
Introduction to Object Oriented Programming in C++

Jan Faigl

Katedra počítačů
Fakulta elektrotechnická

České vysoké učení technické v Praze

Přednáška 12

BAB36PRGA – Programování v C

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 1 / 49

Overview of the Lecture

■ Part 1 – Brief Overview of C89 vs C99 vs C11

C89 vs C99

C11 K. N. King: Appendix B

■ Part 2 – Object Oriented Programming (in C++)

Differences between C and C++

Classes and Objects

Constructor/Destructor

Example – Class Matrix

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 2 / 49

C89 vs C99 C11

Část I

Part 1 – Brief Overview of C89 vs C99 vs C11

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 3 / 49

C89 vs C99 C11

Obsah

C89 vs C99

C11

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 4 / 49

C89 vs C99 C11

Differences between C89 and C99

■ Comments – In C99 we can use a line comment that begins with //
■ Identifiers – C89 requires compilers to remember the first 31 characters vs. 63

characters in C99
■ Only the first 6 characters of names with external linkage are significant in C89 (no case

sensitive)
■ In C99, it is the first 31 characters and case of letters matters

■ Keywords – 5 new keywords in C99: inline, restrict, _Bool, _Complex, and
_Imaginary

■ Expressions
■ In C89, the results of / and % operators for a negative operand can be rounded either up or

down. The sign of i % j for negative i or j depends on the implementation.
■ In C99, the result is always truncated toward zero and the sign of
i % j is the sign of i .

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 5 / 49

C89 vs C99 C11

Differences between C89 and C99

■ Bool type – C99 provides _Bool type and macros in stdbool.h
■ Loops – C99 allows to declare control variable(s) in the first statement of the for loop
■ Arrays – C99 has

■ designated initializers and also allows
■ to use variable-length arrays

■ Functions – one of the directly visible changes is
■ In C89, declarations must precede statements within a block. In C99, it can be mixed.

■ Preprocessor – e.g.,
■ C99 allows macros with a variable number of arguments
■ C99 introduces __func__ macro which behaves as a string variable that stores the name

of the currently executing function

■ Input/Output – conversion specification for the *printf() and *scanf() functions
has been significantly changed in C99.

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 6 / 49

C89 vs C99 C11

Differences between C89 and C99 – Additional Libraries

■ <stdbool.h> – macros false and true that denote the logical values 0 and 1,
respectively

■ <stdint.h> – integer types with specified widths
■ <inttypes.h> – macros for input/output of types specified in <stdint.h>
■ <complex.h> – functions to perform mathematical operations on complex numbers
■ <tgmath.h> – type-generic macros for easier call of functions defined in <math.h>

and <complex.h>
■ <fenv.h> – provides access to floating-point status flags and control modes

Further changes, e.g., see K. N. King: Appendix B

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 7 / 49

C89 vs C99 C11

Obsah

C89 vs C99

C11

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 8 / 49

C89 vs C99 C11

Overview of Changes in C11 – 1/2

■ Memory Alignment Control – _Alignas, _Alignof, and aligned_alloc,
<stdalign.h>

■ Type-generic macros – _Generic keyword
■ _Noreturn keyword as the function specifier to declare function does not return by

executing return statement (but, e.g., rather longjmp) – <stdnoreturn.h>
■ <threads.h> – multithreading support
■ <stdatomic.h> – facilities for uninterruptible objects access
■ Anonymous structs and unions, e.g., for nesting union as a member of a struct

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 9 / 49

C89 vs C99 C11

Overview of Changes in C11 – 2/2

■ Unicode support – <uchar.h>
■ Bounds-checking functions – e.g., strcat_s() and strncpy_s()
■ gets() for reading a while line from the standard input has been removed.

■ It has been replaced by a safer version called gets_s()
In general, the bound-checking function aims to that the software written in C11 can be more
robust against security loopholes and malware attacks.

