
ar
X

iv
:h

ep
-p

h/
00

06
26

9v
1

 2
3

Ju
n

20
00

NIKHEF-00-012

Introduction to Monte Carlo methods

Stefan Weinzierl1

NIKHEF Theory Group

Kruislaan 409, 1098 SJ Amsterdam, The Netherlands

Abstract

These lectures given to graduate students in high energy physics, provide an introduction to
Monte Carlo methods. After an overview of classical numerical quadrature rules, Monte Carlo
integration together with variance-reducing techniques is introduced. A short description
on the generation of pseudo-random numbers and quasi-random numbers is given. Finally,
methods to generate samples according to a specified distribution are discussed. Among
others, we outline the Metropolis algorithm and give an overview of existing algorithms for
the generation of the phase space of final state particles in high energy collisions.

1email address : stefanw@nikhef.nl

http://arXiv.org/abs/hep-ph/0006269v1

Contents

1 Introduction 4

2 Classical numerical integration 4
2.1 Newton-Cotes type formulae . 4
2.2 Gaussian quadratures . 6

2.2.1 Lagrange interpolation formula . 6
2.2.2 Orthogonal polynomials . 7
2.2.3 The main formula of Gaussian quadrature 7

2.3 Romberg integration . 8
2.4 Multi-dimensional integration . 9
2.5 Summary on numerical quadrature rules . 9

3 Monte Carlo techniques 11
3.1 Monte Carlo integration . 11
3.2 Variance reducing techniques . 13

3.2.1 Stratified sampling . 13
3.2.2 Importance sampling . 14
3.2.3 Control variates . 15
3.2.4 Antithetic variates . 15

3.3 Adaptive Monte Carlo methods . 15
3.4 Multi-channel Monte Carlo . 16
3.5 Summary on Monte Carlo techniques . 17

4 Random numbers 18
4.1 Pseudo-random numbers . 18

4.1.1 Multiplicative linear congruential generator 19
4.1.2 Lagged Fibonacci generator . 20
4.1.3 Shift register generator . 20
4.1.4 RANMAR . 20
4.1.5 ACARRY/RCARRY/RANLUX . 21

4.2 Quasi-random numbers . 21
4.2.1 Richtmyer sequences . 23
4.2.2 Halton sequences . 23
4.2.3 Sobol sequences . 23
4.2.4 Faure sequences . 24
4.2.5 Niederreiter sequences . 25

4.3 Summary on random numbers . 25

5 Generating samples according to a specified distribution 26
5.1 General algorithms . 26

5.1.1 The inverse transform method . 26
5.1.2 Acceptance-rejection method . 27
5.1.3 Applications . 27

5.2 The Metropolis algorithm . 27
5.2.1 Numerical simulations of spin glasses . 28
5.2.2 Numerical simulations of quantum field theories 30

5.3 Generating phase space for particle collisions . 31
5.3.1 Sequential approach . 32
5.3.2 Democratic approach . 33
5.3.3 Generating configurations close to soft or collinear regions 35

5.4 Summary on generating specific samples . 37

2

A Orthogonal polynomials 38
A.1 Legendre polynomials . 38
A.2 Tschebyscheff polynomials . 39
A.3 Gegenbauer polynomials . 39
A.4 Jacobi polynomials . 40
A.5 Generalized Laguerre polynomials . 41
A.6 Hermite polynomials . 42

B Sampling some specific distriubtions 42
B.1 Gaussian distribution . 42
B.2 χ2-distribution . 43
B.3 Binomial distribution . 43
B.4 Poisson distirubtion . 43
B.5 Gamma distribution . 44
B.6 Beta distributions . 45
B.7 Student’s t distribution . 45

3

1 Introduction

Monte Carlo methods find application in a wide field of areas, including many subfields of physics,
like statistical physics or high energy physics, and ranging to areas like biology or analysis of
financial markets. Very often the basic problem is to estimate a multi-dimensional integral

I =

∫

dx f(x) (1)

for which an analytic answer is not known. To be more precise one looks for an algorithm which
gives a numerical estimate of the integral together with an estimate of the error. Furthermore
the algorithm should yield the result in a reasonable amount of time, e.g. at low computational
cost. There is no point in developing an algorithm which gives the correct result but takes forever.
However, there is no “perfect” algorithm suitable for all problems. The most efficient algorithm
depends on the specific problem. The more one knows about a specific problem, the higher the
chances to find an algorithm which solves the problem efficiently. We discuss in these lectures
therefore a variety of methods, together with their advantages and disadvantages and hope that
the reader will gain experience where a specific method can be applied. We will foccus on the
evaluation of multi-dimensional integrals as a guideline through these lectures. Other applications
of the Monte Carlo method, for example to optimization problems are not covered in these lectures.
In the first section we discuss classical numerical quadrature rules. Monte Carlo integration,
together with various variance-reduction techniques is introduced in the second section. The third
section is devoted to the generation of uniform pseudo-random numbers and to the generation of
quasi-random numbers in a d-dimensional hypercube. The fourth section deals with the generation
of samples according to a specified probability distribution. This section is more focused on
applications than the previous ones. In high energy physics Monte Carlo methods are mainly
applied in lattice calculations, event generators and perturbative NnLO-programs. We therefore
discuss the Metropolis algorithm relevant for lattice calculations, as well as various methods how to
generate four-vectors of final state particles in high energy collisions according to the phase-space
measure, relevant to event generators and NnLO-programs.

2 Classical numerical integration

Numerical quadrature rules have been known for centuries. They fall broadly in two categories:
Formulae which evaluate the integrand at equally spaced abscissas (Newton-Cotes type formulae)
and formulae which evaluate the integrand at carefully selected, but non-equally spaced abscissa
(Gaussian quadrature rules). The latter usually give better results for a specific class of integrands.
We also discuss the Romberg integration technique as an example of an extrapolation method. In
the end of this section we look at the deficiances which occur when numerical quadrature rules
are applied to multi-dimensional integrals.

2.1 Newton-Cotes type formulae

Formulae which approximate an integral over a finite interval by weighted values of the integrand
at equally spaced abscissas are called formulae of Newton-Cotes type. The simplest example is
the trapezoidal rule:

x0+∆x
∫

x0

dxf(x) =
∆x

2
[f(x0) + f(x0 + ∆x)] − (∆x)3

12
f ′′(ξ), (2)

where x0 ≤ ξ ≤ x0 +∆x. To approximate an integral over a finite interval [x0, xn] with the help of
this formula one divides the intervall into n sub-intervals of length ∆x and applies the trapezoidal

4

rule to each sub-intervall. With the notation xj = x0 +j ·∆x one arrives at the compound formula

xn
∫

x0

dxf(x) =
xn − x0

n

n
∑

j=0

wjf(xj) −
1

12

(xn − x0)
3

n2
f̃ ′′ (3)

with w0 = wn = 1/2 and wj = 1 for 1 ≤ j ≤ n − 1. Further

f̃ ′′ =
1

n

n
∑

j=1

f ′′(ξj), (4)

where ξj is somewhere in the intervall [xj−1, xj]. Since the position of the ξj cannot be known
without knowing the integral exactly, the last term in eq. 3 is usually neglected and introduces
an error in the numerical evaluation. Note that the error is proportional to 1/n2 and that we
have to evaluate the function f(x) roughly n-times (to be exact (n + 1)-times, but for large n the
difference does not matter).

An improvement is given by Simpson’s rule, which evaluates the function at three points:

x2
∫

x0

dxf(x) =
∆x

3
[f(x0) + 4f(x1) + f(x2)] −

(∆x)5

90
f (4)(ξ). (5)

This yields the compound formula

xn
∫

x0

dxf(x) =
xn − x0

n

n
∑

j=0

wjf(xj) −
1

180

(xn − x0)
5

n4
f̃ (4), (6)

where n is an even number, w0 = wn = 1/3, and for 1 ≤ j ≤ n we have wj = 4/3 if j is odd and
wj = 2/3 if j is even. The error estimate scales now as 1/n4.

Newton’s 3/8-rule, which is based on the evaluation of the integrand at four points, does not
lead to an improvement in the error estimate:

x3
∫

x0

dxf(x) =
3∆x

8
[f(x0) + 3f(x1) + 3f(x2) + f(x3)] −

3(∆x)5

80
f (4)(ξ). (7)

As Simpson’s rule it leads to a scaling of the error proportional to 1/n4. An improvement is only
obtained by going to a formula based on five points (which is called Boole’s rule):

x4
∫

x0

dxf(x) =
2∆x

45
[7f(x0) + 32f(x1) + 12f(x2) + 32f(x3) + 7f(x4)] −

8(∆x)7

945
f (6)(ξ).

(8)

Here the error of a compound rule scales like 1/n6. In general one finds for an integration rule of
the Newton-Cotes type that, if the number of points in the starting formula is odd, say 2k − 1,
then the error term is of the form

c2k−1(∆x)2k+1f (2k)(ξ), (9)

where c2k−1 is some constant. If the number of points is even, say 2k, the error is of the same
form:

c2k(∆x)2k+1f (2k)(ξ). (10)

5

A formula whose remainder term is proportional to f (n+1)(ξ) is called of degree n. Such a formula
is exact for polynomials up to degree n. Now immediately one question arrises: What hinders us
to improve the error estimate for a compound rule based on Newton-Cotes formulae by using even
higher point formulae? First, the more refined a rule is, the more certain we must be that it is
applied to a function which is sufficiently smooth. In the formulae above it is implied that, if the
error term is proportional to f (2k)(ξ) that the function f(x) is at least (2k)-times differentiable
and that f (2k)(x) is continous. Applying the rule to a function which does not satisfy the criteria
can lead to a completely wrong error estimate. (Try to apply the trapezoidal rule on the intervall
[0, 1] to the function f(x) = 0 for x < 1/4, f(x) = 1 for 1/4 < x < 3/4 and f(x) = 0 for
x > 3/4.) Secondly, it can be shown if the number of points become large, the coefficients of the
Newton-Cotes formulae become large and of mixed sign. This may lead to significant numerical
cancellations between different terms and Newton-Cotes rules of increasing order are therefore not
used in practice.

