Computed tomography (CT)

Jiří Hozman, Jan Kybic

2005-2021

Základní uspořádání systému CT

CT history

- **1917** mathematical theory (Radon)
- 1956 tomography reconstruction in radioastronomy (Bracewell)
- 1963 CT reconstruction theory
- 1971 CT principles demonstrated (Hounsfield)
- 1972 first working CT for humans (EMI, London, Hounsfield)
- 1973 PET
- 1974 Ultrasound tomography
- 1982 SPECT
- 1985 Helical CT
- 1998 Multislice CT, 0.5 s/frame

Johann Radon

(matematik)

* 16.12.1887 Děčín, ČR † 25.5.1956 Vídeň, Rakousko

1917 - "Uber die Bestimmung von Funktionen durch ihre Integral-werte langs gewisser Mannigfaltigkeiten", *Berichte Sachsische Akademie der Wissenschaften. Leipzig, Math.-Phis. Kl.*, v.69, pp. 262-267. V této práci pan Radon matematicky vyřešil rekonstrukci prostorového obrazu na základě znalosti jeho projekcí.

Sir Godfrey Newbold Hounsfield

1919-2004

Nottinghamshire, samouk, nenavštěvoval univerzitu Nobelova cena 1979

Sir Godfrey Hounsfield Nobel Prize in Medicine, 1979

2]

G amma Ray Source: 28,000 measurements, 9 day collection, 2.5 hour recon, 2hour display. X-ray source reduced collection to 9 hours. Clinical model took 18 sec

EMI-1, 1971: Atkinson Morley Hospital, England

Allan M. Cormack

1924-1998, narozen v Johannesburgu

Tomography modalities

x-rays — CT

- gamma rays PET, SPECT
- light optical tomography
- RF waves MRI
- DC electric impedance tomography
- ultrasound ultrasound tomography

Základní princip CT

CT vytváří obraz těla pacienta jako sérii tomografických sekcí (řezů). Každý řez je vytvořen matematickou rekonstrukcí předmětu ze znalosti průmětů (projekcí) předmětu do různých směrů.

Základní princip CT

Jednotlivé řezy objektu musí být rozděleny do sítě malých objemových elementů (voxels) se čtvercovou základnou a s konstantní hodnotou útlumu.

Základní fyzikální princip CT

CT systémy 1. generace

CT systémy 2. generace

CT systémy 3. generace

asi nejčastěji používané

CT systémy 4. generace

Rotuje jen zdroj, detektory stabilni

"Utvrzování svazku" (beam hardening)

"Utvrzování svazku" (beam hardening)

CT číslo - Haunsfieldovo číslo (HU)

Je vyjádřením kvantitativního hodnocení absorbčních vlastností tkáně.

K = 1000CT = K. <u>tkáně</u> vody $vody = 0, 19 cm^{-1}$ vody Měřeno monochromatickým zářením 73 keV. CT = 5263 tkáně - 1000 stupnice CT čísel = denzitní stupnice rozsah od -1000 až zhruba +1000, pro vzduch -1000, pro vodu 0

CT číslo - Haunsfieldovo číslo (HU)

močový měchýň 1000 CT tumony Iedviny atra játra krev slezina Madledvinky srdce Mankreas střeva 60 🛙 voda 40 0 MK 7/////// мама - 100 plice 200 - 200 🖉 vzduch - 400 CT - 1000

Generace, zpracování a detekce radiačního signálu CT systémů

CT systémy 2. generace (několik detektorů)

- pomalé a rychlé systémy
- sendvičový a lamelový kolimátor

Generace, zpracování a detekce radiačního signálu CT systémů

Detektory scintilační detektor (krystal) + fotonásobič

ionizační komory plněné plynem (xenon)

scintilační detektor (krystal) + fotodioda (fototranzistor)

Flat-panel detector (FPD) Thin-film transistor (TFT) array

Základní principy rekonstrukce obrazu

 $O(\xi, \eta)$ denzitní funkce = předmětová funkce lin. součinitel zeslabení (ξ,η) původní souř. Φ snímací úhel ξ rotovaná souř. rotovaná souř.

