
Object Oriented Programming in C++

Jan Faigl

Katedra počítačů
Fakulta elektrotechnická

České vysoké učení technické v Praze

Přednáška 13

BAB36PRGA – Programování v C

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 1 / 58



Overview of the Lecture

■ Part 1 – Object Oriented Programming (in C++)
Resources

Objects and Methods in C++

Relationship

Inheritance

Polymorphism

Inheritance and Composition

■ Part 2 – Standard Template Library (in C++)
Templates

Standard Template Library (STL)

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 2 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Část I

Part 1 – Object Oriented Programming

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 3 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Obsah

Resources

Objects and Methods in C++

Relationship

Inheritance

Polymorphism

Inheritance and Composition

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 4 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Books

The C++ Programming Language,
Bjarne Stroustrup, Addison-Wesley Professional, 2013, ISBN
978-0321563842

Programming: Principles and Practice Using C++, Bjarne
Stroustrup, Addison-Wesley Professional, 2014, ISBN
978-0321992789

Effective C++: 55 Specific Ways to Improve Your Programs and
Designs, Scott Meyers, Addison-Wesley Professional, 2005, ISBN
978-0321334879

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 5 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Obsah

Resources

Objects and Methods in C++

Relationship

Inheritance

Polymorphism

Inheritance and Composition

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 6 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example of Encapsulation
■ Class Matrix encapsulates 2D matrix of double values

class Matrix {
public:

Matrix(int rows, int cols);
Matrix(const Matrix &m);
~Matrix();

inline int rows(void) const { return ROWS; }
inline int cols(void) const { return COLS; }
double getValueAt(int r, int c) const;
void setValueAt(double v, int r, int c);
void fillRandom(void);
Matrix sum(const Matrix &m2);
Matrix operator+(const Matrix &m2);
Matrix& operator=(const Matrix &m);

private:
inline double& at(int r, int c) const { return vals[COLS * r + c]; }

private:
const int ROWS;
const int COLS;
double *vals;

};
std::ostream& operator<<(std::ostream& out, const Matrix& m);

lec13/matrix.hJan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 7 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example – Matrix Subscripting Operator
■ For a convenient access to matrix cells, we can implement operator () with two argu-

ments r and c denoting the cell row and column
class Matrix {

public:
double& operator()(int r, int c);
double operator()(int r, int c) const;

};

// use the reference for modification of the cell value
double& Matrix::operator()(int r, int c)
{

return at(r, c);
}

// copy the value for the const operator
double Matrix::operator()(int r, int c) const
{

return at(r, c);
}

For simplicity and better readability, we do not check range of arguments.

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 8 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example Matrix – Identity Matrix
■ Implementation of the setIdentity() using the matrix subscripting operator
void setIdentity(Matrix& matrix)
{

for (int r = 0; r < matrix.rows(); ++r) {
for (int c = 0; c < matrix.cols(); ++c) {

matrix(r, c) = (r == c) ? 1.0 : 0.0;
}

}
}

Matrix m1(2, 2);
std::cout << "Matrix m1 -- init values: " << std::endl << m1;
setIdentity(m1);
std::cout << "Matrix m1 -- identity: " << std::endl << m1;

■ Example of output
Matrix m1 -- init values:
0.0 0.0
0.0 0.0

Matrix m1 -- identity:
1.0 0.0
0.0 1.0 lec13/demo-matrix.cc

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 9 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Obsah

Resources

Objects and Methods in C++

Relationship

Inheritance

Polymorphism

Inheritance and Composition

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 10 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Relationship between Objects
■ Objects can be in relationship based on the

■ Inheritance – is the relationship of the type is
Object of descendant class is also the ancestor class

■ One class is derived from the ancestor class
Objects of the derived class extends the based class

■ Derived class contains all the field of the ancestor class
However, some of the fields may be hidden

■ New methods can be implemented in the derived class
New implementation override the previous one

■ Derived class (objects) are specialization of a more general ancestor (super) class
■ An object can be part of the other objects – it is the has relation

■ Similarly to compound structures that contain other struct data types as their data fields,
objects can also compound of other objects