2.2 Gaussian quadratures

The Newton-Cotes type rules approximate an integral of a function by the sum of its functional
values at a set of equally spaced points, multiplied by appropriately chosen weights. We saw that
as we allowed ourselves the freedom in choosing the weights, we could achieve integration formulas
of higher and higher order. Gaussian integration formulae take this idea further and allows us
not only the freedom to choose the weights appropriately, but also the location of the abscissas
at which the function is to be evaluated. A Newton-Cotes type formula, which is based on the
evaluation at n points is exact for polynomials up to degree n (if n is odd) or degree (n − 1) (if
n is even). Gaussian quadrature formulae yield integration rules of degree (2n − 1). Furthermore
these rules can be generalized such that they don’t yield exact results for a polynomial up to de-
gree (2n− 1), but for an integrand of the form “special function” times “polynomial up to degree
(2n − 1)”.

Before stating the main formula for Gaussian quadratures we first give an excursion to Lagrange’s
interpolation formula and introduce orthogonal polynomials.

2.2.1 Lagrange interpolation formula

Let x0, x1, ..., xn be (n + 1) pairwise distinct points and let there be given (n + 1) arbitrary
numbers y0, y1, ..., yn. We wish to find a polynomial pn(x) of degree n such that

pn(xi) = yi, i = 0, 1, ..., n. (11)

The solution is due to Lagrange and is given by

pn(x) =

n
∑

i=0

yil
n
i (x), (12)

where the fundamental Lagrange polynomials are given by

lni (x) =
(x − x0)...(x − xi−1)(x − xi+1)...(x − xn)

(xi − x0)...(xi − xi−1)(xi − xi+1)...(xi − xn)
. (13)

Exercise 1: Prove this statement.

Hint: You may first show that lni (xj) equals 1 if i = j and zero if i 6= j.

If we want to approximate a function f(x) by Lagrange’s interpolating polynomial pn(x) such
that f(xi) = p(xi) for i = 0, 1, ..., n the remainder term is given by

f(x) = pn(x) +
f (n+1)(ξ)

(n + 1)!
Π(x), (14)

6

where Π(x) = (x − x0)(x − x1)...(x − xn) and min(x, x0) < ξ < max(x, xn).

Exercise 2: Show that

p(2n+1)(x) =

n
∑

i=0

[

f(xi)

(

1 − Π′′(xi)

Π′(xi)
(x − xi)

)

+ f ′(xi)(x − xi)

]

(lni (x))2 (15)

is the unique polynomial of degree (2n + 1) for which

p(2n+1)(xi) = f(xi), p′

(2n+1)(xi) = f ′(xi) for i = 0, 1, ..., n. (16)

The remainder term is given by

f(x) = p(2n+1)(x) +
f (2n+2)(ξ)

(2n + 2)!
(Π(x))2 , (17)

where min(x, x0) < ξ < max(x, xn).

2.2.2 Orthogonal polynomials

A sequence of polynomials P0(x), P1(x), ..., in which Pn(x) is of degree n is called orthogonal with
respect to the weight function w(x) if

b
∫

a

dx w(x)Pi(x)Pj(x) = 0 for i 6= j. (18)

Here we should mention that a function w(x) defined on an interval [a, b] is called a weight

function if w(x) ≥ 0 for all x ∈ [a, b],
b
∫

a

dx w(x) > 0 and
b
∫

a

dx w(x)xj < ∞ for all j = 0, 1, 2,

By rescaling each Pn(x) with an appropriate constant one can produce a set of polynomials which
are orthonormal. An important theorem states that the zeros of (real) orthogonal polynomials
are real, simple and located in the interior of [a, b]. A second theorem states that if x1 < x2 <
... < xn are the zeros of the orthogonal polynomial Pn(x), then in each interval [a, x1], [x1, x2], ...,
[xn−1, xn], [xn, b] there is precisely one zero of the orthogonal polynomial Pn+1(x). Well-known
sets of orthogonal polynomials are the Legendre, Tschebyscheff, Gegenbauer, Jacobi, Laguerre
and Hermite polynomials. Some of them are generalizations or specializations of others. In order
to distinguish them one characterizes them by the interval on which they are defined and by the
corresponding weight function. The first four (Legendre, Tschebyscheff, Gegenbauer and Jacobi)
are defined on the intervall [−1, 1], the Laguerre polynomials are defined on [0,∞] and finally the
Hermite polynomials are defined on [−∞,∞]. The weight function for the Legendre polynomials
is simply w(x) = 1, the weight function for the Gegenbauer polynomials is w(x) = (1 − x2)µ−1/2

where µ > −1/2. The special cases corresponding to µ = 0 and µ = 1 give the Tschebyscheff
polynomials of the first and second kind, respectively. And of course, in the case µ = 1/2 the
Gegenbauer polynomials reduce to the Legendre polynomials. The Jacobi polynomials have the
weight function w(x) = (1 − x)α(1 + x)β with α, β > −1. Here the special case α = β yields up
to normalization constants the Gegenbauer polynomials. The generalized Laguerre polynomials
have the weight function w(x) = xαe−x where α > −1. Here α = 0 corresponds to the original
Laguerre polynomials. The Hermite polynomials correspond to the weight function exp(−x2). We
have collected some formulae relevant to orthogonal polynomials in appendix A.

2.2.3 The main formula of Gaussian quadrature

If w(x) is a weight function on [a, b], then there exists weights wj and abscissas xj for 1 ≤ j ≤ n
such that

b
∫

a

dx w(x)f(x) =

n
∑

j=1

wjf(xj) +
f (2n)(ξ)

(2n)!

b
∫

a

dx w(x) [Π(x)]
2

(19)

7

with

Π(x) = (x − x1)(x − x2)...(x − xn),

a ≤ x1 < x2 < ... < xn ≤ b, a < ξ < b. (20)

The abscissas are given by the zeros of the orthogonal polynomial of degree n associated to the
weight function w(x). In order to find them numerically it is useful to know that they all lie in the
interval [a, b]. The weights are given by the (weighted) integral over the Lagrange polynomials:

wj =

b
∫

a

dx w(x)lnj (x). (21)

Exercise 3: Let P0(x), P1(x), ... be a set of orthonormal polynomials, e.g.

b
∫

a

dx w(x)Pi(x)Pj(x) = δij , (22)

let x1, x2, ..., xn+1 be the zeros of Pn+1(x) and w1, w2, ..., wn+1 the corresponding Gaussian weights
given by eq. 21. Show that for i, j < n + 1

n+1
∑

k=1

wkPi(xk)Pj(xk) = δij , (23)

e.g. the P0, P1, ..., Pn are orthonormal on the zeros of Pn+1. This equation can be useful to check the

accuracy with which the zeros and weights of Pn+1 have been determined numerically.

2.3 Romberg integration

Suppose we have an integration rule of degree (r − 1) which evaluates the integrand at n points,
e.g.

b
∫

a

dx f(x) = S[a,b][f] + R[a,b][f], S[a,b][f] =
n
∑

j=1

wjf(xj) (24)

and R[a,b][f] denotes the remainder. We may then construct a new rule of degree r as follows:

b
∫

a

dx f(x) = pS[a,b][f] + q
(

S[a,(a+b)/2][f] + S[(a+b)/2,b]

)

+ R̃[a,b][f] (25)

with p = −1/(2r − 1) and q = 2r/(2r − 1). Since the original rule eq. 24 is of degree (r − 1), the
remainder term R[a,b][f] is of the form c′(b − a)r+1f (r)(ξ), but for f = xr the r-th derivative is a
constant. We find therefore for

R̃[a,b][x
r] = pc(b − a)r+1 + 2qc

(

b − a

2

)r+1

= 0. (26)

This proves that the new rule eq. 25 is now of degree r.

Exercise 4: Take as the original rule the trapezoidal rule and construct the improved rule. What do

you get? Repeat the exercise with Simpson’s rule and Newton’s 3/8 rule as starting point. At how many

different points do you have to evaluate the integrand with the improved rules? Is this efficient? Can the

fact that p and q have opposite signs cause any problems?

8

In practice Romberg integration is used with the trapezoidal rule. Let

S
(k)
0 =

b − a

2k

2k

∑

j=0

wjf(xj) (27)

be the trapezoidal sum with 2k + 1 points and define

S(k)
m =

4mS
(k+1)
m−1 − S

(k)
m−1

4m − 1
. (28)

Then the series S
(0)
0 , S

(0)
1 , S

(0)
2 ... converges better then the series S

(0)
0 , S

(1)
0 , S

(2)
0 Romberg

integration is a special case of an extrapolation method (Richardson extrapolation to be precise).

Based on a few estimates S
(k−i)
0 , ..., S

(k)
0 with 2k−i + 1, ..., 2k + 1 points one extrapolates to the

limit k → ∞.

2.4 Multi-dimensional integration

In many problems multi-dimensional integrals occur, which have to be evaluated numerically. One
may try to extend the one-dimensional integration formulae to d-dimensional integration formulae
by viewing the d-dimensional integral as an iteration of one-dimensional integrals and applying a
one-dimensional integration rule in each iteration. As an example we consider an integral over the
d-dimensional hypercube [0, 1]d evaluated with the help of the trapezoidal rule:

∫

ddu f(u1, ..., ud) =
1

nd

n
∑

j1=0

...

n
∑

jd=0

wj1 ...wjd
f

(

j1
n

, ...,
jd

n

)

+ O

(

1

n2

)

. (29)

In total we have to evaluate the function N = (n+1)d ≈ nd times. Since the necessary computing
time is proportional to N we observe that the error scales as N−2/d. With increasing dimension d
the usefulness of the error bound O(N−2/d) declines drastically. Changing for example from the
trapezoidal rule to Simpson’s rule does not change the situation significantly: The error bound
would scale in this case as N−4/d. We will later see that Monte Carlo integration yields an error
which decreases with 1/

√
N independent of the number of dimensions. It has therefore become

the method of choice for numerical integration in high dimensions.

