
Quick Introduction to C++

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

Lecture 11

B3B36PRG – C Programming Language

Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 1 / 33

Overview of the Lecture

� Part 1 – Quick Introduction to C++

Resources

Quick Overview How C++ Differs from C

Classes and Objects

Constructor/Destructor

Templates

Standard Template Library (STL)

Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 2 / 33

Resources Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Templates Standard Template Library (STL)

Part I

Part 1 – Quick Introduction to C++ (for
C coders)

Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 3 / 33

Resources Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Templates Standard Template Library (STL)

Books

The C++ Programming Language,
Bjarne Stroustrup, Addison-Wesley Professional,
2013, ISBN 978-0321563842

Programming: Principles and Practice Using
C++, Bjarne Stroustrup, Addison-Wesley
Professional, 2014, ISBN 978-0321992789

Effective C++: 55 Specific Ways to Improve
Your Programs and Designs, Scott Meyers,
Addison-Wesley Professional, 2005, ISBN
978-0321334879

Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 5 / 33

Resources Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Templates Standard Template Library (STL)

Objects Oriented Programming (OOP)

OOP is a way how to design a program to fulfill requirements
and make the sources easy maintain.

� Abstraction – concepts (templates) are organized into classes
� Objects are instances of the classes

� Encapsulation
� Object has its state hidden and provides interface to communicate

with other objects by sending messages (function/method calls)

� Inheritance
� Hierarchy (of concepts) with common (general) properties that are

further specialized in the derived classes
� Polymorphism

� An object with some interface could replace another object with
the same interface

Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 7 / 33

Resources Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Templates Standard Template Library (STL)

C++ for C Programmers

� C++ can be considered as an “extension” of C with additional con-
cepts to create more complex programs in an easier way

� It supports to organize and structure complex programs to be better
manageable with easier maintenance

� Encapsulation supports “locality” of the code, i.e., provide only
public interfance and keep details “hidden”

� Avoid unintentional wrong usage because of unknown side effects
� Make the implementation of particular functionality compact and

easier to maintain
� Provide relatively complex functionality with simple to use interface

� Support a tighter link between data and functions operating with the
data, i.e., classes combine data (properties) with functions (meth-
ods)

Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 8 / 33

Resources Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Templates Standard Template Library (STL)

From struct to class
� struct defines complex data types for which we can define particular

functions, e.g., allocation(), deletion(), initialization(), sum(), print() etc.
� class defines the data and function working on the data including the

initialization (constructor) and deletion (destructor) in a compact form
� Instance of the class is an object, i.e., a variable of the class type
� Object

typedef struct matrix {
int rows;
int cols;
double *mtx;

} matrix_s;

matrix_s* allocate(int r, int c);
void release(matrix_s **matrix);
void init(matrix_s *matrix);
void print(const matrix_s *matrix);

matrix_s *matrix = allocate(10, 10);
init(matrix);
print(matrix);
release(matrix);

class Matrix {
const int ROWS;
const int COLS;
double *mtx;
public:
Matrix(int r, int c);
~Matrix(); //destructor
void init(void);
void print(void) const;

};
{

Matrix matrix(10, 10);
matrix.init();
matrix.print();

} // will call destructor

Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 9 / 33

Resources Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Templates Standard Template Library (STL)

Dynamic allocation
� malloc() and free() and standard functions to allocate/release

memory of the particular size in C

matrix_s *matrix = (matrix_s*)malloc(sizeof(matrix_s));
matrix->rows = matrix->cols = 0; //inner matrix is not allocated
print(matrix);
free(matrix);

� C++ provides two keywords (operators) for creating and deleting
objects (variables at the heap) new and delete

Matrix *matrix = new Matrix(10, 10); // constructor is called
matrix->print();
delete matrix;

� new and delete is similar to malloc() and free(), but
� Variables are strictly typed and constructor is called to initialize the object
� For arrays, explicit calling of delete[] is required

int *array = new int[100]; // aka (int*)malloc(100 * sizeof(int))
delete[] array; // aka free(array)

Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 10 / 33

Resources Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Templates Standard Template Library (STL)

Reference
� In addition to variable and pointer to a variable, C++ supports references,

i.e., a reference to an existing object
� Reference is an alias to existing variable, e.g.,

int a = 10;
int &r = a; // r is reference (alias) to a
r = 13; // a becomes 13

� It allows to pass object (complex data structures) to functions (methods)
without copying them

Variables are passed by value
int print(Matrix matrix)
{// new local variable matrix is allocated
// and content of the passed variable is copied