■ We can further distinguish
■ Aggregation – an object is a part of other object
■ Composition – inner object exists only within the compound object

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 11 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example – Aggregation/Composition
■ Aggregation – relationship of the type “has” or “ it is composed

■ Let A be aggregation of B C , then objects B and C are contained in A
■ It results that B and C cannot survive without A

In such a case, we call the relationship as composition
Example of implementation
class GraphComp { // composition

private:
std::vector<Edge> edges;

};

class GraphComp { // aggregation
public:

GraphComp(std::vector<Edge>& edges) : edges(
edges) {}

private:
const std::vector<Edge>& edges;

};

struct Edge {
Node v1;
Node v2;

};

struct Node {
Data data;

};

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 12 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Obsah

Resources

Objects and Methods in C++

Relationship

Inheritance

Polymorphism

Inheritance and Composition

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 13 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Inheritance
■ Founding definition and implementation of one class on another existing class(es)
■ Let class B be inherited from the class A, then

■ Class B is subclass or the derived class of A
■ Class A is superclass or the base class of B

■ The subclass B has two parts in general:
■ Derived part is inherited from A
■ New incremental part contains definitions and implementation added by the class B

■ The inheritance is relationship of the type is-a
■ Object of the type B is also an instance of the object of the type A

■ Properties of B inherited from the A can be redefined
■ Change of field visibility (protected, public, private)
■ Overriding of the method implementation

■ Using inheritance we can create hierarchies of objects
Implement general function in superclasses or creating abstract classes that are further
specialized in the derived classes.

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 14 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example MatrixExt – Extension of the Matrix

■ We will extend the existing class Matrix to have identity method and also multiplication
operator

■ We refer the superclass as the Base class using typedef
■ We need to provide a constructor for the MatrixExt; however, we used the existing

constructor in the base class
class MatrixExt : public Matrix {

typedef Matrix Base; // typedef for refering the superclass

public:
MatrixExt(int r, int c) : Base(r, c) {} // base constructor

void setIdentity(void);
Matrix operator*(const Matrix &m2);

}; lec13/matrix_ext.h

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 15 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example MatrixExt – Identity and Multiplication Operator

■ We can use only the public (or protected) methods of Matrix class
Matrix does not have any protected members#include "matrix_ext.h"

void MatrixExt::setIdentity(void)
{

for (int r = 0; r < rows(); ++r) {
for (int c = 0; c < cols(); ++c) {

(*this)(r, c) = (r == c) ? 1.0 : 0.0;
}

}
} lec13/matrix_ext.cc

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 16 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example MatrixExt – Example of Usage 1/2
■ Objects of the class MatrixExt also have the methods of the Matrix
#include <iostream>
#include "matrix_ext.h"

using std::cout;

int main(void)
{

int ret = 0;
MatrixExt m1(2, 1);
m1(0, 0) = 3; m1(1, 0) = 5;

MatrixExt m2(1, 2);
m2(0, 0) = 1; m2(0, 1) = 2;

cout << "Matrix m1:\n" << m1 << std::endl;
cout << "Matrix m2:\n" << m2 << std::endl;
cout << "m1 * m2 =\n" << m2 * m1 << std::endl;
cout << "m2 * m1 =\n" << m1 * m2 << std::endl;
return ret;

}

clang++ matrix.cc matrix_ext.cc demo-
matrix_ext.cc && ./a.out

Matrix m1:
3.0
5.0

Matrix m2:
1.0 2.0

m1 * m2 =
13.0

m2 * m1 =
3.0 6.0
5.0 10.0

lec13/demo-matrix_ext.cc
Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 17 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example MatrixExt – Example of Usage 2/2

■ We may use objects of MatrixExt anywhere objects of Matrix can be applied.
■ This is a result of the inheritance

And a first step towards polymorphism

void setIdentity(Matrix& matrix)
{

for (int r = 0; r < matrix.rows(); ++r) {
for (int c = 0; c < matrix.cols(); ++c) {

matrix(r, c) = (r == c) ? 1.0 : 0.0;
}

}
}

MatrixExt m1(2, 1);
cout << "Using setIdentity for Matrix" << std::endl;
setIdentity(m1);
cout << "Matrix m1:\n" << m1 << std::endl;

lec13/demo-matrix_ext.cc

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 18 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Categories of the Inheritance

