

Functional Magnetic Resonance Imaging (fMRI)

Jan Petr

Institute of Radiopharmaceutical Cancer Research

MRI quick summary

- Spin property of hydrogen atoms
- Using strong B₀ magnetic field
 - 1.5 T, 3T clinical scanners
 - 7T experimental scanners

MRI quick summary

- Imaging magnetic properties of tissue
 - Proton density
 - T1-weighted relaxation
 - T2-weighted relaxation

Brain imaging with different modalities

PET (Positron emission tomography)

CT (Computed tomography)

CHANGE

ED

Functional MRI

- Image brain activity
- Spatial resolution ~mm
- Temporal resolution ~s

Brain regions

- Anatomical regions
- Individual difference
 - size?
 - shape?
 - topology?
- Functional regions

Brain regions

Examples of brain activation regions

Brain anatomy

- Neurons and glial cells
- Neurons communicate through axons
 - Through electrochemical processes

Brain anatomy

- Gray matter
 - Consists mostly of neurons
- White matter
 - Consists mostly of axons

Neuronal activation

- Integrative and signalling activity
 - Change cell membrane potential
 - Release of neurotrasmitters
- Ionic pumps to restore concentration gradients
 - Requires glucose and oxygen

Brain vasculature

- Blood supplies brain with oxygen and glucose
- Internal carotid and vertebral arteries
- Further branching to microvessels and capillaries

Neurovascular coupling

- Neurovascular coupling
 - Vasoactive substances \rightarrow Dilate vessels
 - \rightarrow Reduces resistance
 - \rightarrow Increase blood flow

fMRI physiology

- What is measured in fMRI?
 - Electrical impulses?
 - Neurotransmitters?
 - Blood perfusion?
- Blood perfusion through the level of oxygenation

History of BOLD imaging

- BOLD Blood Oxygenation Level Dependent
- Ogawa et al., 1990
 - Mice and rats at 7T MRI
 - Contrast on gradient-echo images influenced by proportion of oxygen in breathing gas
 - Increasing oxygen content \rightarrow increased contrast
- Ogawa et al., 1992
 - Humans at 4T MRI
 - Visual stimulation
 - Changes of contrast in visual cortex

BOLD signal and T₂*

- T₂^{*} relaxation decay of signal after excitation
- Two components of T_2^* :
 - Intermolecular interactions
 - \rightarrow dephasing \rightarrow T₂ signal decay
 - Macroscopic magnetic field inhomogeneity
 - \rightarrow dephasing \rightarrow T₂['] decay.

$$\frac{1}{T_2^*} = \frac{1}{T_2} + \frac{1}{T_2'}$$

BOLD signal and T₂*

- Why does blood oxygenation affect the BOLD MRI signal?
- Hemoglobin contains iron to bind the oxygen
 - Oxyhemoglobin (oxHb) is diamagnetic
 - Deoxyhemoglobin (dxHb) is paramagnetic
- Higher dxHb concentration
 - \rightarrow increased magnetic susceptibility
 - \rightarrow increased magnetic field inhomogeneities
 - \rightarrow decrease T_2^*
 - \rightarrow lower BOLD MRI signal

Hemodynamic response

- Neuronal activity
 - \rightarrow Increased O₂ metabolism \rightarrow Increased dxHb \rightarrow lower BOLD signal?
 - \rightarrow Neurovascular coupling \rightarrow Vessel dilation \rightarrow increased CBF
- \rightarrow dxHb concentration decreases \rightarrow higher BOLD signal

Hemodynamic response

Hemodynamic response

- Delay in BOLD signal change after activation
- Initial dip increase in oxygen consumption before CBF increase
- Undershoot CBF decrease faster than CBV

fMRI experimental design

Goal: To detect what regions/voxels are active during a specific task

What sequence should be used for fMRI

- Neuronal response 200-500ms
- Hemodynamic response ~s
- Standard whole brain sequence
 - ~1mm spatial resolution
 - Time resolution ~mins
- Fast single shot sequences
 - Echo planar imaging (EPI)
 - 500ms-2s acquisition

fMRI task design

Create a desired cognitive state

Detect brain signals associated with that state

Types of fMRI designs

- Block-design
 - Detection power
- Event-related design
 - More flexible
- Mixed design

Readout in fMRI design

- ↑ spatial resolution:
 - \downarrow time resolution
 - \downarrow coverage (number of slices)
- 1 temporal resolution requires:
 - \downarrow spatial resolution
 - \downarrow coverage (number of slices)
- ▲ SNR (signal-to-noise ratio):
 - \downarrow Decreased spatial resolution
 - 1 Increased scan time via averaging

fMRI study design

- BOLD signal combination CBV, CBF, CMRO₂
- Observe change of BOLD signal as a reaction on a task or event

I have my data, now what?