 $\mathsf{p}(\mathcal{E}',\Phi)$ paprskový součet či průmět

Základní principy rekonstrukce obrazu

$$p(\xi', \Phi) = \int o(\xi, \eta) d\eta' \quad I = I_0 \exp\left[-\int (\xi, \eta) d\eta\right]$$
$$o(\xi, \eta) \approx (\xi, \eta)$$
$$\left[p(\xi', \Phi) = -\ln\frac{I_0}{I}\right]$$
$$\frac{\xi' = \xi \cdot \cos \Phi + \eta \cdot \sin \Phi}{\eta' = -\xi \cdot \sin \Phi + \eta \cdot \cos \Phi} \quad \eta = \xi' \cdot \sin \Phi + \eta \cdot \cos \Phi$$

Radon transform

Projection in polar coordinates:

$$\begin{aligned} & P_{\varphi}(\xi') = \mathscr{R}\big[o(\xi,\eta)\big] \\ & P_{\varphi}(\xi') = \int_{L} o(\xi,\eta) \mathrm{d}I \end{aligned}$$

along the line L defined by φ a $\xi':$

$$\xi' = \xi \cos \varphi + \eta \sin \varphi$$

Equivalently

$$P_{\varphi}(\xi') = \int o(\xi' \cos \varphi - \eta' \sin \varphi, \xi' \sin \varphi + \eta' \cos \varphi) \mathrm{d}\eta'$$

Zobrazovací technika II (1)

16.12.2003

Zobrazovací technika II (1)

Zobrazovací technika II (1)

16.12.2003

 θ (degrees)

Shepp-Logan fantom

 θ (degrees)

 θ (degrees)

Periodicity RT vůči úhlu

Reconstruction methods

- Backprojection
- Fourier reconstruction
- Filtered backprojection
- Algebraic reconstruction (iterative)

Přímá zpětná projekce

(9)

6

$$\mathbf{i}(x,y) = \sum_{j=1}^{m} \mathbf{p}((x,\cos\Phi_j + y,\sin\Phi_j),\Phi_j)\Delta\Phi_j$$

Přímá zpětná projekce - hvězdicový artefakt

Central slice theorem

Projection Theorem, Věta o centrálním řezu)

$$P_{\varphi}(\xi') = \int o(\xi' \cos \varphi - \eta' \sin \varphi, \xi' \sin \varphi + \eta' \cos \varphi) \mathrm{d}\eta'$$

Fourier transform of the Radon transform by ξ' :

$$\mathscr{F}\left\{\mathscr{R}\left[o(\xi,\eta)\right]\right\} = \mathscr{F}\left\{P_{\varphi}(\xi')\right\} = \hat{P}_{\varphi}(\omega) = \int P_{\varphi}(\xi') \mathrm{e}^{-2\pi j \omega \xi'} \mathrm{d}\xi'$$
$$= \iint o(\xi' \cos \varphi - \eta' \sin \varphi, \xi' \sin \varphi + \eta' \cos \varphi) \mathrm{e}^{-2\pi j \omega \xi'} \mathrm{d}\xi' \mathrm{d}\eta'$$

Substitution $(\xi', \eta') \rightarrow (\xi, \eta)$:

$$\hat{P}_{\varphi}(\omega) = \int o(\xi, \eta) \mathrm{e}^{-2\pi j \omega(\xi \cos \varphi + \eta \sin \varphi)} \mathrm{d}\xi \mathrm{d}\eta$$

Central slice theorem

$$\hat{P}_{\varphi}(\omega) = \int o(\xi, \eta) \mathrm{e}^{-2\pi j \omega (\xi \cos \varphi + \eta \sin \varphi)} \mathrm{d}\xi \mathrm{d}\eta$$