■ Strict inheritance – derived class takes all of the superclass and adds own methods and
attributes. All members of the superclass are available in the derived class. It strictly
follows the is-a hierarchy

■ Nonstrict inheritance – the subclass derives from the a superclass only certain
attributes or methods that can be further redefined

■ Multiple inheritance – a class is derived from several superclasses

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 19 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Inheritance – Summary

■ Inheritance is a mechanism that allows
■ Extend data field of the class and modify them
■ Extend or modify methods of the class

■ Inheritance allows to
■ Create hierarchies of classes
■ “Pass” data fields and methods for further extension and modification
■ Specialize (specify) classes

■ The main advantages of inheritance are
■ It contributes essentially to the code reusability

Together with encapsulation!

■ Inheritance is foundation for the polymorphism

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 20 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Obsah

Resources

Objects and Methods in C++

Relationship

Inheritance

Polymorphism

Inheritance and Composition

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 21 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Polymorphism

■ Polymorphism can be expressed as the ability to refer in a same way to different objects
We can call the same method names on different objects

■ We work with an object whose actual content is determined at the runtime
■ Polymorphism of objects - Let the class B be a subclass of A, then the object of the B

can be used wherever it is expected to be an object of the class A
■ Polymorphism of methods requires dynamic binding, i.e., static vs. dynamic type of the

class
■ Let the class B be a subclass of A and redefines the method m()
■ A variable x is of the static type B, but its dynamic type can be A or B
■ Which method is actually called for x.m() depends on the dynamic type

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 22 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example MatrixExt – Method Overriding 1/2

■ In MatrixExt, we may override a method implemented in the base class Matrix, e.g.,
fillRandom() will also use negative values.

class MatrixExt : public Matrix {
...
void fillRandom(void);

}

void MatrixExt::fillRandom(void)
{

for (int r = 0; r < rows(); ++r) {
for (int c = 0; c < cols(); ++c) {

(*this)(r, c) = (rand() % 100) / 10.0;
if (rand() % 100 > 50) {

(*this)(r, c) *= -1.0; // change the sign
}

}
}

} lec13/matrix_ext.h, lec13/matrix_ext.cc

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 23 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example MatrixExt – Method Overriding 2/2
■ We can call the method fillRandom() of the MatrixExt
MatrixExt *m1 = new MatrixExt(3, 3);
Matrix *m2 = new MatrixExt(3, 3);
m1->fillRandom(); m2->fillRandom();
cout << "m1: MatrixExt as MatrixExt:\n" << *m1 << std::endl;
cout << "m2: MatrixExt as Matrix:\n" << *m2 << std::endl;
delete m1; delete m2; lec13/demo-matrix_ext.cc

■ However, in the case of m2 the Matrix::fillRandom() is called
m1: MatrixExt as MatrixExt:
-1.3 9.8 1.2
8.7 -9.8 -7.9

-3.6 -7.3 -0.6

m2: MatrixExt as Matrix:
7.9 2.3 0.5
9.0 7.0 6.6
7.2 1.8 9.7

We need a dynamic way to identity the object type at runtime for the
polymorphism of the methods

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 24 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Virtual Methods – Polymorphism and Inheritance

■ We need a dynamic binding for polymorphism of the methods
■ It is usually implemented as a virtual method in object oriented programming

languages
■ Override methods that are marked as virtual has a dynamic binding to the particular

dynamic type

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 25 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example – Overriding without Virtual Method 1/2
#include <iostream>
using namespace std;
class A {

public:
void info()
{

cout << "Object of the class A" << endl;
}

};
class B : public A {

public:
void info()
{

cout << "Object of the class B" << endl;
}

};
A* a = new A(); B* b = new B();
A* ta = a; // backup of a pointer
a->info(); // calling method info() of the class A
b->info(); // calling method info() of the class B
a = b; // use the polymorphism of objects
a->info(); // without the dynamic binding, method of the class A is called
delete ta; delete b;

clang++ demo-novirtual.cc
./a.out
Object of the class A
Object of the class B
Object of the class A

