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Část I

Part 1 – Object Oriented Programming
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Books

The C++ Programming Language,
Bjarne Stroustrup, Addison-Wesley Professional, 2013, ISBN
978-0321563842

Programming: Principles and Practice Using C++, Bjarne
Stroustrup, Addison-Wesley Professional, 2014, ISBN
978-0321992789

Effective C++: 55 Specific Ways to Improve Your Programs and
Designs, Scott Meyers, Addison-Wesley Professional, 2005, ISBN
978-0321334879
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Example of Encapsulation
■ Class Matrix encapsulates 2D matrix of double values

class Matrix {
public:

Matrix(int rows, int cols);
Matrix(const Matrix &m);
~Matrix();

inline int rows(void) const { return ROWS; }
inline int cols(void) const { return COLS; }
double getValueAt(int r, int c) const;
void setValueAt(double v, int r, int c);
void fillRandom(void);
Matrix sum(const Matrix &m2);
Matrix operator+(const Matrix &m2);
Matrix& operator=(const Matrix &m);

private:
inline double& at(int r, int c) const { return vals[COLS * r + c]; }

private:
const int ROWS;
const int COLS;
double *vals;

};
std::ostream& operator<<(std::ostream& out, const Matrix& m);
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Example – Matrix Subscripting Operator
■ For a convenient access to matrix cells, we can implement operator () with two argu-

ments r and c denoting the cell row and column
class Matrix {

public:
double& operator()(int r, int c);
double operator()(int r, int c) const;

};

// use the reference for modification of the cell value
double& Matrix::operator()(int r, int c)
{

return at(r, c);
}

// copy the value for the const operator
double Matrix::operator()(int r, int c) const
{

return at(r, c);
}

For simplicity and better readability, we do not check range of arguments.
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Example Matrix – Identity Matrix
■ Implementation of the setIdentity() using the matrix subscripting operator
void setIdentity(Matrix& matrix)
{

for (int r = 0; r < matrix.rows(); ++r) {
for (int c = 0; c < matrix.cols(); ++c) {

matrix(r, c) = (r == c) ? 1.0 : 0.0;
}

}
}

Matrix m1(2, 2);
std::cout << "Matrix m1 -- init values: " << std::endl << m1;
setIdentity(m1);
std::cout << "Matrix m1 -- identity: " << std::endl << m1;

■ Example of output
Matrix m1 -- init values:
0.0 0.0
0.0 0.0

Matrix m1 -- identity:
1.0 0.0
0.0 1.0 lec13/demo-matrix.cc
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Relationship between Objects
■ Objects can be in relationship based on the

■ Inheritance – is the relationship of the type is
Object of descendant class is also the ancestor class

■ One class is derived from the ancestor class
Objects of the derived class extends the based class

■ Derived class contains all the field of the ancestor class
However, some of the fields may be hidden

■ New methods can be implemented in the derived class
New implementation override the previous one

■ Derived class (objects) are specialization of a more general ancestor (super) class
■ An object can be part of the other objects – it is the has relation

■ Similarly to compound structures that contain other struct data types as their data fields,
objects can also compound of other objects

■ We can further distinguish
■ Aggregation – an object is a part of other object
■ Composition – inner object exists only within the compound object
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Example – Aggregation/Composition
■ Aggregation – relationship of the type “has” or “ it is composed

■ Let A be aggregation of B C , then objects B and C are contained in A
■ It results that B and C cannot survive without A

In such a case, we call the relationship as composition
Example of implementation
class GraphComp { // composition

private:
std::vector<Edge> edges;

};

class GraphComp { // aggregation
public:

GraphComp(std::vector<Edge>& edges) : edges(
edges) {}

private:
const std::vector<Edge>& edges;

};

struct Edge {
Node v1;
Node v2;

};

struct Node {
Data data;

};
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Inheritance
■ Founding definition and implementation of one class on another existing class(es)
■ Let class B be inherited from the class A, then

■ Class B is subclass or the derived class of A
■ Class A is superclass or the base class of B