Denote $u = \omega \cos \varphi$ $v = \omega \sin \varphi$

$$\hat{P}(u,v) = \int o(\xi,\eta) \mathrm{e}^{-2\pi j(\xi u + \eta v)} \mathrm{d}\xi \mathrm{d}\eta$$

and therefore

$$\begin{split} \hat{P}(u,v) &= \mathscr{F}\left\{o(\xi,\eta)\right\}\\ \hat{P}_{\varphi}(\omega) &= \mathscr{F}\left\{o(\xi,\eta)\right\}\left(\omega\cos\varphi,\omega\sin\varphi\right) = \hat{o}(\omega\cos\varphi,\omega\sin\varphi) \end{split}$$
Central slice theorem

$$\begin{split} \hat{P}(u, v) &= \mathscr{F} \left\{ o(\xi, \eta) \right\} \\ \hat{P}_{\varphi}(\omega) &= \mathscr{F} \left\{ o(\xi, \eta) \right\} (\omega \cos \varphi, \omega \sin \varphi) = \hat{o}(\omega \cos \varphi, \omega \sin \varphi) \end{split}$$

Slice of the 2D Fourier transform of the image o at angle φ is the 1D Fourier transform of the projection P_{φ} of the same image o.

Analytická rekonstrukce - 2D FT

Analytická rekonstrukce - 2D FT

Inverse Radonova transform

From the Fourier slice theorem:

$$\hat{P}(u,v) = \mathscr{F} \{ o(\xi,\eta) \}$$
$$o(\xi,\eta) = \mathscr{F}^{-1} \left\{ \hat{P}(u,v) \right\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{P}(u,v) e^{2\pi j (\xi u + \eta v)} du dv$$

Polar coordinates $u = \omega \cos \varphi$, $v = \omega \sin \varphi$:

$$o(\xi,\eta) = \int\limits_{0}^{\pi} \int\limits_{-\infty}^{\infty} \hat{P}_{\varphi}(\omega) \mathrm{e}^{2\pi j \omega (\xi \cos \varphi + \eta \sin \varphi)} |\omega| \mathrm{d}\omega \mathrm{d}\varphi$$

where $|\omega|$ is the Jacobian (determinant).

Inverse Radonova transform

$$o(\xi,\eta) = \int_{0}^{\pi} \int_{-\infty}^{\infty} \hat{P}_{\varphi}(\omega) e^{2\pi j \omega (\xi \cos \varphi + \eta \sin \varphi)} |\omega| d\omega d\varphi$$

can be written as

$$o(\xi,\eta) = \int_{0}^{\pi} Q_{\varphi}(\underbrace{\xi\cos\varphi + \eta\sin\varphi}_{\xi'}) \mathrm{d}\varphi$$
$$Q_{\varphi}(\xi') = \int_{-\infty}^{\infty} \hat{P}_{\varphi}(\omega) \mathrm{e}^{2\pi j \omega \xi'} |\omega| \mathrm{d}\omega$$

where $Q_{arphi}(\xi')$ is a modified projection

Inverse Radonova transform

$$\begin{split} o(\xi,\eta) &= \int_{0}^{\pi} Q_{\varphi}(\xi') \mathrm{d}\varphi \\ Q_{\varphi}(\xi') &= \int_{-\infty}^{\infty} \hat{P}_{\varphi}(\omega) \mathrm{e}^{2\pi j \omega \xi'} |\omega| \mathrm{d}\omega \\ Q_{\varphi}(\xi') &= \mathscr{F}^{-1} \left\{ |\omega| \hat{P}_{\varphi}(\omega) \right\} = \mathscr{F}^{-1} \left\{ |\omega| \right\} * P_{\varphi}(\xi') \end{split}$$

defining the exact inverse Radon transform

$$\begin{aligned} & P_{\varphi}(\xi') = \mathscr{R}\big[o(\xi,\eta)\big] \\ & o(\xi,\eta) = \mathscr{R}^{-1}\big[P_{\varphi}(\xi')\big] \end{aligned}$$