■ fopen() interface has been extended for exclusive create-and-open mode ("..x")
that behaves as O_CREAT|O_EXCL in POSIX used for lock files

■ wx – create file for writing with exclusive access
■ w+x – create file for update with exclusive access

■ Safer fopen_s() function has been also introduced

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 10 / 49

C89 vs C99 C11

Generic Selection
■ In C11, we can use a generic macros, i.e., macros with results that can be computed

according to type of the pass variable (expression)
double f_i(int i)
{

return i + 1.0;
}
double f_d(double d)
{

return d - 1.0;
}

#define fce(X) _Generic((X),\
int: f_i,\
double: f_d\
)(X)

int main(void)
{

int i = 10;
double d = 10.0;

printf("i = %d; d = %f\n", i, d);
printf("Results of fce(i) %f\n", fce(i));
printf("Results of fce(d) %f\n", fce(d));
return EXIT_SUCCESS;

}

lec12/demo-matrix.cc
clang -std=c11 generic.c -o generic && ./generic
i = 10; d = 10.000000
Results of fce(i) 11.000000
Results of fce(d) 9.000000

■ A function is selected according to the type of variable during compilation.
Static (parametric/compile-time) polymorphism

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 11 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Část II

Part 2 – Introduction to Object Oriented Programming

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 12 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Obsah

Differences between C and C++

Classes and Objects

Constructor/Destructor

Example – Class Matrix

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 13 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

C
■ C was developed by Dennis Ritchie

(1969–1973) at AT&T Bell Labs
■ C is a procedural (aka structural)

programming language
■ C is a subset of C++
■ The solution is achieved through a

sequence of procedures or steps
■ C is a function driven language

C++
■ Developed by Bjarne Stroustrup in 1979 with

C++’s predecessor “C with Classes”
■ C++ is procedural but also an object

oriented programming language
■ C++ can run most of C code
■ C++ can model the whole solution in terms of

objects and that can make the solution better
organized

■ C++ is an object driven language

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 14 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

C
■ Concept of virtual functions is not present

in C
■ No operator overloading
■ Data can be easily accessed by other

external functions
■ C is a middle level language

■ C programs are divided into modules and
procedures

■ C programs use top-down approach

C++
■ C++ offers the facility of using virtual

functions
■ C++ allows operator overloading
■ Data can be put inside objects, which provides

better data security
■ C++ is a high level language

■ C++ programs are divided into classes and
functions

■ C++ programs use bottom-up approach

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 15 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

C
■ Does not provide namespaces
■ Exception handling is not easy in C
■ Inheritance is not possible
■ Function overloading is not possible
■ Functions are used for input/output, e.g.,
scanf() and printf()

■ Does not support reference variables
■ Does not support definition (overloading)

operators

C++
■ Namespaces are available
■ Exception handling through Try and Catch

block
■ Inheritance is possible
■ Function overloading is possible (i.e.,

functions with the same name)
■ Objects (streams) can be use for input/output,

e.g., std::cin and std::cout
■ Supports reference variables, using &
■ C++ supports definition (overloading) of the

operators

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 16 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

C
■ Provides malloc() (calloc()) for

dynamic memory allocation
■ It provides free() function for memory

de-allocation
■ Does not support for virtual and friend

functions
■ Polymorphism is not possible
■ C supports only built-in data types
■ Mapping between data and functions is

difficult in C

■ C programs are saved in files with
extension .c

C++
■ C++ provides new operator for memory

allocation
■ It provides delete and (delete[]) operator

for memory de-allocation
■ C++ supports virtual and friend functions
■ C++ offers polymorphism
■ It supports both built-in and user-defined data

types
■ In C++ data and functions are easily mapped

through objects

■ C++ programs are saved in files with
extension .cc, .cxx or .cpp

http://techwelkin.com/difference-between-c-and-c-plus-plus

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 17 / 49

http://techwelkin.com/difference-between-c-and-c-plus-plus

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Obsah

Differences between C and C++

Classes and Objects

Constructor/Destructor

Example – Class Matrix

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 18 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Objects Oriented Programming (OOP)

OOP is a way how to design a program to fulfill requirements and make the
sources easy maintain.