■ The subclass B has two parts in general:
■ Derived part is inherited from A
■ New incremental part contains definitions and implementation added by the class B

■ The inheritance is relationship of the type is-a
■ Object of the type B is also an instance of the object of the type A

■ Properties of B inherited from the A can be redefined
■ Change of field visibility (protected, public, private)
■ Overriding of the method implementation

■ Using inheritance we can create hierarchies of objects
Implement general function in superclasses or creating abstract classes that are further
specialized in the derived classes.
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Example MatrixExt – Extension of the Matrix

■ We will extend the existing class Matrix to have identity method and also multiplication
operator

■ We refer the superclass as the Base class using typedef
■ We need to provide a constructor for the MatrixExt; however, we used the existing

constructor in the base class
class MatrixExt : public Matrix {

typedef Matrix Base; // typedef for refering the superclass

public:
MatrixExt(int r, int c) : Base(r, c) {} // base constructor

void setIdentity(void);
Matrix operator*(const Matrix &m2);

}; lec13/matrix_ext.h
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Example MatrixExt – Identity and Multiplication Operator

■ We can use only the public (or protected) methods of Matrix class
Matrix does not have any protected members#include "matrix_ext.h"

void MatrixExt::setIdentity(void)
{

for (int r = 0; r < rows(); ++r) {
for (int c = 0; c < cols(); ++c) {

(*this)(r, c) = (r == c) ? 1.0 : 0.0;
}

}
} lec13/matrix_ext.cc
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Example MatrixExt – Example of Usage 1/2
■ Objects of the class MatrixExt also have the methods of the Matrix
#include <iostream>
#include "matrix_ext.h"

using std::cout;

int main(void)
{

int ret = 0;
MatrixExt m1(2, 1);
m1(0, 0) = 3; m1(1, 0) = 5;

MatrixExt m2(1, 2);
m2(0, 0) = 1; m2(0, 1) = 2;

cout << "Matrix m1:\n" << m1 << std::endl;
cout << "Matrix m2:\n" << m2 << std::endl;
cout << "m1 * m2 =\n" << m2 * m1 << std::endl;
cout << "m2 * m1 =\n" << m1 * m2 << std::endl;
return ret;

}

clang++ matrix.cc matrix_ext.cc demo-
matrix_ext.cc && ./a.out

Matrix m1:
3.0
5.0

Matrix m2:
1.0 2.0

m1 * m2 =
13.0

m2 * m1 =
3.0 6.0
5.0 10.0

lec13/demo-matrix_ext.cc
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Example MatrixExt – Example of Usage 2/2

■ We may use objects of MatrixExt anywhere objects of Matrix can be applied.
■ This is a result of the inheritance

And a first step towards polymorphism

void setIdentity(Matrix& matrix)
{

for (int r = 0; r < matrix.rows(); ++r) {
for (int c = 0; c < matrix.cols(); ++c) {

matrix(r, c) = (r == c) ? 1.0 : 0.0;
}

}
}

MatrixExt m1(2, 1);
cout << "Using setIdentity for Matrix" << std::endl;
setIdentity(m1);
cout << "Matrix m1:\n" << m1 << std::endl;

lec13/demo-matrix_ext.cc
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Categories of the Inheritance

■ Strict inheritance – derived class takes all of the superclass and adds own methods and
attributes. All members of the superclass are available in the derived class. It strictly
follows the is-a hierarchy

■ Nonstrict inheritance – the subclass derives from the a superclass only certain
attributes or methods that can be further redefined

■ Multiple inheritance – a class is derived from several superclasses
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Inheritance – Summary

■ Inheritance is a mechanism that allows
■ Extend data field of the class and modify them
■ Extend or modify methods of the class

■ Inheritance allows to
■ Create hierarchies of classes
■ “Pass” data fields and methods for further extension and modification
■ Specialize (specify) classes

■ The main advantages of inheritance are
■ It contributes essentially to the code reusability

Together with encapsulation!

