Jan Faigl, 2019

Multithreading programming

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague

Lecture 08
B3B36PRG — C Programming Language

B3B36PRG — Lecture 08: Multithreading programming

1/60

Overview of the Lecture

® Part 1 — Multithreading Programming

Introduction

Multithreading applications and operating system
Models of Multi-Thread Applications
Synchronization Mechanisms

POSIX Threads

C11 Threads

Debugging

Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming

Jan Faigl, 2019

Part |

Part 1 — Multithreading Programming

B3B36PRG — Lecture 08: Multithreading programming

3/60

Introduction

Terminology — Threads

® Thread is an independent execution of a sequence of instructions

® |t is individually performed computational flow

Typically a small program that is focused on a particular part

® Thread is running within the process

® |t shares the same memory space as the process

® Threads running within the same memory space of the process
® Thread runtime environment — each thread has its separate

space for variables

® Thread identifier and space for synchronization variables
® Program counter (PC) or Instruction Pointer (IP) — address of the
performing instruction
Indicates where the thread is in its program sequence
= Memory space for local variables stack

Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming

Introduction

Where Threads Can be Used?

m Threads are lightweight variants of the processes that share the

memory space

® There are several cases where it is useful to use threads, the most

typical situations are

m More efficient usage of the available computational resources

®m When a process waits for resources (e.g., reads from a periphery),
it is blocked, and control is passed to another process

®m Thread also waits, but another thread within the same process can
utilize the dedicated time for the process execution

® Having multi-core processors, we can speedup the computation us-
ing more cores simultaneously by parallel algorithms

m Handling asynchronous events

® During blocked i/o operation, the processor can be utilized for

other computational

® One thread can be dedicated for the i/o operations, e.g., per
communication channel, another threads for computations

Introduction

Examples of Threads Usage

® Input/output operations

® Input operations can take significant portions of the run-time, which
may be mostly some sort of waiting, e.g., for a user input

® During the communication, the dedicated CPU time can be utilized
for computationally demanding operations

m Interactions with Graphical User Interface (GUI)

® Graphical interface requires immediate response for a pleasant user
interaction with our application

m User interaction generates events that affect the application

m Computationally demanding tasks should not decrease interactivity
of the application

Provide a nice user experience with our application

Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 6 / 60 | Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 7/ 60
Threads and OS Threads and OS
Threads and Processes Multi-thread and Multi-process Applications
Process Threads of a process
m Computational flow C ional f ® Multi-thread application
omputational flow + Application can enjoy higher degree of interactivity
= Has own memory space Running in the same memory + Easier and faster communications between the threads using the
= Entity (object) of the OS. space of the process same memory space
o . . — It does not directly support scaling the parallel computation to
. . User or OS entit L) : L
Synchronization using OS (IPC) T y _ distributed computational environment with different
m CPU allocated by OS scheduler Synchronization by exclusive computational systems (computers)
- Time to create a process access to variables = Even on single-core single-processor systems, multi-thread
CPU allocated within the application may better utilize the CPU
dedicated time to the process
Creation is faster than creating
a process
Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 9 / 60 | Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 10 / 60

Threads and OS

Threads in the Operating System

m Threads are running within the process, but regarding the
implementation, threads can be:
m User space of the process — threads are implemented by a user
specified library
® Threads do not need special support from the OS
m Threads are scheduled by the local scheduler provided by the
library
m Threads typically cannot utilize more processors (multi-core)
m OS entities that are scheduled by the system scheduler
® |t may utilized multi-core or multi-processors computational
resources

Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming

11 / 60

Threads and OS

Threads in the User Space

Jan Faigl, 2019

Processes Operating System Processors

N
Library Scheduler OS Scheduler

O R ° (processes)
N 8 """""""""" : /\ @\\
(Library Scheduler h
8 """""""""" :/ /\
-
_ Loray Senedulr)
Py ° Y
O e J L J \ J

B3B36PRG — Lecture 08: Multithreading programming 12 / 60

Threads and OS

Threads as Operating System Entities

Processes Operating System Processors
- ()
Library Scheduler
o R
,,,,,,,,,,,,,,,,,,, o— | |
L 8 """""""""" .\L\\ /@
[Library T //
8ﬁfffffffff: (o)
Qs 'N:\ \\
f Library T O
e
(O BRI o1
L Y, N J

Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming

13 / 60

Threads and OS

User Threads vs Operating System Threads

+
+

Jan Faigl, 2019

User Threads Operating System Threads

Do not need support of the OS - Threads can be scheduled in
Creation does need (expensive) competition with all threads in
system call the system

+ Threads can run simultaneously
(on multi-core or multi-processor
system — true parallelism)

Execution priority of threads is
managed within the assigned
process time

- Thread creation is a bit more
complex (system call)

Threads cannot run
simultaneously
(pseudo-parallelism)

A high number of threads scheduled by the OS may increase overhead.
However, modern OS are using O(1) schedulers — scheduling a process
is an independent on the number of processes. Scheduling algorithms
based on complex heuristics.

B3B36PRG — Lecture 08: Multithreading programming 14 / 60

Threads and OS

Combining User and OS Threads

Processes Operating System Processors
R
Library Scheduler Scheduler
(@ JAARARERR Blocked
Qe o— | |
O R o—J | /@
. T —
Library Scheduler /
oo o)
rrrrrrrrrrrrrrrrrrr o— |
,,,,,,,,,,,,,,,,,, T Q] —
N O Blocked) \
Library Scheduler
Qe .
(@ JAARRAREEARE Blocked
- J - J

Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming

15 / 60

Multithreading Models

When to use Threads

m Threads are advantageous whenever the application meets any of
the following criteria:

® |t consists of several independent tasks

® |t can be blocked for a certain amount of time

® |t contains a computationally demanding part (while it is also desir-
able to keep interactivity)

= |t has to promptly respond to asynchronous events

® |t contains tasks with lower and higher priorities than the rest of the
application

® The main computation part can be speed by a parallel algorithm
using multi-core processors

Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 17 / 60

Multithreading Models

Typical Multi-Thread Applications

m Servers — serve multiple clients simultaneously. It may require access
to shared resources and many i/o operations.

m Computational application — having multi-core or multi-processor
system, the application runtime can be decreased by using more
processors simultaneously

m Real-time applications — we can utilize specific schedulers to meet
real-time requirements. Multi-thread application can be more effi-
cient than complex asynchronous programming; a thread waits for
the event vs. explicit interrupt and context switching

Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming

18 / 60

Multithreading Models

Models of Multithreading Applications

® Models address creation and division of the work to particular
threads

® Boss/Worker — the main thread control division of the work to
other threads

m Peer — threads run in parallel without specified manager (boss)

m Pipeline — data processing by a sequence of operations

It assumes a long stream of input data and particular threads works
in parallel on different parts of the stream

Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 19 / 60

Multithreading Models

Boss/Worker Model

Multithreading Models

Boss/Worker Model — Roles

Program Resources
4 I\ 4 I\
Workers ® The main threads is responsible for managing the requests. It
() works in a cycle:
Task 1. Recei e); new request
. iv W r
;\ qu)]
—/ 2. Create a thread for serving the particular request
Input Resource : -
Or passing the request to the existing thread
Boss Task 3. Wait for a new request
as .
O N ® The output/results of the assigned request can be controlled by
O <:—/ © ® Particular thread (worker) solving the request
® The main thread using synchronization mechanisms (e.g., event
ueue
Task Resource g)
r—
—
G J S J
Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 20 / 60 [Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 21 / 60
Multithreading Models Multithreading Models
Example — Boss/Worker Thread Pool
= The main thread creates threads upon new request is received
m The overhead with creation of new threads can be decreasing
1 // Boss 1 // Task solvers using the Thread Pool with already created threads
2 while(1) { 2 taskX() .
3 switch(getRequest () { s { m The created threads wait for new tasks
4 case taskX : 4 solve the task //
5 create_thread(taskX) ; synchronized usage of Thread pool
6 break; shared resources
7 case taskY: 5 } done; Workers
.6
8 creatc?_thread(taskY) N Queue of Requests 0
9 break;
8 taskY() Q
10 } Q
11 o {
10 solve the task //
synchronized usage of
1 doi%?red resources ® Properties of the thread pool needs to consider
12} = Number of pre-created threads
® Maximal number of the request in the queue of requests
m Definition of the behavior if the queue is full and none of the
threads is available E.g., block the incoming requests.
Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 22 / 60 [Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 23 / 60