lec13/demo-novirtual.cc
Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 26 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example – Overriding with Virtual Method 2/2
#include <iostream>
using namespace std;
class A {

public:
virtual void info() // Virtual !!!
{

cout << "Object of the class A" << endl;
}

};
class B : public A {

public:
void info()
{

cout << "Object of the class B" << endl;
}

};
A* a = new A(); B* b = new B();
A* ta = a; // backup of a pointer
a->info(); // calling method info() of the class A
b->info(); // calling method info() of the class B
a = b; // use the polymorphism of objects
a->info(); // the dynamic binding exists, method of the class B is called
delete ta; delete b;

clang++ demo-virtual.cc
./a.out
Object of the class A
Object of the class B
Object of the class B

lec13/demo-virtual.cc
Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 27 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Derived Classes, Polymorphism, and Practical Implications

■ Derived class inherits the methods and data fields of the superclass, but it can also
add new methods and data fields

■ It can extend and specialize the class
■ It can modify the implementation of the methods

■ An object of the derived class can be used instead of the object of the superclass, e.g.,
■ We can implement more efficient matrix multiplication without modification of the whole

program
We may further need a mechanism to create new object based on the dynamic type, i.e.,
using the newInstance virtual method

■ Virtual methods are important for the polymorphism
■ It is crucial to use a virtual destructor for a proper destruction of the object

E.g., when a derived class allocate additional memory

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 28 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example – Virtual Destructor 1/4
#include <iostream>
class Base {

public:
Base(int capacity) {

std::cout << "Base::Base -- allocate data" << std::endl;
data = new int[capacity];

}
virtual ~Base() { // virtual destructor is important

std::cout << "Base::~Base -- release data" << std::endl;
delete[] data;

}
protected:

int *data;
};

lec13/demo-virtual_destructor.cc

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 29 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example – Virtual Destructor 2/4

class Derived : public Base {
public:

Derived(int capacity) : Base(capacity) {
std::cout << "Derived::Derived -- allocate data2" << std::endl;
data2 = new int[capacity];

}
~Derived() {

std::cout << "Derived::~Derived -- release data2" << std::endl;
delete[] data2;

}
protected:

int *data2;
};

lec13/demo-virtual_destructor.cc

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 30 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example – Virtual Destructor 3/4

■ Using virtual destructor all allocated data are properly released
std::cout << "Using Derived " << std::endl;
Derived *object = new Derived(1000000);
delete object;
std::cout << std::endl;

std::cout << "Using Base" << std::endl;
Base *object = new Derived(1000000);
delete object; lec13/demo-virtual_destructor.cc

clang++ demo-virtual_destructor.cc && ./a.out

Using Derived Using Base
Base::Base -- allocate data Base::Base -- allocate data
Derived::Derived -- allocate data2 Derived::Derived -- allocate data2
Derived::~Derived -- release data2 Derived::~Derived -- release data2
Base::~Base -- release data Base::~Base -- release data

Both desctructors Derived and Base are called

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 31 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example – Virtual Destructor 4/4

■ Without virtual destructor, e.g„
class Base {

...
~Base(); // without virtualdestructor

};
Derived *object = new Derived(1000000);
delete object;
Base *object = new Derived(1000000);
delete object;

■ Only both constructors are called, but only destructor of the Base class in the second
case Base *object = new Derived(1000000);
Using Derived Using Base
Base::Base -- allocate data Base::Base -- allocate data
Derived::Derived -- allocate data2 Derived::Derived -- allocate data2
Derived::~Derived -- release data2 Base::~Base -- release data
Base::~Base -- release data Only the desctructor of Base is called

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 32 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Obsah

Resources

Objects and Methods in C++

Relationship

Inheritance

Polymorphism

Inheritance and Composition

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 33 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Inheritance and Composition

■ A part of the object oriented programming is the object oriented design (OOD)
■ It aims to provide “a plan” how to solve the problem using objects and their relationship
■ An important part of the design is identification of the particular objects
■ their generalization to the classes
■ and also designing a class hierarchy

