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Introduction

Seminar Topic

In this seminar we will learn to use Spring and its main features:
@ Dependency Injection (DI)

e Transaction management
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Dependency Injection - Revisited

[

Miroslav Blagko, Bogdan Kostov, Martin Ledy



Dependency Injection - Revisited

Definition and Sequence Example

Dependency Injection

Component lifecycle is controlled by the container which is responsible for
delivering correct implementation of the given dependency.
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Dependency Injection - Revisited

Plain Java code vs DI

package cz.cvut.kbss.ear.spring_example;
import

public class SchoolInformationSystem {

private CourseRepository repository

= new InMemoryCourseRepository();

public static void main(String[] args) {

SchoolInformationSystem main = new SchoolInformationSystem() ;

System.out.println (main.repository.getName());
}
}

The client code (SchoolInformationSystem) itself decides which
repository implementation to use

@ change in implementation requires client code change.

@ change in configuration requires client code change.
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Dependency |

DI using Annotations

SchoollnformationSystem.java

InMemoryCourseRepository.java

package cz.cvut.kbss.ear.spring_example;
import

@Component
public class SchoolInformationSystem f{
@Autowired
private CourseRepository repository;
}

CourseRepository.java

package cz.cvut.kbss.ear.spring_example;
import

@Component
public class InMemoryCourseRepository
implements CourseRepository {
public String getName () { return
"In-memory course repository"; }

package cz.cvut.kbss.ear.spring_example;
public interface CourseRepository {
public String getName () { return name;

}

}
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Spring Beans

Bean Declaration

Bean declaration tells Spring from which classes to create beans. We will
learn about two ways of bean declaration:

@ Bean creation through annotated classes
@ Bean creation with a factory method

Spring needs to know where to look for bean declarations. With Spring
Boot, it scans the package of the main application class and all its
sub-packages.
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Spring Beans

Bean Declaration - Annotated Class

A bean can be declared using an annotation on a class. Annotations used
for declaration of beans in this way are:

@Component
@Configuration

@Repository

@Service

@RestController etc.

Code example:

package cz.cvut.kbss.ear.spring_example;

import ...

@Component

public class InMemoryCourseRepository implements CourseRepository {
public String getName() { return "In-memory course repository"; }

}
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Spring Beans

Bean Declaration - Factory method

A bean factory method should be implemented in a configuration bean.
The method should be annotated with the @Bean annotation and it should

return the bean. The method’s parameters will be injected if possible.
Code example:

QConfiguration // is this a bean? Yes it is.
public class RepositoryConfiguration({
@Bean
public InMemoryCourseRepository createInMemoryRepository () {
return new InMemoryCourseRepository();
}
}

)
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Spring Bean Scopes

Scopes define the life cycle of a bean

singleton a single bean instance per a Spring loC container (the
default scope)

prototype a new bean instance every time when requested (e.g.,
injected during creation of another bean)

request a single bean instance per an HTTP request
session a single bean instance per an HT TP session
globalSession a single bean instance per a global HTTP session (portlet
apps)
Code example specifying the scope of a bean:

@Component

@Scope ("singleton")

public class SchoolInformationSystem {
QAutowired
private CourseRepository repository;

}

Spring allows custom scope definition (e.g. JSF 2 Flash scope)
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Spring Beans

Bean Injection

During creation, declared dependencies (must be also beans) are injected
into a bean. Injected fields/setters are annotated with:

@ @Autowired

Code example:

package cz.cvut.kbss.ear.spring_example;
import ...

@Component

public class SchoolInformationSystem {
QAutowired
private CourseRepository repository;

}

¥
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Spring Beans

Constructor bean Injection

Constructor injection in Spring Boot does not require @RAutowired

package cz.cvut.kbss.ear.spring_example;
import

@Component
public class SchoolInformationSystem {

private final CourseRepository repository;

// CourseRepository will be injected

public SchoolInformationSystem(CourseRepository repository) {
this.repository repository;

}
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Injecting Entity Manager

JPA entity manager is injected using the @PersistenceContext
annotation (JPA, not Spring).
Code example:

@Repository

public class CartDao {
@PersistenceContext
private EntityManager em;
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Spring Transaction Management
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Spring Transaction Management

Transaction Management Annotations

Spring provides means to declaratively manage business transactions.
The following annotations work in conjunction with JPA.

