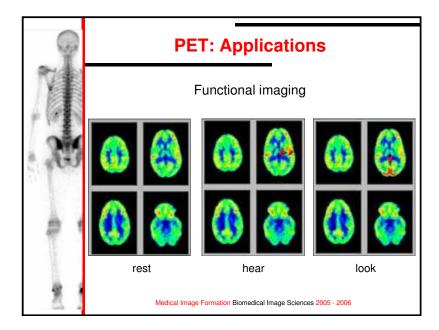


Brain development

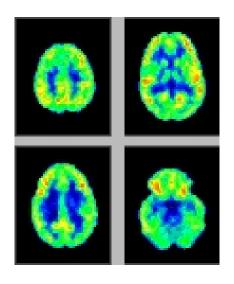
Fusion of anatomical and functional data

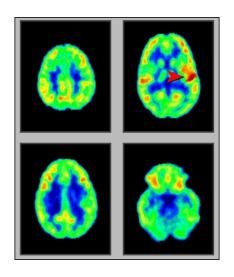


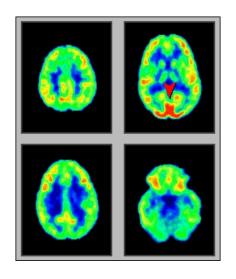

op: MRI images of a rat brain (axial, multi-slice 256 sq x 16 acquisition, coronal/sagittal views are interpolated)

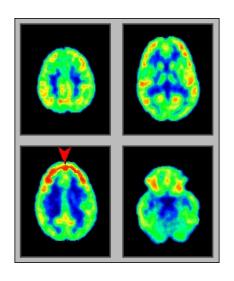

Center: 18p-labeled specific ligand for the dopamin-transport protein.
Compound accumulates in brain areas with a high level of dopamin containing neurons (striatum).

Bottom: Overlay in all three major directions.


Medical Image Formation Biomedical Image Sciences 2005 - 2006




Brain at rest


Acoustic stimulation

Visual stimulation

Cognitive activity

Memory and learning

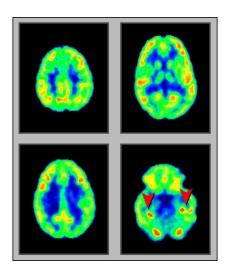
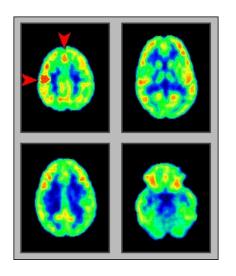
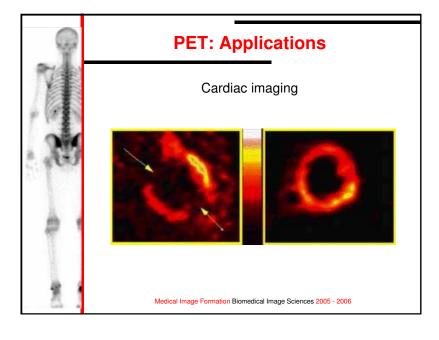
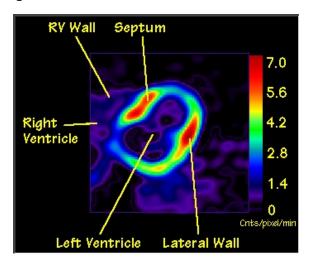
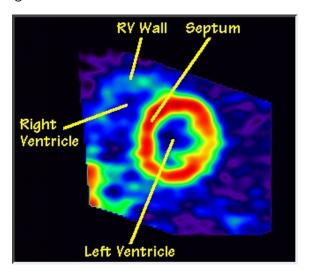




Image remembering

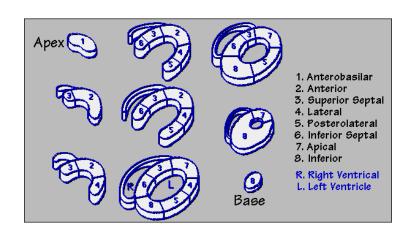
Movement



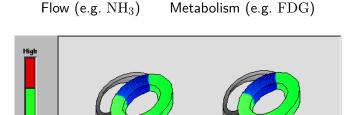
Leg movement


PET, heart

Contrast agent FDG


PET, heart

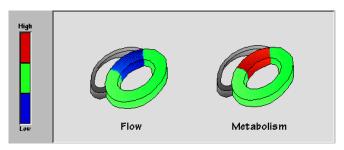
Contrast agent FDG


Short axis view

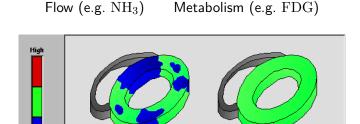
Heart segments

Flow (e.g. NH₃) Metabolism (e.g. FDG)

Normal

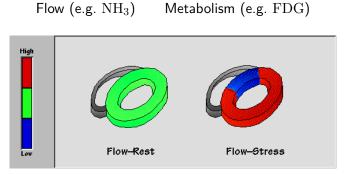


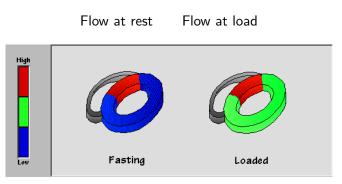
Not functional tissue, treatment not possible.


Metabolism

Flow

Flow (e.g. NH_3) Metabolism (e.g. FDG)


Insufficient perfusion, treatment possible.


Bad perfusion (ischemic), enlarged myocardium. Treatment possible if hte metabolism si normal or increased.

Metabolism

Flow

Bad perfussion after load test.

Ischemic myocardium needs more glucose.

Fasting After glucose is administerd

High
Flow Metabolism

Hibernating myocardium.

Flow (e.g. NH₃) Metabolism (e.g. FDG)

Idiopatically enlarged left ventricle. Only transplantation.