Filtered backprojection

Filtrovaná zpětná projekce

- Filter all projections P_φ(ξ') for all φ, get modified projections Q_φ(ξ')
- Backprojected modified projections and sum

$$\begin{split} o(\xi,\eta) &= \int_{0}^{\pi} Q_{\varphi}(\xi') \mathrm{d}\varphi \\ Q_{\varphi}(\xi') &= h(t) * P_{\varphi}(\xi') = \mathscr{F}^{-1} \left\{ H(\omega) \right\} * P_{\varphi}(\xi') \\ H(\omega) &= |\omega| \end{split}$$

Practical implementation of filtered backprojection

- **Problem:** Ideal filter $H(\omega) = |\omega|$ amplifies noise
- **Solution 1:** Make $\hat{P}_{\varphi}(\omega)$ frequency limited.

 $\mathsf{Ramakrishnan-Lakshiminaryanan} \longrightarrow \mathsf{Ram-Lak} \text{ filter:}$

$$H(\omega) = egin{cases} |\omega| & ext{if } |\omega| \leq \Omega \ 0 & ext{otherwise} \end{cases}$$

Practical implementation of filtered backprojection

- **Problem:** Ideal filter $H(\omega) = |\omega|$ amplifies noise
- **Solution 1:** Make $\hat{P}_{\varphi}(\omega)$ frequency limited.

 $\mathsf{Ramakrishnan-Lakshiminaryanan} \longrightarrow \mathsf{Ram-Lak} \text{ filter:}$

$$H(\omega) = egin{cases} |\omega| & ext{if } |\omega| \leq \Omega \ 0 & ext{otherwise} \end{cases}$$

 Ram-Lak filter causes artefacts (Gibbs). Many solutions (Hamming filter, Shepp-Logan filter). Typically Hamming has better SNR but lower resolution.

Analytická rekonstrukce - filtrovaná ZP

Filtered backprojection

original image, 1,3, 4, 16, 32, a 64 projections

Algebraic reconstruction

setup equations, often linear

$$g_i = \sum_j w_{ij} f_j$$

where f_j are pixel values, g_i are projections

Algebraic reconstruction

setup equations, often linear

$$g_i = \sum_j w_{ij} f_j$$

where f_j are pixel values, g_i are projections

- We know g_i and w_{ij} , solve for f_i
- $\blacktriangleright\,$ Many unknowns (10 $^5 \sim 10^6),$ iterative methods
 - Compare measured projections and simulations
 - Correct pixel values to decrease the difference
 - Iterate until convergence

Algebraic reconstruction

setup equations, often linear

$$g_i = \sum_j w_{ij} f_j$$

where f_j are pixel values, g_i are projections

- We know g_i and w_{ij}, solve for f_i
- $\blacktriangleright\,$ Many unknowns (10 $^5 \sim 10^6),$ iterative methods
 - Compare measured projections and simulations
 - Correct pixel values to decrease the difference
 - Iterate until convergence
- Methods:
 - algebraic reconstruction technique (ART)
 - simultaneous algebraic reconstruction technique (SART)
 - simultaneous iterative reconstruction (SIRT)
 - iterative least-squares technique (ILST)
 - multiplicative algebraic reconstruction technique (MART)

Algebraic rekonstruction — advantages over FBP

- Better modeling of the physics attenuation, resolution, noise
- Better handling of limited acquisition restricted region, restricted angles
- Can use an image model
- Less apparent artifacts