}
int print(Matrix *matrix) // pointer is passed
{

matrix->print();
}
int print(Matrix &matrix)
{

// reference is passed – similar to passing pointer
matrix.print(); //but it is not pointer and . is used

}
Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 11 / 33

Resources Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Templates Standard Template Library (STL)

Class
Describes a set of objects – it is a model of the objects and defines:

� Interface – parts that are accessible
from outside public, protected, private

� Body – implementation of the interface
(methods) that determine the ability of
the objects of the class

Instance vs class methods

� Data Fields – attributes as basic and
complex data types and structures
(objects) Object composition

� Instance variables – define the state of the
object of the particular class

� Class variables – common for all instances
of the particular class

// header file - definition of
the class type

class MyClass {
public:

/// public read only
int getValue(void) const;

private:
/// hidden data field
/// it is object variable
int myData;

};

// source file - implementation
of the methods

int MyClass::getValue(void) const
{

return myData;
}

Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 13 / 33

Resources Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Templates Standard Template Library (STL)

Object Structure

� The value of the object is structured, i.e., it consists of particular
values of the object data fields which can be of different data type

Heterogeneous data structure unlike an array

� Object is an abstraction of the memory where particular values are
stored

� Data fields are called attributes or instance variables

� Data fields have their names and can be marked as hidden or
accessible in the class definition

Following the encapsulation they are usually hidden

Object:
� Instance of the class – can be created as a variable declaration or
by dynamic allocation using the new operator

� Access to the attributes or methods is using . or -> (for pointers
to an object)

Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 14 / 33

Resources Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Templates Standard Template Library (STL)

Creating an Object – Class Constructor
� A class instance (object) is created by calling a constructor to
initialize values of the instance variables

Implicit/default one exists if not specified

� The name of the constructor is identical to the name of the class
Class definition

class MyClass {
public:

// constructor
MyClass(int i);
MyClass(int i, double d);

private:
const int _i;
int _ii;
double _d;

};

Class implementation
MyClass::MyClass(int i) : _i(i)
{

_ii = i * i;
_d = 0.0;

}
// overloading constructor
MyClass::MyClass(int i, double d) : _i(i)
{

_ii = i * i;
_d = d;

}

{
MyClass myObject(10); //create an object as an instance of MyClass

} // at the end of the block, the object is destroyed
MyClass *myObject = new MyClass(20, 2.3); //dynamic object creation
delete myObject; //dynamic object has to be explicitly destroyed

Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 15 / 33

Resources Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Templates Standard Template Library (STL)

Relationship between Objects

� Objects may contain other objects
� Object aggregation / composition
� Class definition can be based on an existing class definition – so,
there is a relationship between classes

� Base class (super class) and the derived class
� The relationship is transferred to the respective objects as

instances of the classes
By that, we can cast objects of the derived class to class instances of ancestor

� Objects communicate between each other using methods
(interface) that is accessible to them

Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 16 / 33

Resources Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Templates Standard Template Library (STL)

Access Modifiers

� Access modifiers allow to implement encapsulation (information
hiding) by specifying which class members are private and which
are public:

� public: – any class can refer to the field or call the method
� protected: – only the current class and subclasses (derived

classes) of this class have access to the field or method
� private: – only the current class has the access to the field or

method

Modifier Access
Class Derived Class “World”

public ! ! !
protected ! ! 7
private ! 7 7

Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 17 / 33

Resources Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Templates Standard Template Library (STL)

Constructor and Destructor

� Constructor provides the way how to initialize the object, i.e.,
allocate resources

Programming idiom – Resource acquisition is initialization (RAII)

� Destructor is called at the end of the object life
� It is responsible for a proper cleanup of the object
� Releasing resources, e.g., freeing allocated memory, closing files

� Destructor is a method specified by a programmer similarly to a
constructor

However, unlike constructor, only single destructor can be specified

� The name of the destructor is the same as the name of the class
but it starts with the character ∼ as a prefix

Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 19 / 33

Resources Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Templates Standard Template Library (STL)

Constructor Overloading
� An example of constructor for creating an instance of the complex
number

� In an object initialization, we may specify only real part or both
the real and imaginary part

class Complex {
public:

Complex(double r)
{

re = r;
}
Complex(double r, double i)
{

re = r;
im = i;

}
~Complex() { /* nothing to do in destructor */ }

private:
double re;
double im;

};
Both constructors shared the duplicate code, which we like to avoid!

Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 20 / 33

Resources Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Templates Standard Template Library (STL)

Example – Constructor Calling 1/3

� We can create a dedicated initialization method that is called from
different constructors

class Complex {

public:
Complex(double r, double i) { init(r, i); }
Complex(double r) { init(r, 0.0); }
Complex() { init(0.0, 0.0); }

private:

void init(double r, double i)
{

re = r;
im = i;

}
private:

double re;
double im;

};

Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 21 / 33

Resources Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Templates Standard Template Library (STL)

Example – Constructor Calling 2/3

� Or we can utilize default values of the arguments that are
combined with initializer list here

class Complex {
public:

Complex(double r = 0.0, double i = 0.0) : re(r), im(i) {}
private:

double re;
double im;

};

int main(void)
{

Complex c1;
Complex c2(1.);
Complex c3(1., -1.);
return 0;

}

Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 22 / 33

Resources Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Templates Standard Template Library (STL)

Example – Constructor Calling 3/3

� Alternatively, in C++11, we can use delegating constructor

class Complex {
public:

Complex(double r, double i)
{

re = r;
im = i;

}
Complex(double r) : Complex(r, 0.0) {}
Complex() : Complex(0.0, 0.0) {}

private:
double re;
double im;

};

Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 23 / 33

Resources Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Templates Standard Template Library (STL)

Constructor Summary

� The name is identical to the class name
� The constructor does not have return value

Not even void

� Its execution can be prematurely terminated by calling return
� It can have parameters similarly as any other method (function)
� We can call other functions, but they should not rely on initialized
object that is being done in the constructor

� Constructor is usually public
� (private) constructor can be used, e.g., for:

� Classes with only class methods
Prohibition to instantiate class

� Classes with only constants
� The so called singletons

E.g., “object factories”

Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 24 / 33

Resources Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Templates Standard Template Library (STL)

Templates

� Class definition may contain specific data fields of a particular type
� The data type itself does not change the behavior of the object,
e.g., typically as in

� Linked list or double linked list
� Queue, Stack, etc.
� data containers

� Definition of the class for specific type would be identical except
the data type

� We can use templates for later specification of the particular data
type, when the instance of the class is created

� Templates provides compile-time polymorphism
In constrast to the run-time polymorphism realized by virtual methods.

Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 26 / 33

Resources Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Templates Standard Template Library (STL)

Example – Template Class

� The template class is defined by the template keyword with
specification of the type name
template <typename T>
class Stack {

public:
bool push(T *data);
T* pop(void);

};

� An object of the template class is declared with the specified
particular type
Stack<int> intStack;
Stack<double> doubleStack;

Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 27 / 33

Resources Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Templates Standard Template Library (STL)

Example – Template Function

� Templates can also be used for functions to specify particular type
and use type safety and typed operators

template <typename T>
const T & max(const T &a, const T &b)
{

return a < b ? b : a;
}

double da, db;
int ia, ib;

std::cout << "max double: " << max(da, db) << std::endl;

std::cout << "max int: " << max(ia, ib) << std::endl;

//not allowed such a function is not defined
std::cout << "max mixed " << max(da, ib) << std::endl;

Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 28 / 33

Resources Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Templates Standard Template Library (STL)

STL

� Standard Template Library (STL) is a library of the standard C++
that provides efficient implementations of the data containers,
algorithms, functions, and iterators

� High efficiency of the implementation is achieved by templates
with compile-type polymorphism

� Standard Template Library Programmer’s Guide –
https://www.sgi.com/tech/stl/

Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 30 / 33

https://www.sgi.com/tech/stl/

Resources Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Templates Standard Template Library (STL)

std::vector – Dynamic "C" like array
� One of the very useful data containers in STL is vector which
behaves like C array but allows to add and remove elements

#include <iostream>
#include <vector>

int main(void)
{

std::vector<int> a;

for (int i = 0; i < 10; ++i) {
a.push_back(i);

}

for (int i = 0; i < a.size(); ++i) {
std::cout << "a[" << i << "] = " << a[i] << std::endl;

}

std::cout << "Add one more element" << std::endl;
a.push_back(0);

for (int i = 5; i < a.size(); ++i) {
std::cout << "a[" << i << "] = " << a[i] << std::endl;

}
return 0;

} lec11cc/stl-vector.cc
Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 31 / 33

Topics Discussed

Summary of the Lecture

Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 32 / 33

Topics Discussed

Topics Discussed

� Classes and objects
� Constructor/destructor
� Templates and STL
� Next: C++ constructs (polymorphism, inheritance, and virtual
methods, etc.) in examples

Jan Faigl, 2019 B3B36PRG – Lecture 11: Quick Introduction to C++ (Part 1) 33 / 33

	1
	Resources
	Quick Overview How C++ Differs from C
	Classes and Objects
	Constructor/Destructor
	Templates
	Standard Template Library (STL)

	Summary
	Topics Discussed