Principles of nuclear imaging

Radioactivity

Gamma camera

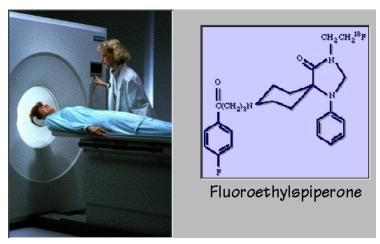
SPECT

PET

Principle
Artefacts and corrections
Clinical applications of PET

Kinetic studies

Conclusions

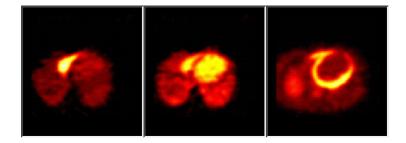

Kinetic study

- ▶ Study the evolution of the radiotracer concentration in time
- ▶ Identify model parameters (time and transport constants)

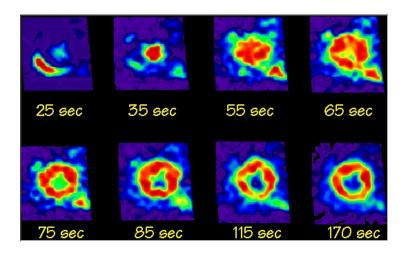
Kinetic study

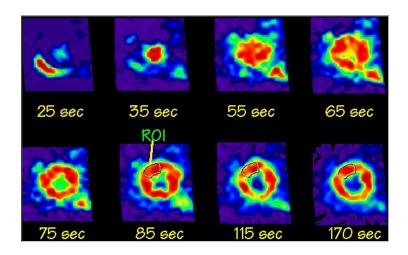
- ▶ Study the evolution of the radiotracer concentration in time
- ▶ Identify model parameters (time and transport constants)
- ► → Reproducibility

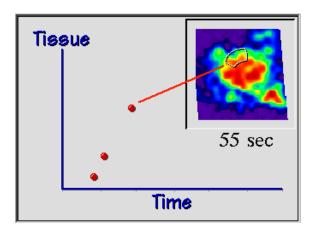
Brain

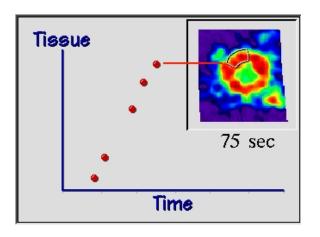


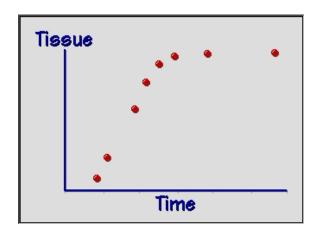
brain dopamine receptor tracer

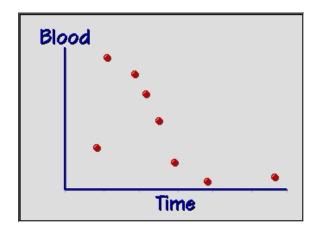

Brain

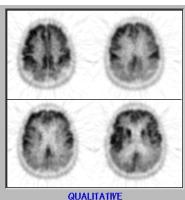



Heart



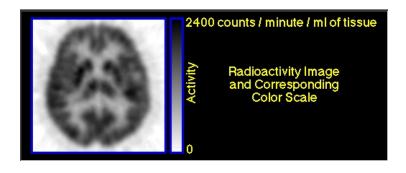

Heart

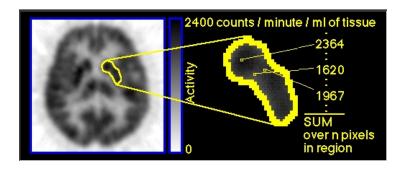




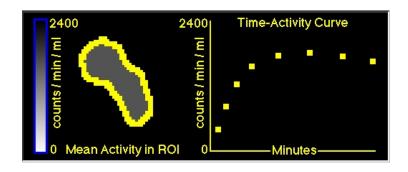
Qualitative × quantitative analysis

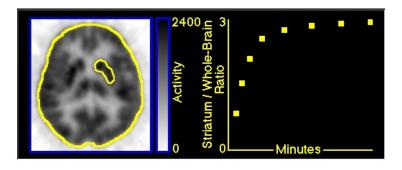
"This pattern is characteristic of Alzheimer's Disease."


Approaches to Image Analysis

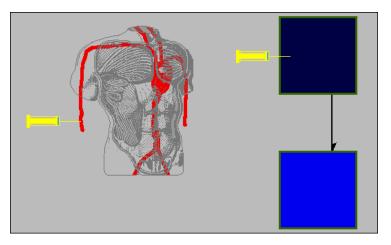

QUANTITATIVE

"Metabolic rate for glucose
in this region
is 8.37 mg/min/100g tissue"


Normalized radioactivity image


Mean ROI value

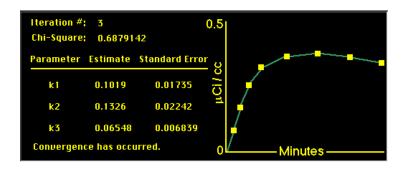
Time-activity ROI curve



Normalized time-activity ROI curve

Ratio of regional and total activity.

Tracer modeling of the ROI curve



- ► Find biophysical model parameters blood flow, concentrations, diffussion coefficients.
- ▶ Often blood samples need to be taken.

Tracer modeling of the ROI curve

Tracer modeling of the ROI curve

Nuclear imaging — summary

- + Functional imaging; intensity of the metabolic processes
- + Targeted and specific imaging, perfussion, oncology.
- Radiation dose.
- Manufacturing radiopharmaceuticals, expensive.
- Only partial anatomy information
- Bad spatial resolution.