2.5 Summary on numerical quadrature rules

Numerical quadrature rules are the best method for one-dimensional integrals. If the integrand is
sufficiently smooth and if one knows an absolute bound for a certain derivative of the integrand,
they yield an exact error estimate. The efficiency of numerical quadrature rules decreases rapidly
with the number of dimensions. Furthermore, for complicated integration boundaries, which have
to be imbedded for example into a hypercube, the integrand is no longer a smooth function and
the estimate for the error can no longer be used.

Further reading: You can find more information on numerical quadrature rules in the books
by Davis and Rabinowitz [1] and by Press et al. [2].

Exercise 5: Evolution of parton densities using numerical quadrature with Laguerre polynomials. This
method is due to D.A. Kosower [3]. The evolution equations for the quark non-singlet parton distributions
f(x, Q2) of the proton read

Q2 ∂f(x, Q2)

∂Q2
= P (x,Q2) ⊗ f(x, Q2), (30)

9

where x stands for the nucleon’s momentum fraction carried by the parton, P (x,Q2) is the Altarelli-Parisi
evolution kernel, and ⊗ denotes the convolution

A(x) ⊗ B(x) =

1
∫

0

dy

1
∫

0

dz.δ(x − yz)A(y)B(z) (31)

The evolution kernel is known to next-to-leading order:

P (x,Q2) = as(Q
2)P0(x) + a2

s(Q
2)P1(x) + O(a3

s), (32)

where we have introduced as(Q
2) = αs(Q

2)/4π. In the Mellin-transform approach one factorizes eq. 30 by
taking Mellin moments. The Mellin moments of a function h(x) are given by

hz =

1
∫

0

dx xz−1h(x). (33)

Truncating to next-to-leading order we obtain:

Q2 ∂fz(Q2)

∂Q2
=

(

as(Q
2)P z

0 + a2
s(Q

2)P z
1

)

fz(Q2). (34)

This equation is formally solved by the introduction of an evolution operator Ez:

fz(Q2) = Ez(Q2, Q2
0)f

z(Q2
0). (35)

The evolution operator is for the quark non-singlet case of the form:

Ez(Q2, Q2
0) =

(

as(Q
2)

as(Q2
0)

)

γz
0

2β0
[

1 +
as(Q

2) − as(Q
2
0)

2β0

(

γz
1 − β1

β0
γz
0

)]

, (36)

where γz
0 and γz

1 are the first and second coefficients of the anomalous dimensions. Retransforming back
one obtains the evolved parton distribution in x-space by

f(x, Q2) =
1

2πi

∫

C

dzx−zfz(Q2), (37)

where the contour C runs to the right of all singularities of the integrand.
The parton distributions are usually parametrized at the input scale Q2

0 in a form like

xf(x,Q2
0) =

∑

i

Aix
αi(1 − x)βi (38)

with Mellin transform

fz(Q2
0) =

∑

i

AiB(z + αi − 1, 1 + βi), (39)

where B(x, y) is the beta function. One example is the CTEQ 4M structure function for the u-quark
valence distribution uv, given at the scale Q0 = 1.6GeV:

xuv = 1.344 x0.501(1 − x)3.689 (1 + 6.402 x0.873) . (40)

Droping from now on the arguments Q2 and Q2
0 our task is to evaluate the integral

f(x, Q2) =
1

π
Re

∫

Cs

dz
1

i
F (z), F (z) = x−zEz

∑

i

AiB(z + αi − 1, 1 + βi), (41)

where we have used complex conjugation to replace the contour C by Cs, starting at the real axis, right
to the right-most pole and running upwards to infinity. The most elegant way to solve this problem is to
choose a contour in such a way that the integrand can very well be approximated by some set of orthogonal
polynomials. We neglect for the moment the evolution operator Ez. We try a parabolic contour

z(t) = z0 + it +
1

2
c3t

2

10

and determine the parameters z0 and c3 according to

F ′(z0) = 0, c3 =
F ′′′(z0)

3F ′′(z0)
. (42)

Finally we change variables

u =

(

t

c2

)2

, c2 =

√

2F (z0)

F ′′(z0)
. (43)

As the result we obtain

f(x, Q2) =
c2

2π

∞
∫

0

du√
u

e−uRe
[

eu
(

1 − ic2c3

√
u
)

F (z(c2

√
u))
]

(44)

and the integrand can be approximated by Laguerre polynomials L
−1/2
n (x). Start from the CTEQ parame-

terization and find z0 by solving F ′(z0) = 0 numerically (you may use Newton-Raphson for example) and

determine the parameters c2 and c3. Evaluate the integral by using a Gaussian quadrature formula for

Laguerre polynomials with 3, 5 or 10 points. Here you have to find the correct abscissas and weights. Since

we set the evolution operator Ez = 1 you should recover the original parton density at the scale Q2
0. The

inclusion of the evolution operator does only slighty modify the integrand and one can therefore use the

same contour as in the non-evolved case. (The relevant anomalous dimensions can be found for example

in [4].)

3 Monte Carlo techniques

We have seen in the previous section that numerical quadrature rules are inefficient for multi-
dimensional integrals. In this section we introduce Monte Carlo integration. We will show that
for Monte Carlo integration the error scales like 1/

√
N , independent of the number of dimensions.

This makes Monte Carlo integration the preferred method for integrals in high dimensions. But,
after the first euphoria is gone, one realizes that convergence by a rate of 1/

√
N is pretty slow.

We discuss therefore several techniques to improve the efficiency of Monte Carlo integration.

3.1 Monte Carlo integration

We consider the integral of a function f(u1, ..., ud), depending on d variables u1, ..., ud over the
unit hypercube [0, 1]d. We assume that f is square-integrable. As a short-hand notation we will
denote a point in the unit hypercube by x = (u1, ..., ud) and the function evaluated at this point
by f(x) = f(u1, ..., ud). The Monte Carlo estimate for the integral

I =

∫

dxf(x) =

∫

dduf(u1, ..., ud) (45)

is given by

E =
1

N

N
∑

n=1

f(xn). (46)

The law of large numbers ensures that the Monte Carlo estimate converges to the true value of
the integral:

lim
N→∞

1

N

N
∑

n=1

f(xn) = I. (47)

11

In order to discuss the error estimate for finite N , we first introduce the variance σ2(f) of the
function f(x):

σ2(f) =

∫

dx (f(x) − I)2 . (48)

We can then show that

∫

dx1...

∫

dxN

(

1

N

N
∑

n=1

f(xn) − I

)2

=
σ2(f)

N
. (49)

Exercise 6: Prove eq. 49.

Hint: You may want to introduce an auxiliary function g(x) = f(x) − I and show
∫

dxg(x) = 0 first.

Eq. 49 can be interpreted to mean that the error in the Monte Carlo estimate is on the aver-
age σ(f)/

√
N . σ(f) is called the standard deviation of f . The central limit theorem tells us then

that the probability that our Monte Carlo estimate lies between I−aσ(f)/
√

N and I +bσ(f)/
√

N
is given by

lim
N→∞

Prob

(

−a
σ(f)√

N
≤ 1

N

N
∑

n=1

f(xn) − I ≤ b
σ(f)√

N

)

=
1√
2π

b
∫

−a

dt exp

(

− t2

2

)

. (50)

This also shows that error in a Monte Carlo integration scales like 1/
√

N independent of the
dimension d. Of course, in practice one cannot obtain easily the exact value for the variance σ2(f)
and one uses the Monte Carlo estimate

S2 =
1

N − 1

N
∑

n=1

(f(xn) − E)
2

=
1

N

N
∑

n=1

(f(xn))
2 − E2 (51)

instead.

Exercise 7: For a reliable error estimate we had to require that the function f is square integrable. If

the function f is integrable, but not square integrable, the Monte Carlo estimate E for the integral will still

converge to the true value, but the error estimate will become unreliable. Do a Monte Carlo integration of

the function f(x) = 1/
√

x over the interval [0, 1].

We would like to draw the attention to the fact that Monte Carlo integration gives only a proba-
bilistic error bound, e.g. we can only give a probability that the Monte Carlo estimate lies within
a certain range of the true value. This should be compared to numerical quadrature formulae. If
we use for example the trapezoidal rule and if we know that the second derivative of f is bounded
by, say

|f ′′(x)| ≤ c, x0 ≤ x ≤ x0 + ∆x, (52)

we obtain a deterministic error bound:
∣

∣

∣

∣

∣

∣

∆x

2
(f(x0) + f(x0 + ∆x)) −

x0+∆x
∫

x0

dx f(x)

∣

∣

∣

∣

∣

∣

≤ c (∆x)3

12
. (53)

Here the error is guaranteed to be smaller than c(∆x)3/12. On the other hand to obtain this
bound we used the additional information on the second derivative.

Exercise 8: Buffon’s needle technique to estimate π. Buffon used in 1777 the following procedure to

estimate π : A pattern of parallel lines separated by a distance d is laid out on the floor. Repeatedly a

12

needle of length d is thrown onto this stripped pattern. Each time the needle lands in such a way as to

cross a boundary between two stripes, it is counted as a hit. The value of π is then estimated from twice

the number of tries divided by the number of hits. The above recipe is based on the fact that the probability

of a hit is 2/π. This can be seen as follows: Let ϕ be the angle between the needle and the perpendicular to

the stripes. For a given ϕ the probability of a hit is | cos ϕ|. Since all angles are equally likely, the avarage

value of | cos ϕ| can be calculated by integrating over all angles and dividing by the range. The problem

with that algorithm is, that it gives large statistical errors. Write a Monte Carlo program which estimates

π by using Buffon’s needle technique. How often do you have to throw the needle to get the first three, five

or seven digits of π?

3.2 Variance reducing techniques

We have seen that the error estimate of a Monte Carlo integration scales like 1/
√

N . The main
advantage of Monte Carlo integration is the fact, that the error estimate is independent of the
dimension d of the integral. However we pay the price that the Monte Carlo estimate for the
integral converges relatively slow to the true value at the rate of 1

√
N . Several techniques exist

to improve the situation.