■ Abstraction – concepts (templates) are organized into classes
■ Objects are instances of the classes

■ Encapsulation
■ Object has its state hidden and provides interface to communicate with other objects by

sending messages (function/method calls)
■ Inheritance

■ Hierarchy (of concepts) with common (general) properties that are further specialized in
the derived classes

■ Polymorphism
■ An object with some interface could replace another object with the same interface

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 19 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Objects Oriented Programming (OOP)

OOP is a way how to design a program to fulfill requirements and make the
sources easy maintain.

■ Abstraction – concepts (templates) are organized into classes
■ Objects are instances of the classes

■ Encapsulation
■ Object has its state hidden and provides interface to communicate with other objects by

sending messages (function/method calls)
■ Inheritance

■ Hierarchy (of concepts) with common (general) properties that are further specialized in
the derived classes

■ Polymorphism
■ An object with some interface could replace another object with the same interface

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 19 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Class
Describes a set of objects – it is a model of the objects and defines:

■ Interface – parts that are accessible from outside
public, protected, private

■ Body – implementation of the interface (methods)
that determine the ability of the objects of the class

Instance vs class methods

■ Data Fields – attributes as basic and complex data
types and structures (objects) Object composition
■ Instance variables – define the state of the object of the

particular class
■ Class variables – common for all instances of the

particular class

// header file - definition of the class
type

class MyClass {
public:

/// public read only
int getValue(void) const;

private:
/// hidden data field
/// it is object variable
int myData;

};

// source file - implementation of the
methods

int MyClass::getValue(void) const
{

return myData;
}

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 20 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Object Structure

■ The value of the object is structured, i.e., it consists of particular values of the object
data fields which can be of different data type

Heterogeneous data structure unlike an array

■ Object is an abstraction of the memory where particular values are stored
■ Data fields are called attributes or instance variables

■ Data fields have their names and can be marked as hidden or accessible in the class
definition

Following the encapsulation they are usually hidden
Object:

■ Instance of the class – can be created as a variable declaration or by dynamic
allocation using the new operator

■ Access to the attributes or methods is using . or -> (for pointers to an object)

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 21 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Object Structure

■ The value of the object is structured, i.e., it consists of particular values of the object
data fields which can be of different data type

Heterogeneous data structure unlike an array

■ Object is an abstraction of the memory where particular values are stored
■ Data fields are called attributes or instance variables

■ Data fields have their names and can be marked as hidden or accessible in the class
definition

Following the encapsulation they are usually hidden
Object:

■ Instance of the class – can be created as a variable declaration or by dynamic
allocation using the new operator

■ Access to the attributes or methods is using . or -> (for pointers to an object)

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 21 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Creating an Object – Class Constructor
■ A class instance (object) is created by calling a constructor to initialize values of the

instance variables Implicit/default one exists if not specified

■ The name of the constructor is identical to the name of the class
Class definition

class MyClass {
public:

// constructor
MyClass(int i);
MyClass(int i, double d);

private:
const int _i;
int _ii;
double _d;

};

Class implementation
MyClass::MyClass(int i) : _i(i)
{

_ii = i * i;
_d = 0.0;

}
// overloading constructor
MyClass::MyClass(int i, double d) : _i(i)
{

_ii = i * i;
_d = d;

}

{
MyClass myObject(10); //create an object as an instance of MyClass

} // at the end of the block, the object is destroyed
MyClass *myObject = new MyClass(20, 2.3); //dynamic object creation
delete myObject; //dynamic object has to be explicitly destroyed

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 22 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Relationship between Objects

■ Objects may contain other objects
■ Object aggregation / composition
■ Class definition can be based on an existing class definition – so, there is a relationship

between classes
■ Base class (super class) and the derived class
■ The relationship is transferred to the respective objects as instances of the classes

