
JAVABEANS
™

WHAT MAKES A
CLASS TO

BE A COMPONENT

DETAILED VIEW

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 1

BUILDING LARGE APP

How?

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 2

BUILDING LARGE APP

ABSTRACT DATA TYPE

Abstract Data Type

• Mathematical model for data types

• Stack (push, top, pop)

• new Stack / create() - instantiation

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 3

BUILDING LARGE APP

ABSTRACT DATA TYPE

typedef struct stack_Rep stack_Rep; // type: stack instance representation

typedef stack_Rep* stack_T; // type: handle to a stack instance

typedef void* stack_Item // type: value stored in stack instance

stack_T stack_create(void); // creates a new empty stack instance

void stack_push(stack_T s, stack_Item x); // adds an item at the top

stack_Item stack_pop(stack_T s); // removes the top item and returns it

bool stack_empty(stack_T s); // checks whether stack is empty

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 4

BUILDING LARGE APP

ABSTRACT DATA TYPE

#include <stack.h> // includes the stack interface

stack_T s = stack_create(); // creates a new empty stack instance

int x = 17;

stack_push(s, &x); // adds the address of x at the top of the stack

void* y = stack_pop(s); // removes the address of x from the stack and returns it

if(stack_empty(s)) { } // does something if stack is empty

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 5

BUILDING LARGE APP

OBJECT-ORIENTED PROGRAMMING

"objects” may contain

• data in the form of fields, often known as attributes;

• code, in the form of procedures, often known as methods.

• A feature of objects is that an object's procedures can

access and often modify the data fields of the object with

which they are associated (objects have a notion of "this”).

• In OOP, computer programs are designed by making them

out of objects that interact with one another.

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 6

BUILDING LARGE APP

OBJECT-ORIENTED PROGRAMMING

Base properties

• Dynamic dispatch – method lookup – dynamic (ADT statis)

• Encapsulation

• Composition / inheritance /delegation

• Composition - Employee contains address object

• Inheritance – hierarchy Person - Employee

• Delegation – alternative to inheritance one entity passing something to another

• Polymorphism

• Enables separation of concerns (SoC)

• Recursion

• History – SmallTalk 1970

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 7

BUILDING LARGE APP

OBJECT-ORIENTED PROGRAMMING

Best practice of

composition / inheritance / delegation / encapsulation / polymorphism / ..

• Design Patterns

• Erich Gamma

• Martin Fowler

• Predefined solutions to typical programmer problems

• Building blocks for Software Engineers!

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 8

BUILDING LARGE APP

SEPARATION OF CONCERNS

Dijkstra in 1974

The design principle for separating a computer program into

distinct sections, such that each section addresses a

separate concern.

A concern is a set of information that affects the code of a

computer program.

A concern can be as general as the details of the hardware

the code is being optimized for, or as specific as the name of

a class to instantiate.

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 9

BUILDING LARGE APP

SEPARATION OF CONCERNS

..

A program that embodies SoC well is called a modular

program.

Modularity, and hence separation of concerns, is achieved by

encapsulating information inside a section of code that has a

well-defined interface.

Encapsulation is a means of information hiding.

Layered designs in information systems are another

embodiment of separation of concerns

• (e.g., presentation layer, business logic layer, data access layer, persistence layer)

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 10

BUILDING LARGE APP

COMPONENT BASED DEVELOPMENT

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 11

BUILDING LARGE APP

COMPONENT BASED DEVELOPMENT

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 12

• Emphasizes the separation of concerns

• Reuse-based approach to defining, implementing and

composing loosely coupled independent components into

systems.

The notion of component

• An individual software component is a software package, a

web service, a web resource, or a module that

encapsulates a set of related functions (or data).

• All system processes are placed into separate components

BUILDING LARGE APP

COMPONENT BASED DEVELOPMENT

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 13

• Components can produce or consume events and can be

used for event-driven architectures

• In web services, and more recently, in service-oriented

architectures (SOA), a component is converted by the web

service into a service and subsequently inherits further

characteristics beyond that of an ordinary component.

JAVABEANS™

JavaBeans™ makes it easy to reuse software components

Developers can use software components written by others

without having to understand their inner workings.

JavaBeans are classes encapsulating many objects into a

single object (the bean).

They are serializable, have a zero-argument constructor, and

allow access to properties using getter and setter methods.

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 14

JAVABEANS™

Design of JavaBeans components is easy.

No need a special tool or to implement any interfaces.

Writing beans is a matter of following certain coding conventions.

All you have to do is to make your class look like a bean

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 15

JAVABEANS™

A bean is a Java class with method names that follow the

JavaBeans guidelines.

A bean builder tool uses introspection to examine the bean

class.

Based on this inspection, the bean builder tool can figure out

the bean's properties, methods, and events.

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 16

JAVABEANS™

There are guidelines for properties, methods, and events.

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 17

EXAMPLE BEAN

1. Simple bean properties

2. Boolean has an exception

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 18

public class FaceBean {

private int mMouthWidth = 90;

public int getMouthWidth() {

return mMouthWidth;

}

public void setMouthWidth(int mw) {

mMouthWidth = mw;

}

}

public boolean isRunning() {

// ...

}

BOUND PROPERTIES

A bound property notifies listeners when its value changes.

This has two implications:

• The bean class includes addPropertyChangeListener() and

removePropertyChangeListener() methods for managing the

bean's listeners.