3.2.1 Stratified sampling

This technique consists in dividing the full integration space into subspaces, performing a Monte
Carlo integration in each subspace, and adding up the partial results in the end. Mathematically,
this is based on the fundamental property of the Riemann integral

1
∫

0

dxf(x) =

a
∫

0

dxf(x) +

1
∫

a

dxf(x), 0 < a < 1. (54)

More generally we split the integration region M = [0, 1]d into k regions Mj where j = 1, ..., k. In
each region we perform a Monte Carlo integration with Nj points. For the integral I we obtain
the estimate

E =

k
∑

j=1

vol(Mj)

Nj

Nj
∑

n=1

f(xjn) (55)

and instead of the variance σ2(f)/N we have now the expression

k
∑

j=1

vol(Mj)
2

Nj
σ2(f)

∣

∣

Mj
(56)

with

σ2(f)
∣

∣

Mj
=

1

vol(Mj)

∫

Mj

dx

f(x) − 1

vol(Mj)

∫

Mj

dx f(x)

2

=

1

vol(Mj)

∫

Mj

dx f(x)2

−

1

vol(Mj)

∫

Mj

dx f(x)

2

. (57)

If the subspaces and the number of points in each subspace are chosen carefully, this can lead to a
dramatic reduction in the variance compared with crude Monte Carlo, but it should be noted that
it can also lead to a larger variance if the choice is not appropriate. If we take a = 1/2 in eq. 54

13

and use Na points in the first region [0, a] and Nb points in the second region [a, 1] we obtain for
the error estimate

1

4

(

σ2(f)
∣

∣

a

Na
+

σ2(f)
∣

∣

b

Nb

)

, (58)

which is minimized for fixed N = Na + Nb by choosing

Na

N
=

σ(f)|a
σ(f)|a + σ(f)|b

. (59)

In general the total variance is minimized when the number of points in each subvolume is pro-
portional to σ(f)|Mj

.

3.2.2 Importance sampling

Mathematically, importance sampling corresponds to a change of integration variables :
∫

dx f(x) =

∫

f(x)

p(x)
p(x)dx =

∫

f(x)

p(x)
dP (x) (60)

with

p(x) =
∂d

∂x1...∂xd
P (x). (61)

If we restrict p(x) to be a positive-valued function p(x) ≥ 0 and to be normalized to unity
∫

dx p(x) = 1 (62)

we may interpreted p(x) as a probability density function. If we have at our disposal a random
number generator corresponding to the distribution P (x) we may estimate the integral from a
sample x1, ..., xN of random numbers distributed according to P (x):

E =
1

N

N
∑

n=1

f(xn)

p(xn)
. (63)

The statistical error of the Monte Carlo integration is given by σ(f/p)/
√

N , where an estimator
for the variance σ2(f/p) is given by

S2

(

f

p

)

=
1

N

N
∑

n=1

(

f(xn)

p(xn)

)2

− E2. (64)

We see that the relevant quantity is now f(x)/p(x) and it will be advantageous to choose p(x)
as close in shape to f(x) as possible. If f(x) is positive-valued one might be tempted to choose
p(x) = cf(x). The constant is easily found to be 1/I and the variance σ2(f/p) turns out to be
zero. So we would have found a perfect method which would return the correct value with only
one sampling point. Of course life in not so simple and the crucial point is that in order to sample
f/p we must know p, and in order to know p(x) = f(x)/I we must know I, and if we already
know I we don’t need a Monte Carlo integration to estimate it. So in practice one chooses p(x)
such that it approximates |f(x)| reasonably well in shape and such that one can generate random
numbers distributed according to P (x).

One disadvantage of importance sampling is the fact, that it is dangerous to choose functions
p(x), which become zero, or which approach zero quickly. If p goes to zero somewhere where f
is not zero, σ2(f/p) may be infinite and the usual technique of estimating the variance from the
sample points may not detect this fact if the region where p = 0 is small.

14

3.2.3 Control variates

As in importance sampling one seeks an integrable function g which approximates the function f to
be integrated, but this time the two functions are subtracted rather than divided. Mathematically,
this technique is based on the linearity of the integral :

∫

dx f(x) =

∫

dx (f(x) − g(x)) +

∫

dx g(x). (65)

If the integral of g is known, the only uncertainty comes from the integral of (f − g), which will
have smaller variance than f if g has been chosen carefully. The method of control variates is more
stable than importance sampling, since zeros in g cannot induce singularities in (f − g). Another
advantage over importance sampling is that the integral of the approximating function g need not
be inverted analytically.

3.2.4 Antithetic variates

Usually Monte Carlo calculations use random points, which are independent of each other. The
method of antithetic variates deliberately makes use of correlated points, taking advantage of the
fact that such a correlation may be negative. Mathematically this is based on the fact that

var(f1 + f2) = var(f1) + var(f2) + 2 covar(f1, f2). (66)

If we can arrange to choose points such that f1 and f2 are negative correlated, a substantial
reduction in variance may be realized. The most trivial example for the application of the method
of antithetic variates would be a Monte Carlo integration of the function f(x) = x in the intervall
[0, 1] by evaluating the integrand at the points xi and 1 − xi.

3.3 Adaptive Monte Carlo methods

The variance-reducing techniques described above require some advance knowledge of the be-
haviour of the function to be integrated. In many cases this information is not available and one
prefers adaptive techniques, e.g. an algorithm which learns about the function as it proceeds.
In the following we describe the VEGAS-algorithm [7, 8], which is widely used in high-energy
physics. VEGAS combines the basic ideas of importance sampling and stratified sampling into an
iterative algorithm, which automatically concentrates evaluations of the integrand in those regions
where the integrand is largest in magnitude. VEGAS starts by subdividing the integration space
into a rectangular grid and performs an integration in each subspace. These results are then used
to adjust the grid for the next iteration, according to where the integral receives dominant con-
tributions. In this way VEGAS uses importance sampling and tries to approximate the optimal
probability density function

poptimal(x) =
|f(x)|

∫

dx|f(x)| (67)

by a step function. Due to storage requirements one has to use a separable probability density
function in d dimensions:

p(u1, ..., ud) = p1(u1) · p2(u2) · ... · pd(ud). (68)

Eventually after a few iterations the optimal grid is found. In order to avoid rapid destabilizing
changes in the grid, the adjustment of the grid includes usually a damping term. After this initial
exploratory phase, the grid may be frozen and in a second evaluation phase the integral may be
evaluated with high precision according to the optimized grid. The separation into an exploratory
phase and an evaluation phase allows one to use less integrand evaluations in the first phase and

15

to ignore the numerical estimates from this phase (which will in general have a larger variance).
Each iteration yields an estimate Ej together with an estimate for the variance S2

j :

Ej =
1

Nj

Nj
∑

n=1

f(xn)

p(xn)
, S2

j =
1

Nj

Nj
∑

n=1

(

f(xn)

p(xn)

)2

− E2
j . (69)

Here Nj denotes the number of integrand evaluations in iteration j. The results of each iteration
in the evaluation phase are combined into a cummulative estimate, weighted by the number of
calls Nj and their variances:

E =

m
∑

j=1

Nj

S2
j

−1

m
∑

j=1

NjEj

S2
j

 . (70)

If the error estimates S2
j become unreliable (for example if the function is not square integrable),

it is more appropriate to weight the partial results by the number Nj of integrand evaluations
alone. In addition VEGAS returns the χ2 per degree of freedom:

χ2/dof =
1

m − 1

m
∑

j=1

(Ej − E)2

S2
j

. (71)

This allows a check whether the various estimates are consistent. One expects a χ2/dof not much
greater of one.

In low dimensions one may use stratified sampling instead of importance sampling. If in each
cell at least two points are thrown, the contribution to the variance from each cell may be esti-
mated and the grid can be adjusted such that it minimizes the total variance. This method is
however restricted to low dimensions. If b denotes the number of bins per axis, d the number of
dimensions and one requires two points per cell, one needs at least

N = 2bd (72)

integrand evaluations. This number grows exponentially with d and for large d one has to resort to
importance sampling. Note that for large d there are inevitably cells, into which no point is thrown.

Exercise 9: Write a computer program which implements the adaptive grid technique of the VEGAS-

algorithm in one dimension. It should integrate a function f(x) in the intervall [0, 1]. Split the interval

[0, 1] into b bins [xi−1, xi], where 0 = x0 < x1 < ... < xb = 1. The probability that a point is thrown into

bin i is 1/b. Inside a bin the points a chosen with a uniform probability. After each iteration the boundaries

are readjusted. Adjust the bins in such a way that each bin would give a contribution of 1/b
∫

dx|f(x)|,
based on the estimate you got in the last iteration.

3.4 Multi-channel Monte Carlo

If the integrand f(x) has sharp peaks, crude Monte Carlo usually leads to poor results. The sit-
uation can sometimes be improved by a remapping of variables, such that the integrand becomes
more flat. However there might be situations where the integrand exhibits different peaks in dif-
ferent regions. In such cases it is often impossible to find a variable transformation, which remaps
all peaks simultaneously. Multi-channel Monte Carlo offers a solution, if the transformations for a
single peak structure are known. Each such transformation is known as a channel. Each channel
is specified by a probability density function pi(x) and a mapping P−1

i (y) from random numbers
y distributed according to pi(x) into the region of integration:

x = P−1
i (y). (73)

16

Each density is non-negative and normalized to unity:
∫

dxpi(x) = 1 for i = 1, ..., m, where m
denotes the number of channels. Let αi ≥ 0, i = 1, ..., m be non-negative numbers, such that

n
∑

i=1

αi = 1. (74)

A specific channel is then selected with probability αi. In practice one fixes the total number of
integrand evaluations and evaluates each channel roughly Ni ≈ αiN times. The integral we want
to calculate is

I =

∫

dx f(x) =

m
∑

i=1

αi

∫

f(x)

p(x)
dPi(x), (75)

where p(x) =
∑

αipi(x). The Monte Carlo estimate for the integral is then

E =
1

N

m
∑

i=1

Ni
∑

ni=1

f(xni
)

p(xni
)
. (76)

The expected error of the integration is given by
√

W (α) − I2

N
, (77)

where W (α) is given by

W (α) =
m
∑

i=1

αi

∫ (

f(x)

p(x)

)2

dPi(x). (78)

By adjusting the parameters αi one may try to minimize W (α). Since the integral I does not
depend on the parameters αi one may change the αi during the integration. The αi do not affect
the estimate for the integral, but only the estimate for the error.