By that, we can cast objects of the derived class to class instances of ancestor

■ Objects communicate between each other using methods (interface) that is accessible
to them

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 23 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Access Modifiers

■ Access modifiers allow to implement encapsulation (information hiding) by specifying
which class members are private and which are public:

■ public: – any class can refer to the field or call the method
■ protected: – only the current class and subclasses (derived classes) of this class have

access to the field or method
■ private: – only the current class has the access to the field or method

Modifier Access
Class Derived Class “World”

public ! ! !
protected ! ! ✗
private ! ✗ ✗

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 24 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Obsah

Differences between C and C++

Classes and Objects

Constructor/Destructor

Example – Class Matrix

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 25 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Constructor and Destructor

■ Constructor provides the way how to initialize the object, i.e., allocate resources
Programming idiom – Resource acquisition is initialization (RAII)

■ Destructor is called at the end of the object life
■ It is responsible for a proper cleanup of the object
■ Releasing resources, e.g., freeing allocated memory, closing files

■ Destructor is a method specified by a programmer similarly to a constructor
However, unlike constructor, only single destructor can be specified

■ The name of the destructor is the same as the name of the class but it starts with the
character ∼ as a prefix

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 26 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Constructor Overloading
■ An example of constructor for creating an instance of the complex number
■ In an object initialization, we may specify only real part or both the real and imaginary

part
class Complex {

public:
Complex(double r)
{

re = r;
}
Complex(double r, double i)
{

re = r;
im = i;

}
~Complex() { /* nothing to do in destructor */ }

private:
double re;
double im;

};
Both constructors shared the duplicate code, which we like to avoid!

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 27 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Constructor Calling 1/3
■ We can create a dedicated initialization method that is called from different

constructors
class Complex {

public:
Complex(double r, double i) { init(r, i); }
Complex(double r) { init(r, 0.0); }
Complex() { init(0.0, 0.0); }

private:

void init(double r, double i)
{

re = r;
im = i;

}
private:

double re;
double im;

};

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 28 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Constructor Calling 2/3

■ Or we can utilize default values of the arguments that are combined with initializer list
here

class Complex {
public:

Complex(double r = 0.0, double i = 0.0) : re(r), im(i) {}
private:

double re;
double im;

};

int main(void)
{

Complex c1;
Complex c2(1.);
Complex c3(1., -1.);
return 0;

}

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 29 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Constructor Calling 3/3

■ Alternatively, in C++11, we can use delegating constructor

class Complex {
public:

Complex(double r, double i)
{

re = r;
im = i;

}
Complex(double r) : Complex(r, 0.0) {}
Complex() : Complex(0.0, 0.0) {}

private:
double re;
double im;

};

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 30 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Constructor Summary
■ The name is identical to the class name
■ The constructor does not have return value

Not even void

■ Its execution can be prematurely terminated by calling return
■ It can have parameters similarly as any other method (function)
■ We can call other functions, but they should not rely on initialized object that is being

done in the constructor
■ Constructor is usually public
■ (private) constructor can be used, e.g., for:

■ Classes with only class methods
Prohibition to instantiate class

■ Classes with only constants
■ The so called singletons

E.g., “object factories”

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 31 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Constructor Summary
■ The name is identical to the class name
■ The constructor does not have return value

Not even void

■ Its execution can be prematurely terminated by calling return
■ It can have parameters similarly as any other method (function)
■ We can call other functions, but they should not rely on initialized object that is being

done in the constructor
■ Constructor is usually public
■ (private) constructor can be used, e.g., for:

■ Classes with only class methods
Prohibition to instantiate class

■ Classes with only constants
■ The so called singletons

E.g., “object factories”

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 31 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Obsah

Differences between C and C++

Classes and Objects

Constructor/Destructor

Example – Class Matrix

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 32 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Class as an Extended Data Type with Encapsulation
■ Data hidding is utilized to encapsulate implementation of matrix

class Matrix {
private:

const int ROWS;
const int COLS;
double *vals;

}; 1D array is utilized to have a continuous memory. 2D dynamic array
can be used in C++11.

