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Introduction
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What Is an (Animated) Image?

� Theory - Continuous function of two/three variables: 

I(x,y,t):  R3 -> R

� Practice – Time varying matrix of pixels

� One animation frame = equidistant samples of I(x,y,ti): 

I[x,y,t]:  N2 -> R  
I[x,y,t] => luminance, color RGB, etc.
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Imagers = Signal Sampling

� Physical imagers  (imager = imaging device)
� Integrate over sensor area and time

� Integration: each photon hit => increase pixel value

� Examples
� Retina – rods / cones

� CCD array

� Film

� Virtual imagers – computer graphics cameras
� Sample continuous image function at specific location and 

time instant

� No integration takes place – has to be simulated
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Displays = Signal Reconstruction

� Take image samples

� Reconstruct continuous image (one pixel = small light)

� Examples
� CRT

� LCD
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Image Sampling

� Real devices

� Sample = Integral over (small) area and (short) time

� Rendering

� Sample = Point sample

� Consequences – Aliasing
� Jagged edges

� Moire patterns

� Flickering of small objects

� Sparkling highlights

� Temporal flickering

� Preventing aliasing – anti-aliasing
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Moire Patterns

� Definition from Wikipedia

A moiré pattern is an interference pattern created, for 
example, when two grids are overlaid at an angle, or when 
they have slightly different mesh sizes.

Wikipedia: http://en.wikipedia.org/wiki/Moir%C3%A9_pattern

A moiré pattern, formed by two sets 
of parallel lines, one set inclined at 
an angle of 5° to the other.
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Another Moire Pattern (by Chris Cooksey)
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Moire Patterns
From Wikipedia
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Moire Patterns
From Wikipedia

Original Image

Improperly 
subsampled

image
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Moire Patterns

Continuous image
(“Zone plate”)

Image samples Reconstructed image

2 2sin x y+
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Texture Aliasing
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Character antialiasing
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Line antialiasing

� Subpixel sampling is not sufficient !

# subpixel resolution
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Fourier Transform & Convolution
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Fourier Transform

� Any function = weighted sum of sines & cosines

� Fourier transform computes weights for sines / cosines 
of different frequencies (or sine + phase shift)

� Spectrum of f = Image of f after Fourier transform
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Fourier Transform
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Fourier Transform Pairs (Examples)
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Fourier Transform Pairs (Examples)
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Fourier Transform in 2D
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Fourier Transform in 2D – Examples
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Convolution
In

 2
D

( ) ( ) ( )h x f g f x g x x dx′ ′ ′= ⊗ = −∫
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Convolution Theorem

� Multiplication in the frequency domain is equivalent to 
convolution in the space domain and vice versa.

f g F G⊗ ↔ ×

f g F G× ↔ ⊗
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Sampling & Reconstruction

The Sampling Theorem
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Sampling
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Reconstruction
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Reconstruction in Spatial Domain –

Details 
� Convolution with the sinc function

� weighted sum of shifted sinc kernels

Pat Hanrahan

=⊗
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Sampling and Reconstruction Summary –

Frequency Domain

×⊗

= =

Pat Hanrahan

Sampling Reconstruction Reconstructed
spectrum
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Aliasing due to Undersampling

� If spectrum replicas overlap, impossible to reconstruct 
original signal

⊗ ×

= =

Pat Hanrahan
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Sampling Theorem

� Claude Shannon, 1949

A signal can be reconstructed from its samples

without loss of information, if the original 

signal  has no frequencies above 1/2 the 

Sampling frequency.

� DEF: Bandlimited function. There is some frequency 
umax, above which the spectrum is identically zero.

� For a given bandlimited function, the rate at which it must 
be sampled (2umax) is called the Nyquist Frequency.