■ Sometimes, it may be difficult to decides
■ What is the common (general) object and what is the specialization, which is important

step for class hierarchy and applying the inheritance
■ It may also be questionable when to use composition

■ Let show the inheritance on an example of geometrical objects

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 34 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example – Is Cuboid Extended Rectangle? 1/2
class Rectangle {

public:
Rectangle(double w, double h) : width(w), height(h) {}
inline double getWidth(void) const { return width; }
inline double getHeight(void) const { return height; }
inline double getDiagonal(void) const
{

return sqrt(width*width + height*height);
}

protected:
double width;
double height;

};

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 35 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example – Is Cuboid Extended Rectangle? 2/2
class Cuboid : public Rectangle {

public:
Cuboid(double w, double h, double d) :

Rectangle(w, h), depth(d) {}
inline double getDepth(void) const { return depth; }
inline double getDiagonal(void) const
{

const double tmp = Rectangle::getDiagonal();
return sqrt(tmp * tmp + depth * depth);

}

protected:
double depth;

};

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 36 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example – Inheritance Cuboid Extend Rectangle

■ Class Cuboid extends the class Rectangle by the depth
■ Cuboid inherits data fields width a height
■ Cuboid also inherits „getters” getWidth() and getHeight()
■ Constructor of the Rectangle is called from the Cuboid constructor

■ The descendant class Cuboid extends (override) the getDiagonal() methods
It actually uses the method getDiagonal() of the ancestor Rectangle::getDiagonal()

■ We create a “specialization” of the Rectangle as an extension Cuboid class

Is it really a suitable extension?

What is the cuboid area? What is the cuboid circumference?

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 37 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example – Inheritance Cuboid Extend Rectangle

■ Class Cuboid extends the class Rectangle by the depth
■ Cuboid inherits data fields width a height
■ Cuboid also inherits „getters” getWidth() and getHeight()
■ Constructor of the Rectangle is called from the Cuboid constructor

■ The descendant class Cuboid extends (override) the getDiagonal() methods
It actually uses the method getDiagonal() of the ancestor Rectangle::getDiagonal()

■ We create a “specialization” of the Rectangle as an extension Cuboid class

Is it really a suitable extension?

What is the cuboid area? What is the cuboid circumference?

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 37 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example – Inheritance Cuboid Extend Rectangle

■ Class Cuboid extends the class Rectangle by the depth
■ Cuboid inherits data fields width a height
■ Cuboid also inherits „getters” getWidth() and getHeight()
■ Constructor of the Rectangle is called from the Cuboid constructor

■ The descendant class Cuboid extends (override) the getDiagonal() methods
It actually uses the method getDiagonal() of the ancestor Rectangle::getDiagonal()

■ We create a “specialization” of the Rectangle as an extension Cuboid class

Is it really a suitable extension?

What is the cuboid area? What is the cuboid circumference?

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 37 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example – Inheritance – Rectangle is a Special Cuboid 1/2
■ Rectangle is a cuboid with zero depth
class Cuboid {

public:
Cuboid(double w, double h, double d) :

width(w), height(h), depth(d) {}

inline double getWidth(void) const { return width; }
inline double getHeight(void) const { return height; }
inline double getDepth(void) const { return depth; }

inline double getDiagonal(void) const
{

return sqrt(width*width + height*height + depth*depth);
}

protected:
double width;
double height;
double depth;

};

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 38 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example – Inheritance – Rectangle is a Special Cuboid 2/2

class Rectangle : public Cuboid {

public:
Rectangle(double w, double h) : Cuboid(w, h, 0.0) {}

};

■ Rectangle is a “cuboid” with zero depth
■ Rectangle inherits all data fields: with, height, and depth
■ It also inherits all methods of the ancestor

Accessible can be only particular ones

■ The constructor of the Cuboid class is accessible and it used to set data fields with
the zero depth

■ Objects of the class Rectangle can use all variable and methods of the Cuboid class

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 39 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Should be Rectangle Descendant of Cuboid or Cuboid be Descendant of
Rectangle?

