Spring

Miroslav Blasko, Bogdan Kostov, Martin Ledvinka
KBSS FEL CTU in Prague

Winter Term 2025

Miroslav Blagko, Bogdan Kostov, Martin Ledy Spring

Contents

© Introduction

© Dependency Injection - Revisited

© Spring Beans

@ Spring Transaction Management
@ Proxy Design Pattern

© Other Commonly Used Spring Features
@ Demo E-Shop Application

Q@ Tasks

AV

Miroslav Blagko, Bogdan Kostov, Martin Ledy Spring

Introduction

Introduction

Miroslav Blagko, Bogdan Kostov, Martin Ledy

Introduction

Seminar Topic

In this seminar we will learn to use Spring and its main features:
@ Dependency Injection (DI)

e Transaction management

&\g;%j

J eIl

Miroslav Blagko, Bogdan Kostov, Martin Ledy Spring

Dependency Injection - Revisited

[

Miroslav Blagko, Bogdan Kostov, Martin Ledy

Dependency Injection - Revisited

Definition and Sequence Example

Dependency Injection

Component lifecycle is controlled by the container which is responsible for
delivering correct implementation of the given dependency.

sd Sequence Diagram0)

DI Container
<<create>>

T <<create>>

preslisee L
3: inject()
_______ UserController

g

<<create>>
7 4: new UserController()

5: Inject()

|
|
|
|
|
|
|
|
|
|
|
|
————t—q-——1-
|
|
|
|
|
|
|
|
|
|
|
|
(N

|
|
|
|
|
|
|
|
|
|
Miroslav Blasko, Bogdan Kostov, Martin Led\ Spring Winter Term 2025 6/30

Dependency Injection - Revisited

Plain Java code vs DI

package cz.cvut.kbss.ear.spring_example;
import

public class SchoolInformationSystem {

private CourseRepository repository

= new InMemoryCourseRepository();

public static void main(String[] args) {

SchoolInformationSystem main = new SchoolInformationSystem() ;

System.out.println (main.repository.getName());
}
}

The client code (SchoolInformationSystem) itself decides which
repository implementation to use

@ change in implementation requires client code change.

@ change in configuration requires client code change.

Miroslav Blasko, Bogdan Kostov, Martin Led\ Spring Winter Term 2025

Dependency |

DI using Annotations

SchoollnformationSystem.java

InMemoryCourseRepository.java

package cz.cvut.kbss.ear.spring_example;
import

@Component
public class SchoolInformationSystem f{
@Autowired
private CourseRepository repository;
}

CourseRepository.java

package cz.cvut.kbss.ear.spring_example;
import

@Component
public class InMemoryCourseRepository
implements CourseRepository {
public String getName () { return
"In-memory course repository"; }

package cz.cvut.kbss.ear.spring_example;
public interface CourseRepository {
public String getName () { return name;

}

}

Miroslav Blagko, Bogdan Kostov, Martin Ledy

Spring Beans

Spring Beans

Miroslav Blagko, Bogdan Kostov, Martin Ledy

Spring Beans

Bean Declaration

Bean declaration tells Spring from which classes to create beans. We will
learn about two ways of bean declaration:

@ Bean creation through annotated classes
@ Bean creation with a factory method

Spring needs to know where to look for bean declarations. With Spring
Boot, it scans the package of the main application class and all its
sub-packages.

Miroslav Blasko, Bogdan Kostov, Martin Led\ Spring Winter Term 2025 10 /30

Spring Beans

Bean Declaration - Annotated Class

A bean can be declared using an annotation on a class. Annotations used
for declaration of beans in this way are:

@Component
@Configuration

@Repository

@Service

@RestController etc.

Code example:

package cz.cvut.kbss.ear.spring_example;

import ...