Pat Hanrahan
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Sampling a “Zone Plate”

2 2sin x y+

y

x

Zone plate:

Sampled at 128x128
Reconstructed to 512x512 
using a 30-wide windowed
sinc

Left rings: part of signal
Right rings: prealiasing

Pat Hanrahan

Prealiasing: due to 
inadequate sampling
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Ideal Reconstruction

� Ideally, use a perfect low-pass filter - the sinc function -
to bandlimit the sampled signal and thus remove all 
copies of the spectra introduced by sampling

� Unfortunately, 
� The sinc has infinite extent and we must use simpler 

filters with finite extents. Physical processes in particular 
do not reconstruct with sincs

� The sinc may introduce ringing which are perceptually 
objectionable

Pat Hanrahan
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Sampling a “Zone Plate”

2 2sin x y+

y

x

Zone plate:

Sampled at 128x128
Reconstructed to 512x512
Using optimal cubic filter

Left rings: part of signal
Right rings: prealiasing
Middle rings: postaliasing

Pat Hanrahan

Postaliasing: due to 
inappropriate reconstruction
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Antialiasing
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Antialiasing Techniques

� Antialiasing = Preventing aliasing

1. Analytically prefilter the signal
� Solvable for points, lines, polygons and image textures
� Not solvable in general

e.g. procedurally defined geometry or textures

2. Uniform supersampling and resampling

3. Non-uniform or stochastic sampling
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Antialiasing Techniques

� Antialiasing = Preventing aliasing

1. Analytically prefilter the signal
� Solvable for points, lines, polygons and image textures
� Not solvable in general

e.g. procedurally defined geometry or textures

2. Uniform supersampling and resampling

3. Nonuniform or stochastic sampling
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Antialiasing by Prefiltering

1. First bandlimit the signal (cut off high frequencies = “blur”)

2. Then sample

� Sampling process in frequency domain:

⊗×

= =

Band-limit Sample

� Replicas do not overlap

� They would without 
pre-filtering

� Bandlimited signal can 
be reconstructed

� Not the very original
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Antialiasing by Prefiltering

� Sampling process in spatial domain:

1. Convolve with ideal prefilter, h (ideally h = sinc)

2. Sample: multiply by III(x)

� In practice:
� sinc replaced by a locally supported filter, 

e.g. truncated Gaussian

� taking filtered samples
� filter centered at the sample location

[ ] )(III)()()( xxhxfxfs ×⊗=
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Anti-aliased Lines With Pre-filtering

� Practice
� Compute analytically the pixel area covered by the line

� Assign a color based on this analytically computed coverage

� The same thing in terms of the 
signal theory
1. Convolve with a box-shaped pre-

filter (box=pixel)

2. Sample at pixel centers

� Beware - box pre-filter is bad!
� Spectrum is sinc – leaves a lot of 

high frequencies

� So this method of line antialiasing
is not optimal (but often sufficient)
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Texture Antialiasing by Prefiltering

� Pre-filter placed at the pixel

� Projected to texture space

� Convolution computed as a weighted sum of texels
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Texture Antialiasing by Prefiltering

Pre-filter in

image space

Pre-filter projected

to texture (u,v) space

Filtering quality depends on the 
approximation of the projected filter.
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Trilinear Filtering

� Most commonly used in GPUs

1. Choose a MIP-map level, so that the 
projected filter covers approximately 
4 texels

2. Bilinear texture interpolation in two 
adjacent MIP-map levels

3. Linear interpolation between the two 
levels

� Only isotropic filtering

� Poor approximation of the projected 
prefilter

≈
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EWA Texture Filtering

� EWA = Elliptical Weighted Average

� Approximated by an elliptical gaussian – close match

� Allows anisotropic filtering

≈
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Anisotropic Filtering on the GPU

� Approximate projected pre-filter by a number of tri-linear 
look-ups

� E.g. 4 x aniso
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Texture Filtering Quality

Trilinear
� Bad overall quality - tent filter

� Blurs near silhouettes - Isotropic

EWA
� Better overall quality - Gauss filter

� Silhouettes preserved - Anisotropic
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Ray Differentials

� Texture filtering for reflected and refracted rays

Homan Igehy
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Ray Differentials
Homan Igehy
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Ray Differentials
Homan Igehy