1. Cuboid is descendant of the rectangle
■ “Logical” addition of the depth dimensions, but methods valid for the rectangle do not

work of the cuboid
E.g., area of the rectangle

2. Rectangle as a descendant of the cuboid
■ Logically correct reasoning on specialization

“All what work for the cuboid also work for the cuboid with zero depth”
■ Inefficient implementation – every rectangle is represented by 3 dimensions

Specialization is correct
Everything what hold for the ancestor have to be valid for the descendant

However, in this particular case, usage of the inheritance is questionable.

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 40 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Should be Rectangle Descendant of Cuboid or Cuboid be Descendant of
Rectangle?

1. Cuboid is descendant of the rectangle
■ “Logical” addition of the depth dimensions, but methods valid for the rectangle do not

work of the cuboid
E.g., area of the rectangle

2. Rectangle as a descendant of the cuboid
■ Logically correct reasoning on specialization

“All what work for the cuboid also work for the cuboid with zero depth”
■ Inefficient implementation – every rectangle is represented by 3 dimensions

Specialization is correct
Everything what hold for the ancestor have to be valid for the descendant

However, in this particular case, usage of the inheritance is questionable.

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 40 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Should be Rectangle Descendant of Cuboid or Cuboid be Descendant of
Rectangle?

1. Cuboid is descendant of the rectangle
■ “Logical” addition of the depth dimensions, but methods valid for the rectangle do not

work of the cuboid
E.g., area of the rectangle

2. Rectangle as a descendant of the cuboid
■ Logically correct reasoning on specialization

“All what work for the cuboid also work for the cuboid with zero depth”
■ Inefficient implementation – every rectangle is represented by 3 dimensions

Specialization is correct
Everything what hold for the ancestor have to be valid for the descendant

However, in this particular case, usage of the inheritance is questionable.

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 40 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Relationship of the Ancestor and Descendant is of the type “is-a”

■ Is a straight line segment descendant of the point?
■ Straight line segment does not use any method of a point

is-a?: segment is a point ? → NO → segment is not descendant of the point

■ Is rectangle descendant of the straight line segment?
is-a?: NO

■ Is rectangle descendant of the square, or vice versa?
■ Rectangle “extends” square by one dimension, but it is not a square
■ Square is a rectangle with the width same as the height

Set the width and height in the constructor!

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 41 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Substitution Principle

■ Relationship between two derived classes
■ Policy

■ Derived class is a specialization of the superclass
There is the is-a relationship

■ Wherever it is possible to sue a class, it must be possible to use the descendant in such a
way that a user cannot see any difference

Polymorphism
■ Relationship is-a must be permanent

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 42 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Composition of Objects

■ If a class contains data fields of other object type, the relationship is called
composition

■ Composition creates a hierarchy of objects, but not by inheritance
Inheritance creates hierarchy of relationship in the sense of descendant / ancestor

■ Composition is a relationship of the objects – aggregation – consists / is compound
■ It is a relationship of the type “has”

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 43 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example – Composition 1/3

■ Each person is characterized by attributes of the Person class
■ name (string)
■ address (string)
■ birthDate (date)
■ graduationDate (date)

■ Date is characterized by three attributes Datum (class Date)
■ day (int)
■ month (int)
■ year (int)

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 44 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example – Composition 2/3

#include <string>

class Person {
public:
std::string name;
std::string address;
Date birthDate;
Date graduationDate;

};

class Date {
public:

int day;
int month;
int year;

};

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 45 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Example – Composition 3/3

Person

std::string name std::string address

Date birthDate Date graduationDate

Date birthDate

int month int dayint year

Date graduationDate

int month int dayint year

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 46 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Inheritance vs Composition

■ Inheritance objects:
■ Creating a derived class (descendant, subclass, derived class)
■ Derived class is a specialization of the superclass

■ May add variables (data fields) Or overlapping variables (names)
■ Add or modify methods

■ Unlike composition, inheritance changes the properties of the objects
■ New or modified methods
■ Access to variables and methods of the ancestor (base class, superclass)

If access is allowed (public/protected)

■ Composition of objects is made of attributes (data fields) of the object type
It consists of objects

■ A distinction between composition an inheritance
■ „Is” test – a symptom of inheritance (is-a)
■ „Has” test – a symptom of composition (has)