The method suggested in [9] starts from an initial set α′
i, performs a few hundred Monte Carlo

evaluations to estimate

Wi(α
′) =

∫

dx pi(x)

(

f(x)

p(x)

)2

(79)

and rescales the parameters according to

αi =
α′

i (Wi(α
′))β

∑

i α′
i (Wi(α′))

β
. (80)

The suggested values for the parameter β range from 1/2 to 1/4 [10].

3.5 Summary on Monte Carlo techniques

Monte Carlo integration offers a tool for numerical evaluation of integrals in high dimensions. Fur-
thermore Monte Carlo integration works for smooth integrands as well as for integrands with dis-
continuities. This allows an easy application to problems with complicated integration boundaries.
However the error estimate scales always with 1/

√
N . To improve the situation we introduced the

classical variance reducing techniques (stratified sampling, importance sampling, control variates,
antithetic variates) as well as two advanced methods: The adaptive VEGAS-algorithm, which
learns about the integrand as it proceeds and multi-channel Monte Carlo, which is useful when
the integrand is sharply peaked in different regions of the integration region.

Further reading: The material presented in this section is based on the book by Hammersley
and Handscomb [5] and the review article by James [6].

17

4 Random numbers

Since a computer is a deterministic machine, truly random numbers do not exist on a computer.
One uses therefore pesudo-random numbers. Pseudo-random numbers are produced in the com-
puter deterministicly by a simple algorithm, and are therefore not truly random, but any sequence
of pseudo-random numbers is supposed to appear random to someone who doesn’t know the al-
gorithm. More quantitatively one performs for each proposed pseudo-random number generator a
series of tests T1, T2, ..., Tn. If the outcome of one test differs significantly from what one would
expect from a truly random sequence, the pseudo-random number generator is classified as “bad”.
Note that if a pseudo-random number generator has passed n tests, we can not conclude that it
will also pass test Tn+1.
In this context also the term “quasi-random numbers” appears. Quasi-random numbers are not
random at all, but produced by a numerical algorithm and designed to be distributed as uniformly
as possible, in order to reduce the errors in Monte Carlo integration.

4.1 Pseudo-random numbers

By today’s standard a good random number generator should satisfy the following criteria:

• Good distribution. The points should be distributed according to what one would expect
from a truly random distribution. Furthermore a pseudo-random number generator should
not introduce artificial correlations between succesivley generated points.

• Long period. Both pseudo-random and quasi-random generators always have a period, after
which they begin to generate the same sequence of numbers over again. To avoid undesired
correlations one should in any practical calculation not come anywhere near exhausting the
period.

• Repeatability. For testing and development, it may be necessary to repeat a calculation with
exactly the same random numbers as in the previous run. Furthermore the generator should
allow the possibility to repeat a part of a job without doing the whole thing. This requires
to be able to store the state of a generator.

• Long disjoint subsequences. For large problems it is extremely convenient to be able to
perform independent subsimulations whose results can later be combined assuming statistical
indepedence.

• Portability. This means not only that the code should be portable (i.e. in a high-level
language like Fortran or C), but that it should generate exactly the same sequence of numbers
on different machines.

• Efficiency. The generation of the pseudo-random numbers should not be too time-consuming.
Almost all generators can be implemented in a reasonably efficient way.

To test the quality of a pseudo-random number generator one performs a series of test. The
simplest of all is the frequency test. If the algorithm claims to generate pseudo-random numbers
uniformly distributed in [0, 1], one divides this intervall into b bins, generates n random number
u1, u2, ... un and counts the number a pseudo-random number falls into bin j (1 ≤ j ≤ b). One
then calculates χ2 assuming that the numbers are truly random and obtains a probability that
the specific generated distribution is compatible with a random distribution. The serial test is a
generalization of the frequency test. Here one looks at pairs of succesive generated numbers and
checks if they are uniformly distributed in the area [0, 1] × [0, 1].

Another popular test is the gap test. Let α and β be two real numbers with 0 ≤ α < β ≤ 1. Given
a sequence u1, u2, ... of supposedly random numbers one determines the length of consecutive
subsequences uj , uj+1, ..., uj+r in which uj+r lies between α and β, but the other u’s don’t. Such
a subsequence is called a gap of length r. Having determined the gaps of length 0, 1, ... ,t, one

18

then applies a χ2-test to this empirical distribution.

We give an overview of some of the most popular algorithms for pseudo-random number gen-
erators. All algorithm are given such that they generate integer numbers up to m. To obtain real
numbers in the interval [0, 1] one divides therefore by m. Some algorithm can be implemented in
such a way that they work directly with floating point numbers.

4.1.1 Multiplicative linear congruential generator

Each succesive integer is obtained by multiplying the previous one by a well chosen multiplier,
optionally adding another constant, and throwing away the most significant digits of the result:

si = (asi−1 + c) mod m. (81)

where a and m are relativly prime. The linear congruential generator has a period no longer than
m. Its theory is quite well understood [11]. For the modulus m one chooses usually a number of
the form 2r, 2r +1 or 2r −1, which allow a fast implementation of the routine. The choice m = 2r

is not always the best one. In this case it can be shown that the l lowest order bits of si have
a period not exceeding 2l. For example, the last bit is either constant or stricly alternating, the
last two bits have a period no longer than two, the last three bits a period no longer than 8. In
most applications the lowest order bits are however insignificant. As already stated the maximal
period is m. There is a theorem which states that the generator has the maximal period if and
only if c > 0 is relatively prime to m, a − 1 is a multiple of p for every prime p dividing m and
a − 1 is a multiple of 4, if 4 divides m. In the case c = 0 the maximal possible period is attained
if s0 is relatively prime to m and if a is a primitive element modulo m. (If a is relatively prime to
m, the smallest integer λ for which aλ = 1 mod m is called the order of a modulo m. Any such a
which has the largest possible order modulo m is called a primitive element modulo m.) In this
case the period is λ(2r) = 2r−2 if m = 2r with r ≥ 3, λ(pr) = pr−1(p − 1) if m = pr with p > 2 a
prime number and the least common multiple of λ(pr1

1), ... λ(prt

t) if m = pr1
1 · ... · prt

t with p1, ...,
pt being prime numbers. This leaves the question in which cases a is a primitive element modulo
m. If m = 2r with r ≥ 4 the answer is if and only if a mod 8 equals 3 or 5. In the case m = p
where p is a prime number greater than 2, a has to satisfy a 6= 0 mod p and a(p−1)/q 6= 1 mod p
for any prime divisor q of p − 1.

One choice for the constants would be a = 69069, c = 0 and m = 232. Other choices are
a = 1812433253, c = 0 and m = 232 or a = 1566083941, c = 0 and m = 232. As a historical
note, the first proposal was a = 23, c = 0 and m = 108 + 1. IBM used in the sixties and seventies
the values a = 65539, c = 0 and m = 231 as well as a = 16807, c = 0 and m = 231 − 1. These
generators are not recommended by today’s standards.

Exercise 10: Consider the simple multiplicative linear congruential generator with a = 5, c = 1, m = 16
and s0 = 1. Write down the first twenty numbers generated with this method. How long is the period ?
Since m = 24 write down the sequence also in the binary representation and look at the lowest order bits.

One of the drawbacks of the multiplicative linear congruential generator was discovered by the spec-
tral test. Here one considers the set of points (sn, sn+1, ..., sn+d−1) of consecutive pseudo-random
numbers in d-dimensional space. It was discovered that these points lie mainly in hyperplanes.

Exercise 11: Generate a three- and a two-dimensional plot of points (sn, sn+1, sn+2) and (sn, sn+1) taken
from the generator a = 137, c = 187 and m = 256.

Since we work with a finite precision, even sequences from truly random numbers, truncated
to our precision, would reveal a lattice structure. Let 1/ν1 denote the distance between neigh-
bouring points in a one-dimensional plot, 1/ν2 the distance between neighbouring lines in a two-
dimensional plot, 1/ν3 the distance between neighbouring planes in a three-dimensional plot, etc.
The difference between truly random sequences, truncated to a certain precision, and sequences
from a multiplicative linear congruential generator is given by the fact, that in the former case
1/νd is indepenent of the dimension d, while in the latter case 1/νd increases with the dimension d.

19

Exercise 12: We are interested in the integral

I = 2

1
∫

0

dx

1
∫

0

dy

1
∫

0

dz sin2 (2π(9x − 6y + z)) . (82)

This integral can be solved analytically by doing the z-integration first and yields 1. Suppose we are
ignorant about this possibility and perform a brute-force Monte Carlo integration using the multiplicative
linear congruential generator a = 65539, c = 0 and m = 231. Innocent as we are we use three consecutive
random numbers from the generator to define a point in the cube: (x, y, z)n = (s3n/m, s3n+1/m, s3n+2/m).
What do you get ? In order to see what went wrong show that three consecutive numbers of this generator
satisfy

(9sn − 6sn+1 + sn+2) mod 231 = 0. (83)

4.1.2 Lagged Fibonacci generator

Each number is the result of an arithmetic operation (usually addition, sometimes subtraction)
between two numbers which have occured somewhere earlier in the sequence, not necessarily the
last two :

si = (si−p + si−q) mod m. (84)

A popular choice is:

si = (si−24 + si−55) mod 232. (85)

It was proposed in 1958 by G.J. Mitchell and D.P. Moore. This generator has a period of

2f
(

255 − 1
)

, (86)

where 0 ≤ f < 32.

4.1.3 Shift register generator

The generalized feedback shift register generator [14] is based on the recurrence relation

si = si−p ⊕ si−p+q, (87)

where ⊕ deontes the bitwise exclusive-or operation (0 ⊕ 0 = 1 ⊕ 1 = 0, 0 ⊕ 1 = 1 ⊕ 0 = 1). One
choice for lags is given by p = 250 and q = 103. With this choice one has a period of 2250 − 1.