@Component

public class InMemoryCourseRepository implements CourseRepository {
public String getName() { return "In-memory course repository"; }

}

Miroslav Blasko, Bogdan Kostov, Martin Led\ Spring Winter Term 2025

Spring Beans

Bean Declaration - Factory method

A bean factory method should be implemented in a configuration bean.
The method should be annotated with the @Bean annotation and it should

return the bean. The method’s parameters will be injected if possible.
Code example:

QConfiguration // is this a bean? Yes it is.
public class RepositoryConfiguration({
@Bean
public InMemoryCourseRepository createInMemoryRepository () {
return new InMemoryCourseRepository();
}
}

)

Miroslav Blasko, Bogdan Kostov, Martin Led\ Spring Winter Term 2025 12 /30

Spring Bean Scopes

Scopes define the life cycle of a bean

singleton a single bean instance per a Spring loC container (the
default scope)

prototype a new bean instance every time when requested (e.g.,
injected during creation of another bean)

request a single bean instance per an HTTP request
session a single bean instance per an HT TP session
globalSession a single bean instance per a global HTTP session (portlet
apps)
Code example specifying the scope of a bean:

@Component

@Scope ("singleton")

public class SchoolInformationSystem {
QAutowired
private CourseRepository repository;

}

Spring allows custom scope definition (e.g. JSF 2 Flash scope)
Winter Term 2025 13/30

Spring Beans

Bean Injection

During creation, declared dependencies (must be also beans) are injected
into a bean. Injected fields/setters are annotated with:

@ @Autowired

Code example:

package cz.cvut.kbss.ear.spring_example;
import ...

@Component

public class SchoolInformationSystem {
QAutowired
private CourseRepository repository;

}

¥

Miroslav Blasko, Bogdan Kostov, Martin Led\ Spring Winter Term 2025 14 /30

Spring Beans

Constructor bean Injection

Constructor injection in Spring Boot does not require @RAutowired

package cz.cvut.kbss.ear.spring_example;
import

@Component
public class SchoolInformationSystem {

private final CourseRepository repository;

// CourseRepository will be injected

public SchoolInformationSystem(CourseRepository repository) {
this.repository repository;

}

Miroslav Blagko, Bogdan Kostov, Martin Ledy Spring

Injecting Entity Manager

JPA entity manager is injected using the @PersistenceContext
annotation (JPA, not Spring).
Code example:

@Repository

public class CartDao {
@PersistenceContext
private EntityManager em;

Miroslav Blasko, Bogdan Kostov, Martin Led\ Spring Winter Term 2025 16 /30

Spring Transaction Management

[

Miroslav Blagko, Bogdan Kostov, Martin Ledy

Spring Transaction Management

Transaction Management Annotations

Spring provides means to declaratively manage business transactions.
The following annotations work in conjunction with JPA.

@ QTransactional - on methods and classes, wraps a method in a
transaction

@ QEnableTransactionManagement - enabling declarative
transaction support, enabled by default in Spring Boot

Code example:

@Service
public class CartService {
@Transactional
public void addItem(Cart cart, CartItem toAdd) {

}
}

¥

Miroslav Blasko, Bogdan Kostov, Martin Led\ Spring Winter Term 2025 18 /30

Proxy Design Pattern

Question Is the class of CartService bean CartService?

e

Miroslav Blagko, Bogdan Kostov, Martin Ledy Spring

Proxy Design Pattern

Question Is the class of CartService bean CartService?

Answer No, it is not. It is a subclass of CartService.

Miroslav Blagko, Bogdan Kostov, Martin Ledy Spring

Spring Transaction Management Proxy Design Pattern

Proxy Design Pattern

Question Is the class of CartService bean CartService?

Answer No, it is not. It is a subclass of CartService.

Proxy Design Pattern

Spring implements transaction management using the Proxy Design
Pattern on beans. The CartService is sub-classed in the background
to enable wrapping transactional method calls with code managing the
transactions.

Miroslav Blasko, Bogdan Kostov, Martin Led\ Spring Winter Term 2025 19 /30

R lesiolioen
Proxy Design Pattern - Java Code Example

Calculator.java

CalculatorLoggerProxy.java

public class Calculator(
public int add(int a, int b){
return a + b;

}

public int subtract (int a, int b) {
return a - b;

}

Some observations:

public class CalculatorLoggerProxy extends
Calculator{
private static final Logger LOG ...
@Override
public int add(int a, int b) {
int ret = super.add(a,b);
LOG.debug ("{} + {} = {}", a, b, ret);
return ret;

}

@Override
public int subtract(int a, int b){
int ret = super.subtract(a,b);
LOG.debug ("{} - {} = {}", a, b, ret);
return ret;
}
}