Bilinear
base texture 

Trilinear
mip map 

Trilinear
mip map 

Anisotropic
mip map 

Footprint based on distance Footprint based ray differential
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Homan Igehy, Tracing Ray Differentials
In Proc. of SIGGRAPH ’99. 1999
http://graphics.stanford.edu/papers/trd/
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Antialiasing Techniques

� Antialiasing = Preventing aliasing

1. Analytically prefilter the signal
� Solvable for points, lines, polygons and image textures
� Not solvable in general

e.g. procedurally defined geometry or textures

2. Uniform supersampling and resampling

3. Nonuniform or stochastic sampling
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Uniform Supersampling

� Increasing the sampling rate moves each copy of the 
spectra further apart, potentially reducing the overlap 
and thus aliasing

� Resulting samples must be resampled (filtered) to 
image sampling rate

Samples Pixel

s s

s

Pixel w Sample= ⋅∑

resampling filter evaluated
at the sample location
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Point vs. Supersampled

Point 4x4 Supersampled

Checkerboard sequence by Tom Duff
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Analytic vs. Supersampled

Exact Area 4x4 Supersampled
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Antialiasing Techniques

� Antialiasing = Preventing aliasing

1. Analytically prefilter the signal
� Solvable for points, lines, polygons and image textures
� Not solvable in general

e.g. procedurally defined geometry or textures

2. Uniform supersampling and resample

3. Nonuniform or stochastic sampling
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Distribution of Extrafoveal Cones

Monkey eye 

cone distribution

Fourier transform

Yellot theory

� Aliases replaced by noise

� Visual system less sensitive to high freq noise
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Jittering

� Jittering = stratified sampling on a 
grid

� Prevents clustering of random 
points

� Better sample distribution than 
pure random sampling

� However, clusters of up to four 
points can appear in 2D!
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Jittered vs. Uniform Supersampling

4x4 Jittered Sampling 4x4 Uniform
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Poisson Disk Sampling

� Gives by far the best quality for 
image sampling

� No sample closer to any other 
than a specified threshold d

� Prevents sample clumping –
better than jittering

� Efficient implementation did not 
exist for long time

� Common approach
� Precompute pattern for a block 

of N x N pixels

� Reuse a randomly rotated 
version of the pattern
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Implementation of Poisson Disk 

Sampling
� Dart Throwing

1. Create Candidates Randomly

2. Discard if too close to an existing point

� Extremely slow

� Problem. How to set d for a desired number of points?

� Best Candidate Sampling (Mitchell)
� Generates the pattern progressively

1. Choose first sample randomly

2. To generate (k+1)-th sample
� generate k.q independent candidates

� choose one farthest from the k existing samples

� Bigger q -> better pattern quality
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Implementation of Poisson Disk 

Sampling – Recent Advances

� Kopf et al. Recursive Wang Tiles for Real-Time Blue 
Noise, SIGGRAPH 2006.

� Dunbar and Humphreys. A spatial Data Structure for 
Fast Poisson-Disk Generation. SIGGRAPH 2006

� see videos at
� http://johanneskopf.de/publications/blue_noise/

� http://www.cs.virginia.edu/~gfx/pubs/antimony/
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Various Sampling Patterns

Reference ImageReference ImageReference ImageReference Image
"Zone Plate"
1,048,576 random samples/pixel 
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Various Sampling Patterns

RectilinearRectilinearRectilinearRectilinear, 1 sample/pixel
RMS: -8.154799 dB
Pattern Generation: 17ms 
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Various Sampling Patterns

JitteredJitteredJitteredJittered GridGridGridGrid, 1 sample/pixel
RMS: -8.121792 dB
Pattern Generation: 25ms 
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Various Sampling Patterns

Kopf Kopf Kopf Kopf –––– Poisson disk, Poisson disk, Poisson disk, Poisson disk, 1 sample/pixel
RMS: -8.246348 dB
Pattern Generation: 17ms 
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Conclusion

� Alias makes images ugly

� Rendering software must take care of antialiasing in 
order to produce compelling images without visible 
artifacts

� Signal analysis in Frequency domain explains aliasing 
and suggests antialiasing solutions

� Most common antialising techniques in graphics are
� Pre-filtering

� Supersampling (regular / stochastic)