4.1.4 RANMAR

RANMAR [15] is combination of two generators. The first one is a lagged Fibonacci generator,

ri = (ri−97 − ri−33) mod 224. (88)

The second part is a simple arithmetic sequence defined by

ti =

{

ti−1 − 7654321, if ti−1 − 7654321 ≥ 0,
ti−1 − 7654321 + 224 − 3 otherwise.

(89)

The final random number is then obtained as

si = (ri − ti) mod 224. (90)

20

4.1.5 ACARRY/RCARRY/RANLUX

Marsaglia, Narasimhan and Zaman [16] proposed a lagged Fibonacci generator with a carry bit.
One first computes

∆n = sn−i − sn−j − cn−1, j > i ≥ 1, (91)

and sets

sn = ∆n, cn = 0, if ∆n ≥ 0,
sn = ∆n + b, cn = 1 otherwise.

(92)

With the choice j = 24, i = 10 and b = 224 this generator is known under the name RCARRY. One
has observed that this algorithm fails the gap test and discovered correlations between successive
vectors of j random numbers. To improve the situation Lüscher [17] proposed to read j numbers,
and to discard the following p − j ones. With the parameter p = 223 the generator is known as
RANLUX.

4.2 Quasi-random numbers

A major drawback of Monte Carlo integration with pseudo-random numbers is given by the fact
that the error term scales only as 1/

√
N . This is inherent to methods based on random numbers.

However in Monte Carlo integration the true randomness of the generated numbers is not so much
relevant. More important is to sample the integration region as uniform as possible. This leads
to the idea to choose the points deterministically such that to minimize the integration error. If
the integrand is sufficiently smooth one obtains a deterministic error bound, which will scale like
N−1 lnp(N) for some p.

We say a sequence of points is uniformly distributed if

lim
N→∞

1

N

N
∑

n=1

χJ(xn) = vol(J) (93)

for all subintervals J ⊂ [0, 1]d. Here vol(J) denotes the volume of J and χJ (x) the characteristic
function of J , e.g. χJ(x) = 1 if x ∈ J and χJ (x) = 0 otherwise. As a measure of how much a finite
sequence of points x1, x2, ..., xN deviates from the uniform distribution we define the discrepancy

D = sup
J∈J

(

1

N

N
∑

n=1

χJ(xn) − vol(J)

)

, (94)

where the supremum is taken over a family J of subintervals J of [0, 1]d. By specifying the family
J we obtain two widely used concepts of discrepancy: The extreme discrepancy is obtained from
a family J , where each subinterval J contains the points x = (u1, ..., ud) with

umin
i ≤ ui < umax

i , i = 1, ..., d. (95)

A subinterval J for the extreme discrepancy can therefore be specified by giving the “lower-left-
corner” xmin = (umin

1 , ..., umin
d) and the “upper-right-corner” xmax = (umax

1 , ..., umax
d). The star

discrepancy is a special case of the extreme discrepancy for which umin
1 = ... = umin

d = 0. The star
discrepancy is often denoted by D∗. One can show that

D∗ ≤ Dextreme ≤ 2dD∗. (96)

Exercise 13: Prove this statement.

Hint: The first inequality is trivial. To prove the second inequality you may start for d = 1 from the fact

that the number of points in [umin
1 , umax

1 [equals the number of points in [0, umax
1 [minus the number in

21

[0, umin
1 [.

If in the definition of the discrepancy (eq. 94) the supremum norm is replaced by ||...||2 one
obtains the mean square discrepancy.

Before coming to the main theorem for quasi-Monte Carlo integration, we first have to intro-
duce the variation V (f) of the function f(x) on the hypercube [0, 1]d. We define

V (f) =

d
∑

k=1

∑

1≤i1<i2<...<ik≤d

V (k)(f)
∣

∣

∣

i1,...,ik

, (97)

where V (k)(f̃) of a function f̃(u1, ..., uk) depending on k variables u1, ..., uk is given by

V (k)(f) =

1
∫

0

du1...

1
∫

0

duk

∣

∣

∣

∣

∂kf(u1, ..., uk)

∂u1...∂uk

∣

∣

∣

∣

(98)

and V (k)(f)
∣

∣

i1,...,ik
denotes the restriction of f to the k-dimensional face defined by (u1, ..., ud) ∈

[0, 1]d and uj = 1 if j 6= i1, ..., ik. We further require that the partial derivatives in eq. 98 are
continous. If V (f) is finite one says that f is of bounded variation on [0, 1]d.

We now have the main theorem of quasi-Monte Carlo integration: If f has bounded variation
on [0, 1]d then for any x1, ..., xN ∈ [0, 1]d we have

∣

∣

∣

∣

∣

1

N

N
∑

n=1

f(xn) −
∫

dxf(x)

∣

∣

∣

∣

∣

≤ V (f)D∗(x1, ..., xN). (99)

Eq. 99 shows that the error will be bounded by the product of the variation of the function times
the discrepancy of the point set. Since the variation of the function depends on the function f
alone, but not on the chosen point set x1,..., xN , it is inherent to the problem. The error may be
reduced by choosing a point set with a low discrepancy.

Exercise 14: Show that star discrepancy of the one-dimensional point set xn = (2n−1)/(2N), n = 1, ..., N ,

is given by D∗ = 1/(2N). (It can be shown that this is the smallest discrepancy we can get in one dimen-

sion with a finite set of N points. Note that the construction of the points xn depends on the predefined

total number of points N . It can be shown that there is no infinite sequence x1, x2, ..., whose first N

elements have the theoretical minimal discrepancy 1/(2N). Instead there is a theorem which states that

for the discrepancy D∗(N) of the first N elements of an infinite sequence one has D∗(N) ≥ cN−1 ln(N)

for infinitely many N .)

There is a general theorem which states that the star discrepancy of a finite point set cannot
be made smaller than a certain value, which depends on the number of points N and the dimen-
sionality d. In practical calculations one is not so much interested in a finite sequence x1,...,xN

which attains the minimal discrepancy for a given value of N , but more in an infinite sequence
whose first N elements have a small discrepancy. Such a sequence is called a low-discrepancy
sequence. The advantages are that one can change the value of N in a quasi-Monte Carlo integra-
tion without loosing the previously calculated function values. Again there is a general theorem
which states that the discrepancy of such a sequence cannot decrease faster than 1/N for large N .
In practice one knows explicit sequences which decrease like N−1 lnp(N) for some p. We will now
turn our attention to the construction of such sequences.

22

4.2.1 Richtmyer sequences

One of the first quasi-random number generators which yielded an infinite sequence in arbitrary
dimension d was given by Richtmyer. The n-th point xn = (u1, ..., ud) in the sequence is given by

ui = nSi mod 1, i = 1, ..., d, (100)

where the Si are constants which should be irrational numbers in order to ensure an infinite period.
Since truly irrational numbers cannot be represented in computers the standard choice is to take
Si equal to the square root of the i-th prime number.

4.2.2 Halton sequences

Let b ≥ 2 be an integer number. Every integer n ≥ 0 has a unique digit representation in base b,

n =

∞
∑

j=0

ajb
j , (101)

where aj ∈ {0, 1, ..., b − 1} and aj = 0 for sufficiently large j, e.g. the sum is actually finite. We
then define

φb(n) =

∞
∑

j=0

ajb
−1−j . (102)

The sequence φb(1), φb(2), ..., is called the van der Corput sequence in base b and used as a
building block for the Halton sequence defined by

xn = (φb1 (n), ..., φbd
(n)) . (103)

If one uses the first d prime numbers for the bases b1, ..., bd one can show the star discrepancy of
the Halton sequence satisfies for all N ≥ 2

D∗
Halton(N) ≤ Ad

lnd(N)

N
+ O

(

lnd−1(N)

N

)

. (104)

The coefficient Ad depends only on the first d prime numbers p1, ..., pd and is given by

Ad =

d
∏

k=1

pk − 1

2 ln pk
. (105)

One can show that

lim
d→∞

lnAd

d ln d
= 1, (106)

e.g. Ad grows stronger than exponentially as the number of dimensions increases. This is the major
drawback of the Halton sequence and limits its applications in quasi-Monte Carlo integration to
low dimensions.

4.2.3 Sobol sequences

Sobol sequences [18] are obtained by first choosing a primitive polynomial over Z2 of degree g:

P = xg + a1x
g−1 + ... + ag−1x + 1, (107)

where each ai is either 0 or 1. The coefficients ai are used in the recurrence relation

vi = a1vi−1 ⊕ a2vi−2 ⊕ ... ⊕ ag−1vi−g+1 ⊕ vi−g ⊕ [vi−g/2g], (108)

23

where ⊕ denotes the bitwise exclusive-or operation and each vi is a number which can be written
as vi = mi/(2i) with 0 < mi < 2i. Consequetive quasi-random numbers are then obtained from
the relation

xn+1 = xn ⊕ vc, (109)

where the index c is equal to the place of the rightmost zero-bit in the binary representation of
n. For example n = 11 has the binary representation 1011 and the rightmost zero-bit is the third
one. Therefore c = 3 in this case. For a primitive polynomial of degree g we also have to choose
the first g values for the mi. The only restriction is that the mi are all odd and mi < 2i. There
is an alternative way of computing xn:

xn = g1v1 ⊕ g2v2 ⊕ ... (110)

where ...g3g2g1 is the Gray code representation of n. The basic property of the Gray code is that
the representations for n and n + 1 differ in only one position. The Gray code representation can
be obtained from the binary representation according to

...g3g2g1 = ...b3b2b1 ⊕ ...b4b3b2. (111)

Exercise 15: Find the Gray code representation for n = 0, 1, ..., 7.

Hint: Start from the binary representation and use the formula eq. 111. You should find 0, 1, 11, 10, 110,

111, 101, 100.

The star discrepancy of the Sobol sequence satisfies

D∗ ≤ Bd
lnd N

N
+ O

(

lnd−1 N

N

)

, (112)

where

Bd =
2τd

d!(ln 2)d
(113)

and

k
d ln d

ln ln d
≤ τd ≤ d ln d

ln 2
+

d ln ln d

ln 2
+ o(d ln ln d) (114)

and asymptotically one finds lnBd = O(d ln ln d) and Bd increases also stronger than exponentially
with d.