■ Inheritance is foundation for the polymorphism
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Polymorphism

■ Polymorphism can be expressed as the ability to refer in a same way to different objects
We can call the same method names on different objects

■ We work with an object whose actual content is determined at the runtime
■ Polymorphism of objects - Let the class B be a subclass of A, then the object of the B

can be used wherever it is expected to be an object of the class A
■ Polymorphism of methods requires dynamic binding, i.e., static vs. dynamic type of the

class
■ Let the class B be a subclass of A and redefines the method m()
■ A variable x is of the static type B, but its dynamic type can be A or B
■ Which method is actually called for x.m() depends on the dynamic type
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Example MatrixExt – Method Overriding 1/2

■ In MatrixExt, we may override a method implemented in the base class Matrix, e.g.,
fillRandom() will also use negative values.

class MatrixExt : public Matrix {
...
void fillRandom(void);

}

void MatrixExt::fillRandom(void)
{

for (int r = 0; r < rows(); ++r) {
for (int c = 0; c < cols(); ++c) {

(*this)(r, c) = (rand() % 100) / 10.0;
if (rand() % 100 > 50) {

(*this)(r, c) *= -1.0; // change the sign
}

}
}

} lec13/matrix_ext.h, lec13/matrix_ext.cc
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Example MatrixExt – Method Overriding 2/2
■ We can call the method fillRandom() of the MatrixExt
MatrixExt *m1 = new MatrixExt(3, 3);
Matrix *m2 = new MatrixExt(3, 3);
m1->fillRandom(); m2->fillRandom();
cout << "m1: MatrixExt as MatrixExt:\n" << *m1 << std::endl;
cout << "m2: MatrixExt as Matrix:\n" << *m2 << std::endl;
delete m1; delete m2; lec13/demo-matrix_ext.cc

■ However, in the case of m2 the Matrix::fillRandom() is called
m1: MatrixExt as MatrixExt:
-1.3 9.8 1.2
8.7 -9.8 -7.9

-3.6 -7.3 -0.6

m2: MatrixExt as Matrix:
7.9 2.3 0.5
9.0 7.0 6.6
7.2 1.8 9.7

We need a dynamic way to identity the object type at runtime for the
polymorphism of the methods
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Virtual Methods – Polymorphism and Inheritance

■ We need a dynamic binding for polymorphism of the methods
■ It is usually implemented as a virtual method in object oriented programming

languages
■ Override methods that are marked as virtual has a dynamic binding to the particular

dynamic type
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Example – Overriding without Virtual Method 1/2
#include <iostream>
using namespace std;
class A {

public:
void info()
{

cout << "Object of the class A" << endl;
}

};
class B : public A {

public:
void info()
{

cout << "Object of the class B" << endl;
}

};
A* a = new A(); B* b = new B();
A* ta = a; // backup of a pointer
a->info(); // calling method info() of the class A
b->info(); // calling method info() of the class B
a = b; // use the polymorphism of objects
a->info(); // without the dynamic binding, method of the class A is called
delete ta; delete b;

clang++ demo-novirtual.cc
./a.out
Object of the class A
Object of the class B
Object of the class A

lec13/demo-novirtual.cc
Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 26 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example – Overriding with Virtual Method 2/2
#include <iostream>
using namespace std;
class A {

public:
virtual void info() // Virtual !!!
{

cout << "Object of the class A" << endl;
}

};
class B : public A {

public:
void info()
{

cout << "Object of the class B" << endl;
}

};
A* a = new A(); B* b = new B();
A* ta = a; // backup of a pointer
a->info(); // calling method info() of the class A
b->info(); // calling method info() of the class B
a = b; // use the polymorphism of objects
a->info(); // the dynamic binding exists, method of the class B is called
delete ta; delete b;

clang++ demo-virtual.cc
./a.out
Object of the class A
Object of the class B
Object of the class B

lec13/demo-virtual.cc
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Derived Classes, Polymorphism, and Practical Implications

■ Derived class inherits the methods and data fields of the superclass, but it can also
add new methods and data fields