@ CalculatorLoggerProxy is also a Calculator

@ Extends execution by adding pre- and post-processing code

Miroslav Blagko, Bogdan Kostov, Martin Led\ Spring

Winter Term 2025

20 /30

Other Commonly Used Spring Features

Other Commonly Used Spring
Features

[

Miroslav Blagko, Bogdan Kostov, Martin Ledy

Annotation based Spring Configuration

@ @ComponentScan searching for Spring beans among classes in a
given package

e @ComponentScan without argument scans the current package and
all its sub-packages

@ @Import composing Spring configuration
Searching for beans:

@Configuration

@ComponentScan (basePackages = "cz.cvut.kbss.ear.eshop.dao")
public class PersistenceConfig {

}

Importing configuration:

@Configuration
@Import ({PersistenceConfig.class})
public class AppConfig {

}

PN

Miroslav Blasko, Bogdan Kostov, Martin Led\ Spring Winter Term 2025 22/30

PRI DA
Spring Configuration in E-shop

The E-Shop application is implemented using Spring Boot, which has
many benefits over plain Spring:
@ Provides a single Maven dependency which includes profiles of
different Spring packages commonly used together
@ Starter projects provide fixed versions of related external libraries
(such as Hibernate, JDBC drivers etc.)
@ Provides a simpler Maven build configuration

e A Maven plugin which builds the application into a JAR with an
embedded application server for rapid deployment

@ Requires minimal application configuration compared to Spring
e Contains a lot of sensible defaults that just work in most cases

Miroslav Blasko, Bogdan Kostov, Martin Led\ Spring Winter Term 2025 23/30

EENNESN——— 4@

Tasks

Miroslav Blagko, Bogdan Kostov, Martin Ledy Spring

Syncing Your Fork

@ Ensure you have no uncommitted changes in the working tree
e git status — your branch is up to date, nothing to commit

@ Fetch branches and commits from the upstream repository
(EAR/B251-eshop)

e git fetch upstream
© Check out the task branch from upstream (one line!)

e git checkout -b b251-seminar-05-task
upstream/b251-seminar-05-task

@ Do the task
© Commit and push the solution to your fork
e git push -u origin b25l-seminar-05-task

Miroslav Blasko, Bogdan Kostov, Martin Led\ Spring Winter Term 2025 25 /30

Task 1 — Configuration of Persistence Layer (1 point)

@ Declare missing bean declarations and injections.

e Some of the classes in the dao package should be declared as beans
but they are not. Declare them properly.

e In the dao package, there is also one dependency injection which is
not declared properly. Fix it.

o Hint: @Repository, @PersistenceContext

@ Create a prototype bean of type java.time.LocalDate.
e Hint: @Configuration, @Bean

@ Hint: Use tests to help you debug the issues.

@ Acceptance criteria: All enabled tests are passing.

Miroslav Blasko, Bogdan Kostov, Martin Led\ Spring Winter Term 2025 26 /30

Task 2 — Implementation of a Service (1 point)

© ©0

Remove the @Disabled annotation from CartServiceTest and
verify that tests are now failing
Implement CartService that allows to

e Add specific items to a cart

e Remove specific items from a cart

e Amount of products available in stock is correctly adjusted after every
add/remove operation

e CartService class must be declared as a Spring bean

o Inject beans necessary to implement the service methods (DAO)

Make sure that service methods are transactional
Hint: Q@Service

Acceptance criteria: Transactional processing is configured properly
and all tests are passing.

Miroslav Blasko, Bogdan Kostov, Martin Led\ Spring Winter Term 2025 27 /30

The End

The End

Miroslav Blagko, Bogdan Kostov, Martin Ledy

The End

Thank You

&

Miroslav Blagko, Bogdan Kostov, Martin Ledy Spring

The End

Resources

@ https://docs.spring.io/spring—-boot/

3
&

Miroslav Blagko, Bogdan Kostov, Martin Ledy Spring

https://docs.spring.io/spring-boot/

	Introduction
	Dependency Injection - Revisited
	Spring Beans
	Spring Transaction Management
	Proxy Design Pattern

	Other Commonly Used Spring Features
	Demo E-Shop Application

	Tasks
	The End