Multithreading Models

Peer Model
Program Resources
Workers

Task ©

Input O <):—‘/ Resource
Task
QG T
Task Resource
orE=—>

Multithreading Models

Peer Model Properties and Example

® |t does not contain the main thread
® The first thread creates all other threads and then
® |t becomes one of the other threads (equivalent)
m |t suspends its execution and waits to other threads

® Each thread is responsible for its input and output

= Example:
1 // Boss 1 // Task solvers
2 { 2 task1()
3 create_thread(taskl); 3 {
4 create_thread(task?2); 4 wait to be exectued
: : 5 solve the task // synchronized
7 étart all threads; usage of shared resources
8 wait to all threads; 6 done;
o % 7}
8
o task2()
10 {
11 wait to be exectued
12 solve the task // synchronized
usage of shared resources
13 done;
14 }

Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 24 / 60 [Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 25 / 60
Multithreading Models Multithreading Models
Data Stream Processing — Pipeline Pipeline Model — Properties and Example
- . .
Program A long input stream of data with a . _ .
® sequence of operations (a part of processing) — each input data unit
Input | Part 1 Part 2 Part3 | Oytput must be processed by all parts of the processing operations
O I:> O I:> O ® At a particular time, different input data units are processed by
individual processing parts — the input units must be independent
main() stage2()
{ {
create_thread(stagel); while(input) {
create_thread(stage2) ; get next input from thread;
p N N N . process input;
<:::::> <::::::) <::::::) s . . pass result to the next stage;
wait // for all pipeline; }
}
Resource Resource Resource }‘.
?tagel() stageN()
. . {
Q Q O while(input) { _ ' while(input) {
%igcgzztiﬁ;gg?am input; get next input from thread;
Resource Resource Resource pass result té next the stage; gzggeizsigguzé output;
N AN AN J + }
¥ ¥
Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 26 / 60 [Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 27 / 60

Multithreading Models

Producer—Consumer Model

® Passing data between units can be realized using a memory buffer

Or just a buffer of references (pointers) to particular data units

® Producer — thread that passes data to other thread
m Consumer — thread that receives data from other thread

® Access to the buffer must be synchronized (exclusive access)

Buffer

Consumer

9.

Producer

@,

Using the buffer does not necessarily mean the data are copied.

Synchronization

Synchronization Mechanisms

m Synchronization of threads uses the same principles as synchroniza-
tion of processes
m Because threads share the memory space with the process, the
main communication between the threads is through the memory
and (global) variables
® The crucial is the control of access to the same memory
m Exclusive access to the critical section
® Basic synchronization primitives are
= Mutexes/Lockers for exclusive access to critical section (mutexes
or spinlocks)
m Condition variable synchronization of threads according to the
value of the shared variable.

A sleeping thread can be awakened by another signaling from other
thread.

Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 28 / 60 [Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 30 / 60
Synchronization Synchronization
Mutex — A Locker of Critical Section Example — Mutex and Critical Section
® Lock/Unlock access to the critical section via drawingMtx mutex
1 void add_drawing_event (void)
2 A
3 Tcl _MutexLock (&drawingMtx) ;
. . . . 4 Tcl_Event * ptr = (Tcl_Event*)Tcl_Alloc(sizeof(Tcl_Event));
® Mutex is shared variable accessible from particular threads 5 ptr->proc = ﬁygventproc;
= Basi rations th hr m rform on the m X 6 Tcl_ThreadQueueEvent (guiThread, ptr, TCL_QUEUE_TAIL);
asic operations that t _eads ay perform on the mute 7 Tcl_ThreadAlert (guiThread) ;
m Lock the mutex (acquired the mutex to the calling thread) s Tcl_MutexUnlock (&drawingMtx) ;
m If the mutex cannot be acquired by the thread (because another o 1} Example of using thread support from the TCL library.
thread holds it), the .thread is blocked and waits for mutex release. - Example of using a concept of ScopedLock
[
Unlock the already acquired mutex. 1 void CCanvasContainer::draw(cairo_t *cr)
m If there is one or several threads trying to acquired the mutex (by 2 {
calling lock on the mutex), one of the thread is selected for mutex 3 ScopedlLock 1k(mtx);
acquisition. 4 if (drawer == 0) {
5 drawer = new CCanvasDrawer(cr);
6 } else {
7 drawer->setCairo(cr);
8 }
9 manager . execute (drawer) ;
o} The ScopedLock releases (unlocks) the mutex once the local variable
1k is destroyed at the end of the function call.
Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 31 / 60 [Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 32 /60

Synchronization

Generalized Models of Mutex

® Recursive — the mutex can be locked multiple times by the same
thread

Try — the lock operation immediately returns if the mutex cannot
be acquired

Timed — limit the time to acquired the mutex

Spinlock — the thread repeatedly checks if the lock is available for
the acquisition

Thread is not set to blocked mode if lock cannot be acquired.