■ It can extend and specialize the class
■ It can modify the implementation of the methods

■ An object of the derived class can be used instead of the object of the superclass, e.g.,
■ We can implement more efficient matrix multiplication without modification of the whole

program
We may further need a mechanism to create new object based on the dynamic type, i.e.,
using the newInstance virtual method

■ Virtual methods are important for the polymorphism
■ It is crucial to use a virtual destructor for a proper destruction of the object

E.g., when a derived class allocate additional memory
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Example – Virtual Destructor 1/4
#include <iostream>
class Base {

public:
Base(int capacity) {

std::cout << "Base::Base -- allocate data" << std::endl;
data = new int[capacity];

}
virtual ~Base() { // virtual destructor is important

std::cout << "Base::~Base -- release data" << std::endl;
delete[] data;

}
protected:

int *data;
};

lec13/demo-virtual_destructor.cc
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Example – Virtual Destructor 2/4

class Derived : public Base {
public:

Derived(int capacity) : Base(capacity) {
std::cout << "Derived::Derived -- allocate data2" << std::endl;
data2 = new int[capacity];

}
~Derived() {

std::cout << "Derived::~Derived -- release data2" << std::endl;
delete[] data2;

}
protected:

int *data2;
};

lec13/demo-virtual_destructor.cc

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 30 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example – Virtual Destructor 3/4

■ Using virtual destructor all allocated data are properly released
std::cout << "Using Derived " << std::endl;
Derived *object = new Derived(1000000);
delete object;
std::cout << std::endl;

std::cout << "Using Base" << std::endl;
Base *object = new Derived(1000000);
delete object; lec13/demo-virtual_destructor.cc

clang++ demo-virtual_destructor.cc && ./a.out

Using Derived Using Base
Base::Base -- allocate data Base::Base -- allocate data
Derived::Derived -- allocate data2 Derived::Derived -- allocate data2
Derived::~Derived -- release data2 Derived::~Derived -- release data2
Base::~Base -- release data Base::~Base -- release data

Both desctructors Derived and Base are called
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Example – Virtual Destructor 4/4

■ Without virtual destructor, e.g„
class Base {

...
~Base(); // without virtualdestructor

};
Derived *object = new Derived(1000000);
delete object;
Base *object = new Derived(1000000);
delete object;

■ Only both constructors are called, but only destructor of the Base class in the second
case Base *object = new Derived(1000000);
Using Derived Using Base
Base::Base -- allocate data Base::Base -- allocate data
Derived::Derived -- allocate data2 Derived::Derived -- allocate data2
Derived::~Derived -- release data2 Base::~Base -- release data
Base::~Base -- release data Only the desctructor of Base is called
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Inheritance and Composition

■ A part of the object oriented programming is the object oriented design (OOD)
■ It aims to provide “a plan” how to solve the problem using objects and their relationship
■ An important part of the design is identification of the particular objects
■ their generalization to the classes
■ and also designing a class hierarchy

■ Sometimes, it may be difficult to decides
■ What is the common (general) object and what is the specialization, which is important

step for class hierarchy and applying the inheritance
■ It may also be questionable when to use composition

■ Let show the inheritance on an example of geometrical objects
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Example – Is Cuboid Extended Rectangle? 1/2
class Rectangle {

public:
Rectangle(double w, double h) : width(w), height(h) {}
inline double getWidth(void) const { return width; }
inline double getHeight(void) const { return height; }
inline double getDiagonal(void) const
{

return sqrt(width*width + height*height);
}

protected:
double width;
double height;

};
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Example – Is Cuboid Extended Rectangle? 2/2
class Cuboid : public Rectangle {

public:
Cuboid(double w, double h, double d) :

Rectangle(w, h), depth(d) {}
inline double getDepth(void) const { return depth; }
inline double getDiagonal(void) const
{

const double tmp = Rectangle::getDiagonal();
return sqrt(tmp * tmp + depth * depth);

}

protected:
double depth;

};
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Example – Inheritance Cuboid Extend Rectangle

■ Class Cuboid extends the class Rectangle by the depth
■ Cuboid inherits data fields width a height
■ Cuboid also inherits „getters” getWidth() and getHeight()
■ Constructor of the Rectangle is called from the Cuboid constructor

■ The descendant class Cuboid extends (override) the getDiagonal() methods
It actually uses the method getDiagonal() of the ancestor Rectangle::getDiagonal()

■ We create a “specialization” of the Rectangle as an extension Cuboid class

Is it really a suitable extension?