Iterativní rekonstrukce - ART

ART – <u>A</u>lgebraic <u>R</u>econstruction <u>T</u>echnique je jedním z mnoha použitých algoritmů, které se používají do současnosti. Existují dva základní typy ART:

multiplikativní

$$\widehat{f}_{ij}^{l} = \frac{g_{j}}{\sum_{i=1}^{N} \widehat{f}_{ij}^{l-1}} \widehat{f}_{ij}^{l-1}$$

Iterativní rekonstrukce – ART pokračování

kde:

- *f*^{*i*}_{*ij*} odhad hodnoty *i*-tého voxelu podél *j*-tého paprsku během *l*-té iterace,
 - *S_j* skutečný paprskový součet (data) podél *j*-tého paprsku,
 - N počet objemových elementů (voxelů) podél j-tého paprsku,

Iterativní rekonstrukce – ART aditivní - příklad

skutečná naměřená data (projekce a paprskové součty)

Iterativní rekonstrukce – ART př. – pokrač.

$$\hat{f}_1^{1/3} = \hat{f}_3^{1/3} = 0 + \frac{11 - 0}{2} = 5,5$$

$$\widehat{f}_{2}^{1/3} = \widehat{f}_{4}^{1/3} = 0 + \frac{9-0}{2} = 4,5$$

Iterativní rekonstrukce – ART př. – pokrač.

$$\widehat{f}_{1}^{2/3} = 5,5 + \frac{12 - 10}{2} = 6,5$$

$$\hat{f}_{2}^{2/3} = 4,5 + \frac{12 - 10}{2} = 5,5$$

2/3 horizontální paprsky

5,5	4,5	→ 10
5,5	4,5	→ 10

$$\hat{f}_{3}^{2/3} = 5,5 + \frac{8-10}{2} = 4,5$$

$$\hat{f}_4^{2/3} = 4,5 + \frac{8 - 10}{2} = 3,5$$

Iterativní rekonstrukce – ART př. – pokrač.

$$\begin{array}{c} & \begin{array}{c} & \begin{array}{c} & & & \\ & & & \\ & &$$

Electric processing — corrections

- Offset correction (zero signal at rest)
- Normalization correction (x-ray source intensity fluctuation)
- Sensitivity correction (inhomogeneous detectors and amplifiers)
- Geometric correction
- Beam hardening correction
- Cosine correction

CT systémy 3. generace

asi nejčastěji používané

Fan-beam reconstruction

- Rays not parallel, not a Radon transform.
- Rebinning

image courtesy of Gillian Henderson

Fan-beam reconstruction

- Rays not parallel, not a Radon transform.
- Rebinning

image courtesy of Jonathan Mamou and Yao Wang

Fan-beam reconstruction (2)

- Rays not parallel, not a Radon transform.
- Exact algorithms:
 - Rebinning
 - filtered backprojection (Katsevich) computational complexity, increased dose.
- Approximate algorithms: Modified filtered backprojection (quadratic cosine correction, cos θ). Feldkamp-Davis-Kress

Fan-beam reconstruction (2)

- Rays not parallel, not a Radon transform.
- Exact algorithms:
 - Rebinning
 - filtered backprojection (Katsevich) computational complexity, increased dose.
- Approximate algorithms: Modified filtered backprojection (quadratic cosine correction, cos θ). Feldkamp-Davis-Kress
- Algebraic reconstruction. Best quality but slow.

3D computed tomography

- Technical challenges: power, cooling
- Rotation method (slice by slice)
- Spiral/helix method

Spiral method

• Acceleration: $10 \min \rightarrow 1 \min$

Spiral method

• Acceleration: $10 \min \rightarrow 1 \min$

Pitch:

$$P = \Delta I/d$$

 ΔI bed shift per rotation, *d* slice thickness. Normally 0 < P < 2. Overlap for P < 1. Typically P = 1.5.

Spiral method (2)

Distance along Z-axis

- Interpolation in z axis
- Interpolation wide 1 turn. Less noise, larger effective slice thickness.
- Interpolation Slim 1/2 turn, symmetry. More noise, smaller effective slice thickness.