Synchronization

Spinlock

m Under certain circumstances, it may be advantageous to do not
block the thread during acquisition of the mutex (lock), e.g.,

m Performing a simple operation on the shared data/variable on the system with
true parallelism (using multi-core CPU)

= Blocking the thread, suspending its execution and passing the allocated CPU
time to other thread may result in a significant overhead

= Other threads quickly perform other operation on the data and thus, the shared
resource would be quickly accessible

® During the locking, the thread actively tests if the lock is free

It wastes the CPU time that can be used for productive computation elsewhere.

m Similarly to a semaphore such a test has to be performed by
TestAndSet instruction at the CPU level.

® Adaptive mutex combines both approaches to use the spinlocks
to access resources locked by currently running thread and
block/sleep if such a thread is not running.

It does not make sense to use spinlocks on single-processor systems
with pseudo-parallelism.

Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 33 /60 [Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 34 / 60
Synchronization Synchronization
Condition Variable Example — Condition Variable
= Condition variable allows signaling thread from other thread = Example of using condition variable with lock (mutex) to allow
] The Concept of Condition Variable a”ows the fo”owing Synchro_ eXClUSive access to the Condition Variable from diﬂ:erent threads
nlzatlon-operatloné . Mutex mtx; // shared variable for both threads
= Wait — the variable has been changed/notified CondVariable cond; // shared condition variable
® Timed waiting for signal from other thread
. // Thread 1 // Thread 2
u S!gnal!ng other thread vya.ltlng for the cor?d.ltlon v.arlable Lock (mtx) ; Lock (mtx) ;
m Signaling all threads waiting for the condition variable // Before code, wait for Thread 2 . // Critical section
All threads are awakened, but the access to the condition variable is CondWait(cond, mtx); // wait for cond // Signal on cond
protected by the mutex that must be acquired and only one thread ... // Critical section CondSignal(cond, mtx);
can lock the mutex. UnLock (mtx) ; UnLock (mtx) ;
Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 35 / 60 [Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 36 / 60

Synchronization

Parallelism and Functions

® |n parallel environment, functions can be called multiple times

m Regarding the parallel execution, functions can be
m Reentrant — at a single moment, the same function can be executed
multiple times simultaneously
m Thread-Safe — the function can be called by multiple threads si-
multaneously

= To achieve these properties
m Reentrant function does not write to static data and does not work
with global data
m Thread-safe function strictly access to global data using synchro-
nization primitives

Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 37 / 60

Synchronization

Main Issues with Multithreading Applications

® The main issues/troubles with multiprocessing application are
related to synchronization

® Deadlock — a thread wait for a resource (mutex) that is currently
locked by other thread that is waiting for the resource (thread) al-
ready locked by the first thread

® Race condition — access of several threads to the shared resources
(memory/variables) and at least one of the threads does not use the
synchronization mechanisms (e.g., critical section)

A thread reads a value while another thread is writting the value. If
Reading/writting operations are not atomic, data are not valid.

Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 38 / 60

POSIX Threads

POSIX Thread Functions (pthread)

m POSIX threads library (<pthread.h> and -lpthread) is a set of
functions to support multithreading programming
The basic types for threads, mutexes, and condition variables are
® pthread_t — type for representing a thread
B pthread _mutex_t — type for mutex
® pthread_cond_t — type for condition variable
The thread is created by pthread_create() function call, which
immediately executes the new thread as a function passed as a
pointer to the function.

The thread calling the creation continues with the execution.

A thread may wait for other thread by pthread_join()
Particular mutex and condition variables has to be initialized using
the library calls

B pthread_mutex_init() — initialize mutex variable
® pthread_cond_init () — initialize condition variable

Note, initialized shared variables before threads are created.