What is the cuboid area? What is the cuboid circumference?
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Example – Inheritance – Rectangle is a Special Cuboid 1/2
■ Rectangle is a cuboid with zero depth
class Cuboid {

public:
Cuboid(double w, double h, double d) :

width(w), height(h), depth(d) {}

inline double getWidth(void) const { return width; }
inline double getHeight(void) const { return height; }
inline double getDepth(void) const { return depth; }

inline double getDiagonal(void) const
{

return sqrt(width*width + height*height + depth*depth);
}

protected:
double width;
double height;
double depth;

};
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Example – Inheritance – Rectangle is a Special Cuboid 2/2

class Rectangle : public Cuboid {

public:
Rectangle(double w, double h) : Cuboid(w, h, 0.0) {}

};

■ Rectangle is a “cuboid” with zero depth
■ Rectangle inherits all data fields: with, height, and depth
■ It also inherits all methods of the ancestor

Accessible can be only particular ones

■ The constructor of the Cuboid class is accessible and it used to set data fields with
the zero depth

■ Objects of the class Rectangle can use all variable and methods of the Cuboid class
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Should be Rectangle Descendant of Cuboid or Cuboid be Descendant of
Rectangle?

1. Cuboid is descendant of the rectangle
■ “Logical” addition of the depth dimensions, but methods valid for the rectangle do not

work of the cuboid
E.g., area of the rectangle

2. Rectangle as a descendant of the cuboid
■ Logically correct reasoning on specialization

“All what work for the cuboid also work for the cuboid with zero depth”
■ Inefficient implementation – every rectangle is represented by 3 dimensions

Specialization is correct
Everything what hold for the ancestor have to be valid for the descendant

However, in this particular case, usage of the inheritance is questionable.
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Relationship of the Ancestor and Descendant is of the type “is-a”

■ Is a straight line segment descendant of the point?
■ Straight line segment does not use any method of a point

is-a?: segment is a point ? → NO → segment is not descendant of the point

■ Is rectangle descendant of the straight line segment?
is-a?: NO

■ Is rectangle descendant of the square, or vice versa?
■ Rectangle “extends” square by one dimension, but it is not a square
■ Square is a rectangle with the width same as the height

Set the width and height in the constructor!
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Substitution Principle

■ Relationship between two derived classes
■ Policy

■ Derived class is a specialization of the superclass
There is the is-a relationship

■ Wherever it is possible to sue a class, it must be possible to use the descendant in such a
way that a user cannot see any difference

Polymorphism
■ Relationship is-a must be permanent
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Composition of Objects

■ If a class contains data fields of other object type, the relationship is called
composition

■ Composition creates a hierarchy of objects, but not by inheritance
Inheritance creates hierarchy of relationship in the sense of descendant / ancestor

■ Composition is a relationship of the objects – aggregation – consists / is compound
■ It is a relationship of the type “has”
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Example – Composition 1/3

■ Each person is characterized by attributes of the Person class
■ name (string)
■ address (string)
■ birthDate (date)
■ graduationDate (date)

■ Date is characterized by three attributes Datum (class Date)
■ day (int)
■ month (int)
■ year (int)
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Example – Composition 2/3

#include <string>

class Person {
public:
std::string name;
std::string address;
Date birthDate;
Date graduationDate;

};

class Date {
public:

int day;
int month;
int year;

};
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Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example – Composition 3/3

Person

std::string name std::string address

Date birthDate Date graduationDate

Date birthDate

int month int dayint year

Date graduationDate

int month int dayint year
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Inheritance vs Composition