4.2.4 Faure sequences

Let d ≥ 3 and let b be the first prime number greater or equal to d. We describe here the
construction of the Faure sequence x1, x2, ... [19]. Let ui be the components of the n-th point in
the sequence: xn = (u1, u2, ..., ud). One starts from the digit representation of n− 1 in the base b:

n − 1 =

∞
∑

r=0

ajb
j. (115)

u1 is given by

u1 = φb(n − 1) =

∞
∑

j=0

ajb
−1−j (116)

and u2, u3, ..., ud are obtained recursively from

ui+1 = C(ui), 1 ≤ i < d. (117)

24

If v =
∑

vjb
−1−j and w =

∑

wjb
−1−j then the transformation w = C(v) is defined by

wj =
∑

i≥j

(

i
j

)

vi mod b. (118)

It can be shown that the star discrepancy of such a sequence satisfies

D∗ ≤ Cd
lnd N

N
+ O

(

lnd−1 N

N

)

(119)

where

Cd =
1

d!

(

b − 1

2 ln b

)d

. (120)

Asymptotically Cd goes to zero.

4.2.5 Niederreiter sequences

Let d ≥ 3 and let b be a prime power greater or equal to d. As before we use the digit representation
for n in the base b

n =

∞
∑

r=0

arb
r. (121)

The n-th element xn = (u1, ..., ud) of the Niederreiter sequence [20] is given by

ui =
∞
∑

j=1

b−j

∞
∑

r=j−1

(

r
j − 1

)

arc
r−j+1
i mod b

 , (122)

where the ci are distinct elements from the set 0, 1, ..., b−1. Note that the sums are actually finite.
It can be shown that the star discrepancy of such a sequence satisfies

D∗ ≤ Dd
lnd N

N
+ O

(

lnd−1 N

N

)

, (123)

where

Dd =
1

d!

b − 1

2[b/2]

(

[b/2]

ln b

)d

. (124)

Further

lim
d→∞

lnDd

d ln ln d
≤ −1 (125)

and the coefficients Dd decrease stronger than exponentially in the limit d → ∞.

4.3 Summary on random numbers

Monte Carlo integration relies on pseudo-random number generators. We reviewed some of the
most widely used algorithms for the generation of random numbers. Pseudo-random number
generators might introduce correlations between succesive generated numbers. It is therefore rec-
ommended to check a Monte Carlo integration by repeating the same calculation with a different
generator.

25

Quasi-random numbers are deterministic and designed to sample a d-dimensional space as uni-
form as possible. If the integrand is sufficiently smooth, the error bound is deterministic and will
decrease like

A
lnd N

N
+ O

(

lnd−1 N

N

)

. (126)

If the integrand has discontinuities (for example due to complicated integration boundaries, which
have to be embedded into a hypercube) the theorem on the error bound is no longer valid and one
usually estimates the error term like in Monte Carlo integration with pseudo-random numbers.
The coefficient A of the leading term of the error estimate depends on the dimension d and goes for
d → ∞ to infinity for the Halton and Sobol sequences, and to zero for the Faure and Niederreiter
sequences. Very little is known about the subleading terms. Explicit simualtions with roughly
N = 105 points by F. James, J. Hoogland and R. Kleiss [22] show that the quadratic discrepancy
of these sequences is better than the one from pseudo-random numbers provided d . 12, and
approaches the latter one in higher dimensions.

Further reading: The book of Knuth [11] contains an excellent introduction to pseudo-random
numbers, further I also used the review article by James [12] in the preparation of this section.
The article by I. Vattulainen et al. [13] contains a comparison of various pseudo-random number
generators in several tests.
The section on quasi-random numbers is mainly based on the book by Niederreiter [20]. Fox and
Bratley and Fox [21] give a numerical implementation of several quasi-random number generators.

5 Generating samples according to a specified distribution

Quite often one needs random numbers which are distributed according to a specified probability
density function p(x). We will denote the cumulative distribution function by

P (xmax) =

xmax
∫

−∞

p(x)dx, (127)

with appropriate generalizations in higher dimensions. P (xmax) gives the probability that x ≤
xmax. In the previous section we have seen how to generate pseudo-random or quasi-random
numbers which are uniformly distributed in the interval [0, 1]. The problem can therefore be
specified as follows: Given a sequence of random numbers, uniformly distributed in [0, 1], find a
transformation such that the resulting sequence is distributed according to p(x).

5.1 General algorithms

5.1.1 The inverse transform method

We describe the inverse transform method in one dimension. Let x be a random variable dis-
tributed with density p(x). The distribution function P (x) takes values in the interval [0, 1]. Let
u be a random variable uniformly distributed in [0, 1]. We set

x = P−1(u). (128)

For the differentials we have

p(x)dx = du. (129)

In order to use the inverse transform method we have to know the function P−1(u). This will not
always be the case.

One application of the inverse transform method is importance sampling.

26

5.1.2 Acceptance-rejection method

The acceptance-rejection method, developed by von Neumann, can be used when an analytic form
of P (x) is not known. We assume that we can enclose p(x) inside a shape which is C times
an easily generated distribution h(x). Very often one chooses h(x) to be a uniform distribution
or a normalized sum of uniform distributions. Since p(x) ≤ Ch(x) and both p(x) and h(x) are
normalized to unity, one has C ≥ 1. One first generates x according to the distribution h(x)
and calculates then p(x) and Ch(x). Secondly, one generates a random number u, uniformly
distributed in [0, 1], and checks uCh(X) ≤ p(x). If this is the case, one accepts x, otherwise one
rejects x and starts again. The efficiency of this method is 1/C, therefore one tries to choose h(x)
to be as close to p(x) in shape as possible.

5.1.3 Applications

One often encounters the situation that one needs random variables distributed according to a
Gaussian distribution:

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 . (130)

The Box-Muller algorithm gives a prescription to generate two independent variables x1 and x2,
distributed according to a Gaussian distribution with mean µ = 0 and variation σ2 = 1 from two
independent variables u1 and u2, uniformly distributed in [0, 1]:

x1 =
√

−2 lnu1 cos(2πu2),

x2 =
√

−2 lnu1 sin(2πu2). (131)

Exercise 16: Prove this statement.
Hint: You should show that

du1du2 =
1

2π
e−

x2
1+x2

2
2 dx1dx2 (132)

and that x1 and x2 are independent given the fact that u1 and u2 are independent.

Algoritms for generating many different distributions are known and can be found in [37]. We
have collected some “cooking recipes” in the appendix B.

5.2 The Metropolis algorithm

In practical application one often wants to generate random variables according to some probability
density p(x1, ..., xd), which not necesarrily factorizes. The methods described so far are in most
cases insufficient. In practice one often uses the Metropolis algorithm [23] for generating random
samples which are distributed according to a multivariate probability density p(x1, ..., xd) where d
is large. Let us call the vector φ = (x1, ..., xd) a state of the ensemble, which we want to generate.
Within the Metropolis algorithm one starts from a state φ0, and replaces iteratively an old state
by a new one, in such a way, that the correct probability density distribution is obtained in the
limit of a large number of such iterations. The equilibrium distribution is reached, regardless of
the state one started with. Once the equilibrium distribution is reached, repeated application of
the algorithm keeps one in the same ensemble. In short, the desired distribution is the unique fix
point of the algorithm. Two important conditions have to be met for the Metropolis algorithm to
work: Ergodicity and detailed balance. Detailed balance states that the transition probabilities
W (φ1 → φ2) and W (φ2 → φ1) obey

p(φ1)W (φ1 → φ2) = p(φ2)W (φ2 → φ1). (133)

Ergodicity requires that each state can be reached from any other state within a finite number of
steps. Given a state φ1, one iteration of the Metropolis algoritm consists of the following steps:

27

1. Generate (randomly) a new candidate φ′.

2. Calculate ∆S = − ln(p(φ′)/p(φ1)).

3. If ∆S < 0 set the new state φ2 = φ′.

4. If ∆S > 0 accept the new candidate only with probability p(φ′)/p(φ), otherwise retain the
old state φ1.

5. Do the next iteration.

Step 3 and 4 can be summarized that the probability of accepting the candidate φ′ is given by
W (φ1 → φ′) = min(1, e−∆S). It can be verified that this transition probabilty satisfies detailed
balance. The way how a new candidate φ′ suggested is arbitrary, restricted only by the condition
that one has to be able to reach each state within a finite number of steps.

The Metropolis algorithm also has several drawbacks: Since one can start from an arbitrary
state it takes a number τt of steps to reach the desired equilibrium distribution. It can also be
possible that one reaches a metastable state, after which one would get out only after a large
(and generally unknown) number of steps. One therefore starts the Metropolis algorithm with
several different initializations and monitors if one reaches the same equilibrium state. Further-
more, once the equilibrium is reached, succesive states are in general highly correlated. If one is
interested in an unbiased sample of states φi, one therefore generally discards a certain number
τd of states produced by the Metropolis algorithm, before picking out the next one. The number
of time steps τd is called the decorrelation time and is of order τd = ξ2, where ξ is a typical
correlation lenght of the system. This is due to the fact that the Metropolis algorithm updates
the states locally at random. One therefore performs a random walk through configuration space,
and it takes therefore ξ2 steps to move a distance ξ ahead. In certain applications for critical phe-
nomena the correlation lenght ξ becomes large, which makes it difficult to obtain unbiased samples.

Since new candidates in the Metropolis algorithm are picked out randomly, the “random-walk-
problem” is the origin of inefficiencies to obtain the equilibrium distribution or to sample uncorre-
lated events. One way to improve the situation is to use a-priori probabilities [25]. The transistion
probability is written as

W (φ1 → φ2) = A(φ1 → φ2)W̃ (φ1 → φ2). (134)

where A(φ1 → φ2) is the a-priori probability that state φ2 is suggested, given the fact that the
system is in state φ1. The probability of accepting the new candidate is now given by

min

(

1,
A(φ2 → φ1)

A(φ1 → φ2)

p(φ2)

p(φ1)

)

. (135)

The bias we introduced in suggesting new candidates is now corrected by the acceptance rate.
By choosing the a-priori probabilities carefully, one can decrease the rejection rate and improve
the efficiency of the simulation. As an example consider the case where a state φ = (x1, ..., xd)
describes a dynamical system, like a molecular gas. In this case a discretized or approximative
version of the equations of motion can be used to suggest new candidates and the Metropolis
algorithm might converge faster. The combination of molecular dynamics (e.g. the use of the
equations of motion) with Monte Carlo methods is sometimes called hybrid Monte Carlo.