■ In the example, it is shown
■ How initialize and free required memory in constructor and destructor
■ How to report an error using exception and try-catch statement
■ How to use references
■ How to define a copy constructor
■ How to define (overload) an operator for our class and objects
■ How to use C function and header files in C++
■ How to print to standard output and stream
■ How to define stream operator for output
■ How to define assignment operator

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 33 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Constructor
■ Class Matrix encapsulate dimension of the matrix
■ Dimensions are fixed for the entire life of the object (const)

class Matrix {
public:

Matrix(int rows, int cols);
~Matrix();

private:
const int ROWS;
const int COLS;
double *vals;

};

Matrix::Matrix(int rows, int cols) : ROWS(rows),
COLS(cols)

{
vals = new double[ROWS * COLS];

}

Matrix::~Matrix()
{

delete[] vals;
}

Notice, for simplicity we do not test validity of the matrix dimensions.

■ Constant data fields ROWS and COLS must be initialized in the constructor, i.e., in the
initializer list

We should also preserve the order of the initialization as the variables are defined

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 34 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Hidding Data Fields
■ Primarily we aim to hide direct access to the particular data fields
■ For the dimensions, we provide the so-called “accessor” methods
■ The methods are declared as const to assure they are read only methods and do not

modify the object (compiler checks that)
■ Private method at() is utilized to have access to the particular cell at r row and c

column inline is used to instruct compiler to avoid function call and rather put the function body
directly at the calling place.class Matrix {

public:

inline int rows(void) const { return ROWS; } // const method cannot
inline int cols(void) const { return COLS; } // modify the object

private:
// returning reference to the variable allows to set the variable
// outside, it is like a pointer but automatically dereferenced
inline double& at(int r, int c) const
{

return vals[COLS * r + c];
}

};
Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 35 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Using Reference
■ The at() method can be used to fill the matrix randomly
■ The rand() function is defined in <stdlib.h>, but in C++ we prefer to include C

libraries as <cstdlib>
class Matrix {

public:
void fillRandom(void);

private:
inline double& at(int r, int c) const { return vals[COLS * r + c]; }

};

#include <cstdlib>

void Matrix::fillRandom(void)
{

for (int r = 0; r < ROWS; ++r) {
for (int c = 0; c < COLS; ++c) {

at(r, c) = (rand() % 100) / 10.0; // set vals[COLS * r + c]
}

}
}

In this case, it is more straightforward to just fill 1D array of vals for i in 0..(ROWS * COLS).
Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 36 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Getters/Setters
■ Access to particular cell of the matrix is

provided through the so-called getter and
setter methods

class Matrix {
public:

double getValueAt(int r, int c) const;
void setValueAt(double v, int r, int c);

};■ The methods are based on the private at()
method but will throw an exception if a cell out of ROWS and COLS would be requested

#include <stdexcept>
double Matrix::getValueAt(int r, int c) const
{

if (r < 0 or r >= ROWS or c < 0 or c >= COLS) {
throw std::out_of_range("Out of range at Matrix::getValueAt");

}
return at(r, c);

}
void Matrix::setValueAt(double v, int r, int c)
{

if (r < 0 or r >= ROWS or c < 0 or c >= COLS) {
throw std::out_of_range("Out of range at Matrix::setValueAt");

}
at(r, c) = v;

}
Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 37 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Exception Handling
■ The code where an exception can be raised is put into the try-catch block
■ The particular exception is specified in the catch by the class name
■ We use the program standard output denoted as std::cout

We can avoid std:: by using namespace std;

Or just using std::cout;
#include <iostream>

#include "matrix.h"

int main(void)
{

int ret = 0;
try {

Matrix m1(3, 3);
m1.setValueAt(10.5, 2, 3); // col 3 raises the exception

m1.fillRandom();
} catch (std::out_of_range& e) {

std::cout << "ERROR: " << e.what() << std::endl;
ret = -1

}
return ret;