Multislice acquisition

Multislice acquisition

Adaptive multi-plane reconstruction

Radiation dose

- ▶ Absorbed dose *D*. 1 Gy (gray) = 1 J/kg Before 1 Gy = 100 rad
- Effective dose equivalent (dávkový ekvivalent) H_E [Sv] (sievert)

$$H_{\mathsf{E}} = \sum_{i} w_{i} H_{i} = \sum_{i} w_{i} c_{i} D_{i}$$

H = cD. Quality factor c is 1 for X-rays and γ rays, 10 for neutrons, 20 for α particles.

Coefficient *w* is organ dependent: male/female glands 0.2, lungs 0.12, breast 0.1, stomach 0.12, thyroid gland 0.05, skin 0.01. $\sum w_i = 1$ Before 1 Sv = 100 rem

Radiation dose

- ▶ Absorbed dose *D*. 1 Gy (gray) = 1 J/kg Before 1 Gy = 100 rad
- Effective dose equivalent (dávkový ekvivalent) H_E [Sv] (sievert)

$$H_{\mathsf{E}} = \sum_{i} w_{i} H_{i} = \sum_{i} w_{i} c_{i} D_{i}$$

H = cD. Quality factor c is 1 for X-rays and γ rays, 10 for neutrons, 20 for α particles.

Coefficient *w* is organ dependent: male/female glands 0.2, lungs 0.12, breast 0.1, stomach 0.12, thyroid gland 0.05, skin 0.01. $\sum w_i = 1$ Before 1 Sv = 100 rem

Sum the doses

Radiation dose

- Medical limit (USA) is 50 mSv/year (=limit for a person working with radiation in CR), corresponding to 1000 chest X-rays, or 15 head CTs, or 5 whole body CTs (1 CT≈ 10 mSv).
- ► low-dose $CT \approx 2 \sim 5 \text{ mSv}$, $PET \approx 25 \text{ mSv}$
- In CR radioactive background about 3 mSv/year (mainly radon), similar to USA. In Colorado (altitude 1500 ~ 4000 m) about 4.5 mSv/year. Mean dose from medical imaging 0.3 mSv/year, about 3 long flights.
Radiation dose

- Medical limit (USA) is 50 mSv/year (=limit for a person working with radiation in CR), corresponding to 1000 chest X-rays, or 15 head CTs, or 5 whole body CTs (1 CT≈ 10 mSv).
- ► low-dose $CT \approx 2 \sim 5 \text{ mSv}$, $PET \approx 25 \text{ mSv}$
- In CR radioactive background about 3 mSv/year (mainly radon), similar to USA. In Colorado (altitude 1500 ~ 4000 m) about 4.5 mSv/year. Mean dose from medical imaging 0.3 mSv/year, about 3 long flights.
- \blacktriangleright cancer related death 20 %. 1 CT=10 mSv relative increase by $10^{-3} \sim 10^{-4}$

CT image quality

Parameters:

- Resolution (0.5 mm)
- Contrast (δH , about 5 10 HU.)
- Detection threshold (about 1 mm at $\Delta H = 200$, 5 mm at $\Delta H = 5$).
- Noise (SNR)
- Artifacts
 - Scanner defects, malfunctions, operator error
 - Metal parts (shadows)
 - Motion artifacts
 - Partial volume

Artifact examples

Figure 2.19 Example of image artifacts: (a) test phantom, (b) second phantom, (c) noise, (d) detector under-sampling, (e) view under-sampling, (f) beam hardening, (g) scatter, (h) nonlinear partial volume effect, and (l) object motion. (unpublished results)

Lungs

- Lungs
- Head
- Abdomen

Computed tomography, conclusions

- Excellent spatial resolution
- ► 3D image
- ► Fast acquisition
- Weak soft tissue contrast (contrast agents available)
- Reconstruction algorithm
- Radiation dose