Additional attributes can be set, see documentation.

Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 40 / 60

POSIX Threads

POSIX Threads — Example 1/10

m Create an application with three active threads for
® Handling user input — function input_thread()
m User specifies a period output refresh of by pressing dedicated keys
m Refresh output — function output_thread()

m Refresh output only when the user interacts with the application or
the alarm is signaling the period has been passed

= Alarm with user defined period — function alarm_thread ()
® Refresh the output or do any other action

m For simplicity the program uses stdin and stdout with thread
activity reporting to stderr
® Synchronization mechanisms are demonstrated using

® pthread_mutex_t mtx — for exclusive access to data_t data
® pthread_cond_t cond — for signaling threads

The shared data consists of the current period of the alarm
(alarm_period), request to quit the application (quit), and num-
ber of alarm invocations (alarm_counter).

B3B36PRG — Lecture 08: Multithreading programming

Jan Faigl, 2019 41 / 60

POSIX Threads

POSIX Threads — Example 2/10

© 0 N O U~ W N -

P e e O < =
© ® N O Ul A WN RO

Jan Faigl, 2019

= |ncluding header files, defining data types, declaration of global
variables

<stdio.h>
<stdlib.h>
<stdbool.h>
<termios.h>
<unistd.h>
<pthread.h>

#include
#include
#include
#include
#include
#include

// for STDIN_FILENO

#define PERIOD_STEP 10
#define PERIOD_MAX 2000
#define PERIOD_MIN 10

typedef struct {
int alarm_period;
int alam_counter;
bool quit;

} data_t;

pthread_mutex_t mtx;
pthread_cond_t cond;

B3B36PRG — Lecture 08: Multithreading programming 42 / 60

POSIX Threads

POSIX Threads — Example 3/10

m Functions prototypes and initialize of variables and structures

21 void call_termios(int reset); // switch terminal to raw mode
22 void* input_thread(voidx*);

23 void* output_thread(voidx);

24 void* alarm_thread(voidx*);

25

26 // - main function
27 int main(int argc, char *argv[])

28 {
29 data_t data = { .alarm_period = 100, .alam_counter = 0, .quit = false };
30
31 enum { INPUT, OUTPUT, ALARM, NUM_THREADS }; // named ints for the threads
32 const char *threads_names[] = { "Input", "Output", "Alarm" };
33
34 void* (*thr_functions[]) (void*) = { // array of thread functions
35 input_thread, output_thread, alarm_thread
36 };
37
38 pthread_t threads[NUM_THREADS]; // array for references to created threads
39 pthread_mutex_init(&mtx, NULL); // init mutex with default attr.
40 pthread_cond_init(&cond, NULL); // init cond with default attr.
41
42 call_termios(0); // switch terminal to raw mode
Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 43 / 60

POSIX Threads

POSIX Threads — Example 4/10

a4
45
46

47
48
49
50
51
52
53

54
55
56
57
58

Jan Faigl, 2019

® Create threads and wait for terminations of all threads

for (int i = 0; i < NUM_THREADS; ++i) {
int r = pthread_create(&threads[i], NULL, thr_functions[i], &data);
printf ("Create thread ’%s’ %s\r\n", threads_names[i], (r == 0 7 "OK"
"FAIL"));

int *ex;
for (int i = 0; i < NUM_THREADS; ++i) {
printf("Call join to the thread %s\r\n", threads_names[i]);
int r = pthread_join(threads[il, (voidx)&ex);
printf("Joining the thread s has been %s - exit value %i\r\n",
threads_names[i], (r == 0 ? "OK" "FAIL"), *ex);
}

call_termios(1); // restore terminal settings
return EXIT_SUCCESS;

B3B36PRG — Lecture 08: Multithreading programming 44 / 60

POSIX Threads

POSIX Threads — Example 5/10 (Terminal Raw Mode)

® Switch terminal to raw mode

60 void call_termios(int reset)

61 {

62 static struct termios tio, tio0ld; // use static to preserve the initial
settings

63 tcgetattr (STDIN_FILENO, &tio);

64 if (reset) {

65 tcsetattr (STDIN_FILENO, TCSANOW, &tio0ld);

66 } else {

67 tio0ld = tio; //backup

68 cfmakeraw(&tio) ;

69 tcsetattr (STDIN_FILENO, TCSANOW, &tio);

70 }

71}

The caller is responsible for appropriate calling the function, e.g., to
preserve the original settings, the function must be called with the
argument 0 only once.

Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 45 / 60

POSIX Threads

POSIX Threads — Example 6/10 (Input Thread 1/2)

73 void* input_thread(voidx* d)

POSIX Threads

POSIX Threads — Example 7/10 (Input Thread 2/2)

74 A
75 data_t *data = (data_t*)d;
Zj itl:tic int T =0; ® input_thread() — handle the user request to change period
78 while ((¢ = getchar()) !'= ’q’) { 68 switch(c) {
79 pthread_mutex_lock (&mtx) ; 69 case ’r’:
80 int period = data->alarm_period; // save the current period 70 period -= PERIOD_STEP;
81 // handle the pressed key detailed in the next slide 71 if (period < PERIOD_MIN) {
. 72 period = PERIOD_MIN;
82 if (data->alarm_period != period) { // the period has been changed 73 }
83 pthread_cond_signal(&cond); // signal the output thread to refresh 74 break;
84 } 75 case ’p’:
85 data->alarm_period = period; 76 period += PERIOD_STEP;
86 pthread_mutex_unlock (&mtx) ; 7 if (period > PERIOD_MAX) {
87 } 78 period = PERIOD_MAX;
88 r =1; 79 }
89 pthread_mutex_lock (&mtx) ; 80 break;
90 data->quit = true; 81 }
91 pthread_cond_broadcast (&cond) ;
92 pthread_mutex_unlock (&mtx) ;
93 fprintf (stderr, "Exit input thread %lu\r\n", pthread_self());
94 return &r;
95 }
Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 46 / 60 | Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 47 / 60
POSIX Threads POSIX Threads
POSIX Threads — Example 8/10 (Output Thread) POSIX Threads — Example 9/10 (Alarm Thread)
114 void* alarm_thread(voidx d)
. . 115 {
97 void* output_thread(void* d) 116 data_t *data = (data_t*)d;
98 A 117 static int r = 0;
99 dataTt fdata = (data_t*)d; 118 pthread_mutex_lock(&mtx) ;
100 static int r = 0; 119 bool q = data->quit;
101 bool q = false; 120 useconds_t period = data->alarm_period * 1000; // alarm_period is in ms
102 ptyread_mutex_lock(&mtx); //lock the whole loop 191 pthread_mutex_unlock (fmtx) ;
103 while (!q) { 122
104 pthread_condfwait(&cond, &mtx); // waitdnext event, release mtx 123 while (1q) {
105 q = data->quit; 124 usleep(period) ;
106 printf ("\rAlarm time: %10i Alarm counter: %10i", data-> 125 pthread_mutex_lock(fmtx);
alarm_period, data->alam_counter); 126 q= dat;—>quig;
107 fflush(stdout); 127 data->alam_counter += 1;
108 ¥ . . . 128 period = data->alarm_period * 1000; // update the period is it has
109 pthread_mutex_unlock(&mtx); //unlock here to avoid miss of signal been changed
110 fprintf (stderr, "Exit output thread %lu\r\n", (unsigned long) 120 pthread_cond_broadcast (&cond) ;
pthread_self()); 130 pthread_mutex_unlock(&mtx) ;
111 return &r; 131 }
12} 132 fprintf (stderr, "Exit alarm thread %lu\r\n", pthread_self());
133 return &r;
134 }
Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 48 / 60 | Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 49 / 60

POSIX Threads

POSIX Threads — Example 10/10

m The example program 1ec08/threads.c can be compiled and run

clang -c threads.c -std=gnu99 -02 -pedantic -Wall -o threads.o

clang threads.o -lpthread -o threads
m The period can be changed by 'r' and 'p’ keys.