Data pre-processing

Structural MRI

functional MRI

Why pre-process fMRI data

- Data are noisy (task-related change <5%)
- Subjects move
- Things change during the experiment
- Preprocessing:
 - \rightarrow Increase signal to noise ratio
 - \rightarrow Helps to meet assumptions for statistical analysis

Subject motion

- Correct for head motion
 - 6 parameters rigid transformation
 - 3 rotations
 - 3 translations
- Lie very still
- Exclude subjects

Spatial normalization

- Register functional vs. anatomical per subject
- Register to average brain (MNI)
- Larger population
 - Higher power

Temporal filtering

- Temporal drift from scanner
 - High-pass filter
- Physiological cycles (cardiac, respiratory)

Spatial filtering

- Convolution with a Gaussian kernel
 - Improves
 - SNR
 - Specificity
 - Reduces

- Spatial resolution
- Sensitivity

Is there an activation?

• A finger tapping example

A simple fMRI experiment

- Passive tapping vs rest (7 cycles)
- Blocks of 6 scans per cycle
- Is there a change in the BOLD response between finger tapping and rest?

A simple fMRI experiment

- Activation \rightarrow compare:
 - Magnitude of response
 - Measurement noise
- T-test

Compare tap in green vs rest

General linear model

- Experimental data (Y) linear combination (β) of different model factors (x), along with uncorrelated noise (ε)
- Testing slope (β) against null hypothesis

General linear model for fMRI

GLM example: Design

- Block design, language task
 - Word generation (noun presented, verb generated)
 - Word shadowing (verb presented, thinking on it)
 - Rest

Design matrix:

- Fitting model to data ordinary least squares minimizing $\varepsilon^T \varepsilon$
- $y = X\beta + \varepsilon$ • $\hat{\beta} = (X^T X)^{-1} X^T y$

- Suboptimal fit
- β = [0,0,3]

• Active in word generation $\beta = [0.83, 0.16, 2.98]$

• Active in word generation and shadowing $\beta = [0.68, 0.82, 2.17]$

• Voxel not active $\beta = [0.03, 0.06, 2.04]$

GLM example: Voxelwise fit

GLM example: Significance

- Which of these series should we trust?
- Noise, effect size, number of measurements

concept

GLM example: Contrast

- Weights c of model parameters β
 - $c = [c_1 c_2 c_3]$ for $\beta = [\beta_1 \beta_2 \beta_3]$
- c = [100]
 - Active in word generating
- c = [1 -1 0]
 - More active in generating than in shadowing

GLM example: Hypothesis testing

- Null hypothesis (H_0) there is no effect
- Alternative hypothesis (H_a) we find the effect in data
- Reject the null hypothesis \rightarrow activation

$$c^{T}\beta = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.83 \\ 0.16 \\ 2.98 \end{bmatrix} = 0.83$$
$$H_{0}: \quad c^{T}\beta = 0$$
$$H_{a}: \quad c^{T}\beta \neq 0$$

GLM example: t-contrast

•
$$t = \frac{c^T \beta}{\sigma \sqrt{c^T (X^T X)^{-1} c}}$$

- follows Student's distribution (N-1 degrees of freedom)
- Probability that the null hypothesis is true
- p-value <0.05 we reject the null hypothesis</p>

GLM example: t-contrast example

GLM example: t-contrast example

Voxels active in word generation
c=[100]

GLM example: t-contrast example

Voxel active more in generating than shadowing
c=[1 -1 0]

fMRI applications

Surgery planning

fMRI application

- Addiction
 - Understanding of brain effects of long-term use
 - Development of treatment strategies for abusers
- Pharmacological studies
 - Effects on cognition
- Neuropsychological disorders
 - Disease markers may help in treatment
- Aging and brain development
 - Normal and pathological changes

fMRI summary

- Simple and non-invasive
- Very good time and spatial resolution
- Wide range of applications
- Problems with noise
- Limited clinical use