} lec12/demo-matrix.cc
Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 38 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Printing the Matrix

■ We create a print() method to nicely print the matrix to the standard output
■ Formatting is controlled by i/o stream manipulators defined in <iomanip> header file
#include <iostream>
#include <iomanip>

#include "matrix.h"

void print(const Matrix& m)
{

std::cout << std::fixed << std::setprecision(1);
for (int r = 0; r < m.rows(); ++r) {

for (int c = 0; c < m.cols(); ++c) {
std::cout << (c > 0 ? " " : "") << std::setw(4);
std::cout << m.getValueAt(r, c);

}
std::cout << std::endl;

}
}

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 39 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Printing the Matrix
■ The matrix variable m1 is not copied as it is passed as reference to print() function

#include <iostream>
#include <iomanip>
#include "matrix.h"

void print(const Matrix& m);

int main(void)
{

int ret = 0;
try {

Matrix m1(3, 3);
m1.fillRandom();
std::cout << "Matrix m1" << std::endl;
print(m1);

...

■ Example of the output
clang++ --pedantic matrix.cc demo-matrix.cc && ./a.out
Matrix m1
1.3 9.7 9.8
1.5 1.2 4.3
8.7 0.8 9.8 lec12/matrix.h, lec12/matrix.cc, lec12/demo-matrix.cc

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 40 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Copy Constructor

■ We may overload the constructor to create a copy of the object
class Matrix {

public:
...
Matrix(const Matrix &m);
...

};

■ We create an exact copy of the matrix
Matrix::Matrix(const Matrix &m) : ROWS(m.ROWS), COLS(m.COLS)
{ // copy constructor

vals = new double[ROWS * COLS];
for (int i = 0; i < ROWS * COLS; ++i) {

vals[i] = m.vals[i];
}

}
■ Notice, access to private fields is allowed within in the class

We are implementing the class, and thus we are aware what are the internal data fields

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 41 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Dynamic Object Allocation
■ We can create a new instance of the object by the new operator
■ We may also combine dynamic allocation with the copy constructor
■ Notice, the access to the methods of the object using the pointer to the object is by

the -> operator

matrix m1(3, 3);
m1.fillRandom();
std::cout << "Matrix m1" << std::endl;
print(m1);

Matrix *m2 = new Matrix(m1);
Matrix *m3 = new Matrix(m2->rows(), m2->cols());
std::cout << std::endl << "Matrix m2" << std::endl;
print(*m2);
m3->fillRandom();
std::cout << std::endl << "Matrix m3" << std::endl;
print(*m3);

delete m2;
delete m3;

lec12/demo-matrix.cc
Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 42 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Sum
■ The method to sum two matrices will

return a new matrix
class Matrix {

public:
Matrix sum(const Matrix &m2);

}
■ The variable ret is passed using the copy constructor

Matrix Matrix::sum(const Matrix &m2)
{

if (ROWS != m2.ROWS or COLS != m2.COLS) {
throw std::invalid_argument("Matrix dimensions do not match at Matrix::sum");

}
Matrix ret(ROWS, COLS);
for (int i = 0; i < ROWS * COLS; ++i) {

ret.vals[i] = vals[i] + m2.vals[i];
}
return ret;

} We may also implement sum as addition to the particular matrix
■ The sum() method can be then used as any other method

Matrix m1(3, 3);
m1.fillRandom();
Matrix *m2 = new Matrix(m1);
Matrix m4 = m1.sum(*m2);

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 43 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Operator +
■ In C++, we can define our operators, e.g., + for sum of two matrices
■ It will be called like the sum() method

class Matrix {
public:

Matrix sum(const Matrix &m2);
Matrix operator+(const Matrix &m2);