@ QTransactional - on methods and classes, wraps a method in a
transaction

@ QEnableTransactionManagement - enabling declarative
transaction support, enabled by default in Spring Boot

Code example:

@Service
public class CartService {
@Transactional
public void addItem(Cart cart, CartItem toAdd) {

}
}

¥
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Proxy Design Pattern

Question Is the class of CartService bean CartService?

e
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Proxy Design Pattern

Question Is the class of CartService bean CartService?

Answer No, it is not. It is a subclass of CartService.
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Spring Transaction Management Proxy Design Pattern

Proxy Design Pattern

Question Is the class of CartService bean CartService?

Answer No, it is not. It is a subclass of CartService.

Proxy Design Pattern

Spring implements transaction management using the Proxy Design
Pattern on beans. The CartService is sub-classed in the background
to enable wrapping transactional method calls with code managing the
transactions.
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Proxy Design Pattern - Java Code Example

Calculator.java

CalculatorLoggerProxy.java

public class Calculator(
public int add(int a, int b){
return a + b;

}

public int subtract (int a, int b) {
return a - b;

}

Some observations:

public class CalculatorLoggerProxy extends
Calculator{
private static final Logger LOG ...
@Override
public int add(int a, int b) {
int ret = super.add(a,b);
LOG.debug ("{} + {} = {}", a, b, ret);
return ret;

}

@Override
public int subtract(int a, int b){
int ret = super.subtract(a,b);
LOG.debug ("{} - {} = {}", a, b, ret);
return ret;
}
}

@ CalculatorLoggerProxy is also a Calculator

@ Extends execution by adding pre- and post-processing code
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Other Commonly Used Spring Features

Other Commonly Used Spring
Features
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Annotation based Spring Configuration

@ @ComponentScan searching for Spring beans among classes in a
given package

e @ComponentScan without argument scans the current package and
all its sub-packages

@ @Import composing Spring configuration
Searching for beans:

@Configuration

@ComponentScan (basePackages = "cz.cvut.kbss.ear.eshop.dao")
public class PersistenceConfig {

}

Importing configuration:

@Configuration
@Import ( {PersistenceConfig.class})
public class AppConfig {

}

PN
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Spring Configuration in E-shop

The E-Shop application is implemented using Spring Boot, which has
many benefits over plain Spring:
@ Provides a single Maven dependency which includes profiles of
different Spring packages commonly used together
@ Starter projects provide fixed versions of related external libraries
(such as Hibernate, JDBC drivers etc.)
@ Provides a simpler Maven build configuration

e A Maven plugin which builds the application into a JAR with an
embedded application server for rapid deployment

@ Requires minimal application configuration compared to Spring
e Contains a lot of sensible defaults that just work in most cases
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Syncing Your Fork

@ Ensure you have no uncommitted changes in the working tree
e git status — your branch is up to date, nothing to commit

@ Fetch branches and commits from the upstream repository
(EAR/B251-eshop)

e git fetch upstream
© Check out the task branch from upstream (one line!)

e git checkout -b b251-seminar-05-task
upstream/b251-seminar-05-task

@ Do the task
© Commit and push the solution to your fork
e git push -u origin b25l-seminar-05-task
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Task 1 — Configuration of Persistence Layer (1 point)

@ Declare missing bean declarations and injections.

e Some of the classes in the dao package should be declared as beans
but they are not. Declare them properly.

e In the dao package, there is also one dependency injection which is
not declared properly. Fix it.

o Hint: @Repository, @PersistenceContext

@ Create a prototype bean of type java.time.LocalDate.
e Hint: @Configuration, @Bean

@ Hint: Use tests to help you debug the issues.

@ Acceptance criteria: All enabled tests are passing.
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Task 2 — Implementation of a Service (1 point)

© ©0

Remove the @Disabled annotation from CartServiceTest and
verify that tests are now failing
Implement CartService that allows to

e Add specific items to a cart

e Remove specific items from a cart

e Amount of products available in stock is correctly adjusted after every
add/remove operation

e CartService class must be declared as a Spring bean

o Inject beans necessary to implement the service methods (DAO)

Make sure that service methods are transactional
Hint: Q@Service

Acceptance criteria: Transactional processing is configured properly
and all tests are passing.

Miroslav Blasko, Bogdan Kostov, Martin Led\ Spring Winter Term 2025 27 /30



The End

The End
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The End

Thank You
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The End

Resources

@ https://docs.spring.io/spring—-boot/
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