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 47 / 58



Resources Objects and Methods in C++ Relationship Inheritance Polymorphism Inheritance and Composition

Inheritance and Composition – Pitfalls

■ Excessive usage of composition and also inheritance in cases it is not needed leads to
complicated design

■ Watch on literal interpretations of the relationship is-a and has, sometimes it is not
even about the inheritance, or composition

E.g., Point2D and Point3D or Circle and Ellipse

■ Prefer composition and not the inheritance
One of the advantages of inheritance is the polymorphism

■ Using inheritance violates the encapsulation
Especially with the access rights set to the protected

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 48 / 58



Templates Standard Template Library (STL)

Část II

Part 2 – Standard Template Library (STL)

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 49 / 58



Templates Standard Template Library (STL)

Obsah

Templates

Standard Template Library (STL)

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 50 / 58



Templates Standard Template Library (STL)

Templates

■ Class definition may contain specific data fields of a particular type
■ The data type itself does not change the behavior of the object, e.g., typically as in

■ Linked list or double linked list
■ Queue, Stack, etc.
■ data containers

■ Definition of the class for specific type would be identical except the data type
■ We can use templates for later specification of the particular data type, when the

instance of the class is created
■ Templates provides compile-time polymorphism

In constrast to the run-time polymorphism realized by virtual methods.

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 51 / 58



Templates Standard Template Library (STL)

Example – Template Class

■ The template class is defined by the template keyword with specification of the type
name
template <typename T>
class Stack {

public:
bool push(T *data);
T* pop(void);

};

■ An object of the template class is declared with the specified particular type
Stack<int> intStack;
Stack<double> doubleStack;

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 52 / 58



Templates Standard Template Library (STL)

Example – Template Function

■ Templates can also be used for functions to specify particular type and use type safety
and typed operators

template <typename T>
const T & max(const T &a, const T &b)
{

return a < b ? b : a;
}

double da, db;
int ia, ib;

std::cout << "max double: " << max(da, db) << std::endl;

std::cout << "max int: " << max(ia, ib) << std::endl;

//not allowed such a function is not defined
std::cout << "max mixed " << max(da, ib) << std::endl;

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 53 / 58



Templates Standard Template Library (STL)

Obsah

Templates

Standard Template Library (STL)

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 54 / 58



Templates Standard Template Library (STL)

STL

■ Standard Template Library (STL) is a library of the standard C++ that provides
efficient implementations of the data containers, algorithms, functions, and iterators

■ High efficiency of the implementation is achieved by templates with compile-type
polymorphism

■ Standard Template Library Programmer’s Guide – https://www.sgi.com/tech/stl/

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 55 / 58

https://www.sgi.com/tech/stl/


Templates Standard Template Library (STL)

std::vector – Dynamic "C" like array
■ One of the very useful data containers in the STL is vector that behaves like C array

but allows adding and removing elements.
#include <iostream>
#include <vector>

int main(void)
{

std::vector<int> a;

for (int i = 0; i < 10; ++i) {
a.push_back(i);

}

for (int i = 0; i < a.size(); ++i) {
std::cout << "a[" << i << "] = " << a[i] << std::endl;

}

std::cout << "Add one more element" << std::endl;
a.push_back(0);

for (int i = 5; i < a.size(); ++i) {
std::cout << "a[" << i << "] = " << a[i] << std::endl;

}
return 0;

}

lec13/stl-vector.cc

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 56 / 58



Topics Discussed

Summary of the Lecture

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 57 / 58



Topics Discussed

Topics Discussed

■ Objects and Methods in C++ – example of 2D matrix encapsulation
■ Subscripting operator

■ Relationship between objects
■ Aggregation
■ Composition

■ Inheritance – properties and usage in C++
■ Polymorphism – dynamic binding and virtual methods
■ Inheritance and Composition
■ Templates and STL

Jan Faigl, 2024 BAB36PRGA – Přednáška 13: OOP in C++ (Part 2) 58 / 58


	1
	Resources
	Objects and Methods in C++
	Relationship
	Inheritance
	Polymorphism
	Inheritance and Composition

	2
	Templates
	Standard Template Library (STL)

	Summary
	Topics Discussed