}

■ In our case, we can use the already implemented sum() method
Matrix Matrix::operator+(const Matrix &m2)
{

return sum(m2);
}

■ The new operator can be applied for the operands of the Matrix type like as to default types
Matrix m1(3,3);
m1.fillRandom();
Matrix m2(m1), m3(m1 + m2); // use sum of m1 and m2 to init m3
print(m3);

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 44 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Output Stream Operator
■ An output stream operator << can be defined to pass Matrix objects to the output stream
#include <ostream>
class Matrix { ... };
std::ostream& operator<<(std::ostream& out, const Matrix& m);

■ It is defined outside the Matrix
#include <iomanip>
std::ostream& operator<<(std::ostream& out, const Matrix& m)
{

if (out) {
out << std::fixed << std::setprecision(1);
for (int r = 0; r < m.rows(); ++r) {

for (int c = 0; c < m.cols(); ++c) {
out << (c > 0 ? " " : "") << std::setw(4);
out << m.getValueAt(r, c);

}
out << std::endl;

}
}
return out;

}

“Outside” operator can be used in an output stream pipeline with other data types. In this case,
we can use just the public methods. But, if needed, we can declare the operator as a friend
method to the class, which can access the private fields.

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 45 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Example of Usage

■ Having the stream operator we can use + directly in the output
std::cout << "\nMatrix demo using operators" << std::endl;
Matrix m1(2, 2);
Matrix m2(m1);
m1.fillRandom();
m2.fillRandom();
std::cout << "Matrix m1" << std::endl << m1;
std::cout << "\nMatrix m2" << std::endl << m2;
std::cout << "\nMatrix m1 + m2" << std::endl << m1 + m2;

■ Example of the output operator
Matrix demo using operators
Matrix m1 Matrix m2 Matrix m1 + m2
0.8 3.1 0.4 2.3 1.2 5.4
2.2 4.6 3.3 7.2 5.5 11.8

lec12/demo-matrix.cc

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 46 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Assignment Operator =
class Matrix {

public:
Matrix& operator=(const Matrix &m)
{

if (this != &m) { // to avoid overwriting itself
if (ROWS != m.ROWS or COLS != m.COLS) {

throw std::out_of_range("Cannot assign matrix with
different dimensions");

}
for (int i = 0; i < ROWS * COLS; ++i) {

vals[i] = m.vals[i];
}

}
return *this; // we return reference not a pointer

}
};
// it can be then used as
Matrix m1(2,2), m2(2,2), m3(2,2);
m1.fillRandom();
m2.fillRandom();
m3 = m1 + m2;
std::cout << m1 << " + " << std::endl << m2 << " = " << std::endl << m3 << std::endl;

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 47 / 49

Topics Discussed

Summary of the Lecture

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 48 / 49

Topics Discussed

Topics Discussed

■ C89 vs C99 vs C11 – a brief overview of the changes
■ C vs C++ – a brief overview of differences
■ Object oriented programming in C++

■ Introduction to OOP
■ Classes and objects
■ Constructor
■ Examples of C++ constructs

■ Overloading constructors
■ References vs pointers
■ Data hidding – getters/setters
■ Exception handling
■ Operator definition
■ Stream based output

■ Next: OOP – Polymorphism, inheritance, and virtual methods.

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 49 / 49

Topics Discussed

Topics Discussed

■ C89 vs C99 vs C11 – a brief overview of the changes
■ C vs C++ – a brief overview of differences
■ Object oriented programming in C++

■ Introduction to OOP
■ Classes and objects
■ Constructor
■ Examples of C++ constructs

■ Overloading constructors
■ References vs pointers
■ Data hidding – getters/setters
■ Exception handling
■ Operator definition
■ Stream based output

■ Next: OOP – Polymorphism, inheritance, and virtual methods.

Jan Faigl, 2024 BAB36PRGA – Přednáška 12: OOP in C++ (Part 1) 49 / 49

	1
	C89 vs C99
	C11

	2
	Differences between C and C++
	Classes and Objects
	Constructor/Destructor
	Example – Class Matrix

	Summary
	Topics Discussed