• When a bound property is changed, the bean sends a
PropertyChangeEvent to its registered listeners.

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 19

public class FaceBean {

private int mMouthWidth = 90;

private PropertyChangeSupport mPcs =

new PropertyChangeSupport(this);

BOUND PROPERTIES

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 20

import java.beans.*;

public class FaceBean {

private int mMouthWidth = 90;

private PropertyChangeSupport pcs =

new PropertyChangeSupport(this);

public int getMouthWidth() {

return mMouthWidth;

}

public void setMouthWidth(int mw) {

int oldMouthWidth = mMouthWidth;

mMouthWidth = mw;

pcs.firePropertyChange("mouthWidth",

oldMouthWidth, mw);

}

..

public void addPropertyChangeListener (

PropertyChangeListener listener) {

pcs.addPropertyChangeListener(listener);

}

public void removePropertyChangeListener (

PropertyChangeListener listener) {

pcs.removePropertyChangeListener(listener);

}

}

CONSTRAINED

PROPERTIES

A constrained property is a special kind of bound property.

For a constrained property, the bean keeps track of a set of veto listeners.

When a constrained property is about to change, the listeners are

consulted about the change.

Any one of the listeners has a chance to veto the change, in which case

the property remains unchanged.

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 21

public class FaceBean {

private int mMouthWidth = 90;

private PropertyChangeSupport mPcs =

new PropertyChangeSupport(this);

private VetoableChangeSupport mVcs =

new VetoableChangeSupport(this);

CONSTRAINED

PROPERTIES

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 22

import java.beans.*;

public class FaceBean {

private int mMouthWidth = 90;

private PropertyChangeSupport pcs =

new PropertyChangeSupport(this);

private VetoableChangeSupport vcs =

new VetoableChangeSupport(this);

public int getMouthWidth() {..}

public void setMouthWidth(int mw)

throws PropertyVetoException {

int oldMouthWidth = mMouthWidth;

vcs.fireVetoableChange("mouthWidth”,

oldMouthWidth, mw);

mMouthWidth = mw;

pcs.firePropertyChange("mouthWidth",

oldMouthWidth, mw);

}

..

public void addPropertyChangeListener (

PropertyChangeListener listener) {

pcs.addPropertyChangeListener(listener);

}

public void removePropertyChangeListener (

PropertyChangeListener listener) {

pcs.removePropertyChangeListener(listener);

}

public void addVetoableChangeListener(

VetoableChangeListener listener) {

vcs.addVetoableChangeListener(listener);

}

public void removeVetoableChangeListener(

VetoableChangeListener listener) {

vcs.removePropertyChangeListener(listener);

}

METHODS

A bean's methods are the things it can do.

Any public method that is not part of a property definition is a bean method.

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 23

EVENTS

A bean class can fire off any type of event, including custom events.

As with properties, events are identified by a specific pattern of method

names.

The listener type must be a descendant of java.util.EventListener.

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 24

public void add<Event>Listener(<Event>Listener l);

public void remove<Event>Listener(<Event>Listener l);

public void addActionListener(ActionListener l);

public void removeActionListener(ActionListener l);

EVENTS
EXAMPLE LISTENER

Sample

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 25

//… initialization occurs:

double amount;

JFormattedTextField amountField;

...

amountField.addPropertyChangeListener("value",

new FormattedTextFieldListener());

...

class FormattedTextFieldListener implements PropertyChangeListener {

public void propertyChanged(PropertyChangeEvent e) {

Object source = e.getSource();

if (source == amountField) {

amount = ((Number)amountField.getValue()).doubleValue();

...

}

...//re-compute payment and update field...

}

}

BEAN PERSISTENCE

A bean has the property of persistence when its properties, fields, and
state information are saved to and retrieved from storage.

Component models provide a mechanism for persistence that enables the
state of components to be stored in a non-volatile place for later retrieval.

The mechanism that makes persistence possible is called serialization.
Object serialization means converting an object into a data stream and
writing it to storage.

Any application that uses that bean can then "reconstitute" it by
deserialization. The object is then restored to its original state.

All beans must persist. To persist, your beans must support serialization by
implementing either the java.io.Serializable

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 26

CONTROLLING

SERIALIZATION

You can control the level of serialization that your beans undergo. Three

ways to control serialization are:

1. Automatic serialization, implemented by the Serializable interface.

The Java serialization software serializes the entire object, except

transient and static fields.

2. Customized serialization. Selectively exclude fields you do not want

serialized by marking with the transient (or static) modifier.

3. Customized file format, implemented by the Externalizable

interface and its two methods. Beans are written in a specific file

format.

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 27

private void writeObject(java.io.ObjectOutputStream out)

throws IOException;

private void readObject(java.io.ObjectInputStream in)

throws IOException, ClassNotFoundException;

LONG TERM

PERSISTENCE

Long-term persistence is a model that enables beans to be saved in XML.

The XMLEncoder class is assigned to write output files for textual

representation of Serializable objects.

Writing a Java bean and its

Properties in XML format:

The XMLDecoder class

reads an XML document

that was created with

XMLEncoder:

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 28

XMLEncoder encoder = new XMLEncoder(

new BufferedOutputStream(

new FileOutputStream("Beanarchive.xml")));

encoder.writeObject(object);

encoder.close();

XMLDecoder decoder = new XMLDecoder(

new BufferedInputStream(

new FileInputStream("Beanarchive.xml")));

Object object = decoder.readObject();

decoder.close();