■ Inheritance objects:
■ Creating a derived class (descendant, subclass, derived class)
■ Derived class is a specialization of the superclass

■ May add variables (data fields) Or overlapping variables (names)
■ Add or modify methods

■ Unlike composition, inheritance changes the properties of the objects
■ New or modified methods
■ Access to variables and methods of the ancestor (base class, superclass)

If access is allowed (public/protected)

■ Composition of objects is made of attributes (data fields) of the object type
It consists of objects

■ A distinction between composition an inheritance
■ „Is” test – a symptom of inheritance (is-a)
■ „Has” test – a symptom of composition (has)
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Inheritance and Composition – Pitfalls

■ Excessive usage of composition and also inheritance in cases it is not needed leads to
complicated design

■ Watch on literal interpretations of the relationship is-a and has, sometimes it is not
even about the inheritance, or composition

E.g., Point2D and Point3D or Circle and Ellipse

■ Prefer composition and not the inheritance
One of the advantages of inheritance is the polymorphism

■ Using inheritance violates the encapsulation
Especially with the access rights set to the protected
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Část II

Part 2 – Standard Template Library (STL)

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 49 / 58
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Obsah

Templates

Standard Template Library (STL)
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Templates Standard Template Library (STL)

Templates

■ Class definition may contain specific data fields of a particular type
■ The data type itself does not change the behavior of the object, e.g., typically as in

■ Linked list or double linked list
■ Queue, Stack, etc.
■ data containers

■ Definition of the class for specific type would be identical except the data type
■ We can use templates for later specification of the particular data type, when the

instance of the class is created
■ Templates provides compile-time polymorphism

In constrast to the run-time polymorphism realized by virtual methods.
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Templates Standard Template Library (STL)

Example – Template Class

■ The template class is defined by the template keyword with specification of the type
name
template <typename T>
class Stack {

public:
bool push(T *data);
T* pop(void);

};

■ An object of the template class is declared with the specified particular type
Stack<int> intStack;
Stack<double> doubleStack;
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Templates Standard Template Library (STL)

Example – Template Function

■ Templates can also be used for functions to specify particular type and use type safety
and typed operators

template <typename T>
const T & max(const T &a, const T &b)
{

return a < b ? b : a;
}

double da, db;
int ia, ib;

std::cout << "max double: " << max(da, db) << std::endl;

std::cout << "max int: " << max(ia, ib) << std::endl;

//not allowed such a function is not defined
std::cout << "max mixed " << max(da, ib) << std::endl;
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Obsah

Templates

Standard Template Library (STL)
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STL

■ Standard Template Library (STL) is a library of the standard C++ that provides
efficient implementations of the data containers, algorithms, functions, and iterators

■ High efficiency of the implementation is achieved by templates with compile-type
polymorphism

■ Standard Template Library Programmer’s Guide – https://www.sgi.com/tech/stl/
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Templates Standard Template Library (STL)

std::vector – Dynamic "C" like array
■ One of the very useful data containers in the STL is vector that behaves like C array

but allows adding and removing elements.
#include <iostream>
#include <vector>

int main(void)
{

std::vector<int> a;

for (int i = 0; i < 10; ++i) {
a.push_back(i);

}

for (int i = 0; i < a.size(); ++i) {
std::cout << "a[" << i << "] = " << a[i] << std::endl;

}

std::cout << "Add one more element" << std::endl;
a.push_back(0);

for (int i = 5; i < a.size(); ++i) {
std::cout << "a[" << i << "] = " << a[i] << std::endl;

}
return 0;

}

lec13/stl-vector.cc
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Topics Discussed

Summary of the Lecture
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Topics Discussed

Topics Discussed

■ Objects and Methods in C++ – example of 2D matrix encapsulation
■ Subscripting operator

■ Relationship between objects
■ Aggregation
■ Composition

■ Inheritance – properties and usage in C++
■ Polymorphism – dynamic binding and virtual methods
■ Inheritance and Composition
■ Templates and STL
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