® The application is terminated after pressing 'q’
./threads
Create thread ’Input’ OK
Create thread ’Output’ 0K
Create thread ’Alarm’ OK
Call join to the thread Input

Alarm time: 110 Alarm counter: 20Exit input thread
750871808

Alarm time: 110 Alarm counter: 20Exit output thread
750873088

Joining the thread Input has been OK - exit value 1
Call join to the thread Output
Joining the thread Output has been 0K - exit value O
Call join to the thread Alarm
Exit alarm thread 750874368
Joining the thread Alarm has been OK - exit value O
lec08/threads.c
B3B36PRG — Lecture 08: Multithreading programming

Jan Faigl, 2019 50 / 60

C11 Threads

C11 Threads

m C11 provides a “wrapper” for the POSIX threads
E.g., see http://en.cppreference.com/w/c/thread

® The library is <threads.h> and -1stdthreads
= Basic types

®m thrd_t — type for representing a thread

B mtx_t — type for mutex

® cnd_t — type for condition variable
m Creation of the thread is thrd_create() and the thread body

function has to return an int value

® thrd_join() is used to wait for a thread termination
® Mutex and condition variable are initialized (without attributes)

® mtx_init() — initialize mutex variable
® cnd_init () — initialize condition variable

Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 52 / 60

C11 Threads Example

® The previous example 1ec08/threads.c implemented with C11
threads is in 1ec08/threads-cl1l.c

clang -std=cll threads-cll.c -lstdthreads -o threads-ciil
./threads-c11

m Basically, the function calls are similar with different names and
minor modifications

m pthread_mutex_*() — mxt_x*()

pthread_cond_x() — cnd_*()

pthread_*x() — thrd_xQ)

Thread body functions return int value

There is not pthread_self () equivalent

thrd_t is implementation dependent

Threads, mutexes, and condition variable are created/initialized
without specification particular attributes

Simplified interface

m The program is linked with the -1stdthreads library
lec08/threads-cll.c
Jan Faigl, 2019

B3B36PRG — Lecture 08: Multithreading programming 53 / 60

Debugging

How to Debug Multi-Thread Applications

® The best tool to debug a multi-thread application is
to do not need to debug it

m |t can be achieved by discipline and a prudent approach to shared
variables

m Otherwise a debugger with a minimal set of features can be utilized

Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 55 / 60

Debugging

Debugging Support

m Desired features of the debugger

m List of running threads

Status of the synchronization primitives
Access to thread variables

Break points in particular threads

11db — http://11db.1lvm.org; gdb — https://wuw.sourceware.org/gdb
cgdb, ddd, kgdb, Code: :Blocks or Eclipse, Kdevelop, Netbeans, CLion

SlickEdit — https://www.slickedit.com; TotalView — http://www.roguewave.com/products-services/totalview

® Logging can be more efficient to debug a program than manual
debugging with manually set breakpoints
® Deadlock is mostly related to the order of locking
® Logging and analyzing access to the lockers (mutex) can help to
find a wrong order of the thread synchronizing operations

Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 56 / 60

Comments — Race Condition

® Race condition is typically caused by a lack of synchronization
® |t is worth of remember that
® Threads are asynchronous

Debugging

Do not relay that a code execution is synchronous on a single processor

system.

® When writing multi-threaded applications assume that the thread

can be interrupted or executed at any time

Parts of the code that require a particular execution order of the

threads needs synchronization.

®m Never assume that a thread waits after it is created.
It can be started very soon and usually much sooner than you can
expect.
m Unless you specify the order of the thread execution, there is no
such order.

“Threads are running in the worst possible order”. Bill Gallmeister”

Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming

57 / 60

Debugging

Comments — Deadlock

m Deadlocks are related to the mechanisms of synchronization
m Deadlock is much easier to debug than the race condition

m Deadlock is often the mutex deadlock caused by order of multiple
mutex locking

® Mutex deadlock can not occur if, at any moment, each thread has
(or it is trying to acquire) at most a single mutex

® |t is not recommended to call functions with a locked mutex, espe-
cially if the function is attempting to lock another mutex

m It is recommended to lock the mutex for the shortest possible time

Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 58 / 60

Summary of the Lecture

Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming

59 / 60

Topics Discussed

Topics Discussed

Multithreading programming
m Terminology, concepts, and motivations for multithreading
programming
m Models of multi-threaded applications
® Synchronization mechanisms
m POSIX and C11 thread libraries

Example of an application

Comments on debugging and multi-thread issues with the race
condition and deadlock

Next Lecture09: Practical examples

Next LecturelQ: ANSI C, C99, C11 - differences and extensions.
Introduction to C++

Jan Faigl, 2019 B3B36PRG — Lecture 08: Multithreading programming 60 / 60