5.2.1 Numerical simulations of spin glasses

The Ising and the Potts model are widely used in statistical physics. Both describe an ensemble
of spins interacting with each other through next-neighbour interactions. The Hamiltonian of the
Ising model is given by

HIsing = −J
∑

〈i,j〉

SiSj , (136)

28

where J > 0 is a constant, 〈i, j〉 denotes the sum over all next-neighbours and the spin Si at site
i takes the values ±1. The Hamiltonian of the Potts model is given by

HPotts = −
∑

〈i,j〉

Jij

(

δSiSj
− 1
)

. (137)

Here each spin Si may take the values 1, 2, ..., q and δab denotes the Kronecker delta. We
have also allowed the possibility of different couplings Jij depending on the sites i and j. Let
φ = (S1, S2, ..., SN) denote a state of the model. Observables are given by

〈O〉 =

∑

O(φ)e−H(φ)/kT

∑

e−H(φ)/kT
, (138)

where the sum runs over all possible states. One observable is the magnetization M or the order
parameter. For the Ising model the magnetization is given by

MIsing =
1

N

∑

Si (139)

and for the Potts model by

MPotts =
q max(Nα) − 1

q − 1
, (140)

where Nα is the number of spins with value α. A second observable is the magnetic susceptibility
given by

χ =
N

kT

(

〈M2〉 − 〈M〉2
)

. (141)

Exercise 17: Write a Monte Carlo program which simulates the two-dimensional Ising model on a 16× 16

lattice with periodic boundary conditions using the Metropolis algorithm. (Note that with a 16× 16 lattice,

the total number of states is 2256. This is far too large to evaluate the partition sum by brute force.) You

may initialize the model with all spins up (cold start) or with a random distribution of spins (hot start).

Step through the 256 spins one at a time making an attempt to flip the current spin. Plot the absolute

value of the magnetization for various values of K = J/kT between 0 and 1. Is anything happening around

K = 0.44 ?

To simulate the Potts model it is more efficient to use the Swendsen-Wang algorithm [28] which
can flip clusters of spins in one step, instead of the standard Metropolis algorithm, which has to
build up a spin flip of a cluster through succesive steps. The Swendsen-Wang algorithm introduces
for each neighbouring pair i and j a bond nij between the two spins. The bond variable nij can
take the values 0 and 1, the last value signifies that the two spins are “frozen” together. One
iteration of the Swendsen-Wang algorithm works as follows:

1. For each neighbouring pair i, j the spins are frozen with probability

Pij = 1 − exp

(

−Jij

kT
δSiSj

)

. (142)

2. Having gone over all pairs, clusters are now formed in a second step: A cluster contains all
spins which have a path of frozen bonds connecting them. Note that by constrution all spins
in one cluster have the same value.

3. For each cluster a new value for the cluster spin is chosen randomly and with equal proba-
bility.

29

The reason why this algorithm works is roughly as follows: The Swendsen-Wang method enlarges
the set of variables from the Si to the set Si and nij . Further, the partition function of the Potts
model can be rewritten as

Z =
∑

{Si}

exp(−H/kT)

=
∑

{Si}

∑

{nij}

∏

〈i,j〉

(

(1 − Pij)δ0,nij
+ Pijδ1,nij

δSiSj

)

. (143)

Integrating out the nij (e.g. marginalization with respect to the bonds nij) one recovers the Potts
model.

5.2.2 Numerical simulations of quantum field theories

Observables in quantum field theories are given by

〈O〉 =

∫

Dφ O(φ)e−S(φ)

∫

Dφ e−S(φ)
, (144)

where S(φ) is the Euclidean action of the field φ. The basic idea of lattice field theory is to approx-
imate the infinite dimensional path integral by a finite sum of field configurations φi. Since the
factor e−S(φ) can vary over several order of magnitudes, simple random sampling will yields poor
results, and one therefore uses importance sampling and chooses φ according to some propability
P (φ):

〈O〉 ≈

N
∑

i=1

O(φi)P
−1(φi)e

−S(φi)

N
∑

i=1

P−1(φi)e−S(φi)

. (145)

The action S(φi) is also approximated by a finite sum. For example the discretized version of the
action of φ4-theory

S =

∫

ddx

(

1

2
(∂µφ)(∂µφ) +

1

2
m2φ2 +

g

4!
φ4

)

(146)

is given in dimensionless quantities by

S(φi) =
∑

x

(

−κ

(

d−1
∑

µ=0

φ(x) (φ(x + aµ̂) + φ(x − aµ̂))

)

+ φ(x)2 + λφ(x)4

)

, (147)

where a is the lattice spacing and µ̂ is a unit vector in the direction µ. The field has been rescaled
according to

φcont =
√

2κa1−d/2φdiscr (148)

The parameters κ and λ are related up to correction of order a2 to the original parameters m2

and g by

m2a2 =
1

κ
− 2d, ga4−d =

6λ

κ2
. (149)

The perfect choice for P (φi) would be Peq(φi) ∼= e−S(φi), but this would require that we know
the partition function analytically. One is therefore forced to construct a random walk through
configuration space such that

lim
n→∞

P (φ) = Peq(φ). (150)

30

This is usually done with the help of the Metropolis algorithm. One first chooses a random change
in the field configuration φi → φ′

i, calculates the change in the action ∆S = S(φ′
i) − S(φ) and

the Metropolis transition probabilty W = min(1, exp(−∆S)). One then throws a random number
u uniformly distributed in [0, 1] and accepts the new configuration φ′

i if u < W , otherwise φ′
i is

rejected.

5.3 Generating phase space for particle collisions

Observables in high-energy collider experiments are often of the following form

O =

∫

dΦn(pa + pb, p1, ..., pn)
M

8K(s)
Θ(O, p1, ..., pn), (151)

where pa and pb are the momenta of the incoming particles, the outgoing particles are denoted by
the labels 1,...,n. The Lorentz-invariant phase space is denoted by dΦn, 1/(8K(s)) is a kinematical
factor with s = (pa + pb)

2 which includes the averaging over initial spins (we assumed two spin
states for each initial particle), M is the relevant matrix element squared and Θ(O, p1, ..., pn) is a
function which defines the observable and includes all experimental cuts. The situation described
above corresponds to electron-positron annihilation. If hadrons appear in the initial state there
are slight modifications. The exact matrix element squared is often impossible to calculate. Event
generators like HERWIG [31] or PYTHIA [32] approximate the matrix element squared through
a three-stage process: First there is a perturbative hard matrix element for the hard subprocess,
where only a few partons are involved. Secondly, the partons originating from the hard scattering
process are then allowed to radiate off additional partons. This stage is usually called parton
showering and results in a cascade of partons. Finally the resulting partons are converted into
observable hadrons with the help of a phenomenological model. Perturbative calculations follow a
different philosophy: First, they restrict the set of observables to ones which are infrared safe, e.g.
which can reliable be calculated in perturbation theory. Secondly, they are based on parton-hadron
duality and calculate an observable in the parton picture. This amounts to say, that one assumes
that hadronization corrections are small. The matrix element squared M is then calculated order
by order in perturbation theory. The leading order term can be more or less obtained from
automized procedures, the standard of today is a next-to-leading order calculation, the frontier of
tomorrow are next-to-next-to-leading order calculations. Bot in perturbative calculations and in
event generators the problem arises to generate the four-momenta of the outgoing particles. The
Lorentz-invariant phase space dΦn for n particles with momenta p1, ..., pn and masses m1, ..., mn

is given by

dΦn(P, p1, .., pn) =
n
∏

i=1

d4pi

(2π)3
Θ(p0

i)δ(p
2
i − m2

i)(2π)4δ4

(

P −
n
∑

i=1

pi

)

=

n
∏

i=1

d3pi

(2π)32Ei
(2π)4δ4

(

P −
n
∑

i=1

pi

)

. (152)

The phase space volume for massless particles m1 = ... = mn = 0 is

Φn =

∫

dΦn = (2π)4−3n
(π

2

)n−1 (P 2)n−2

Γ(n)Γ(n − 1)
. (153)

The phase space factorizes according to

dΦn(P, p1, ..., pn) =
1

2π
dQ2dΦj(Q, p1, ..., pj)dΦn−j+1(P, Q, pj+1, ..., pn), (154)

where Q =
j
∑

i+1

pi.

31

5.3.1 Sequential approach

One possibility to generate the n-particle phase space is to consider sequentially two-body decays
[33]. Using eq. 154 one arrives at

dΦn =
1

(2π)n−2
dM2

n−1...dM2
2 dΦ2(n)...dΦ2(2) (155)

with M2
i = q2

i , qi =
i
∑

j=1

pi and dΦ2(i) = dΦ2(qi, qi−1, pi). The allowed region for the invariant

masses Mi is given by (m1 + ... + mi)
2 ≤ M2

i ≤ (Mi+1 − mi+1)
2. In the rest frame of qi the

two-particle phase space dΦ2(qi, qi−1, pi) is given by

dΦ2(qi, qi−1, pi) =
1

(2π)2

√

λ(q2
i , q2

i−1, m
2
i)

8q2
i

dϕid(cos θi), (156)

where the triangle function λ(x, y, z) is defined by

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx. (157)

This suggests the following algorithm:

1. Set i = n, qi = P and Mi =
√

q2
i .

2. Transform to the rest frame of qi.

3. Use two random variables ui1, ui2 and set ϕi = 2πui1, cos θi = ui2.

4. If i ≥ 3 use a third random variable ui3 and set Mi−1 = (m1 + ... + mi−1) + ui3(Mi − mi),
otherwise if i = 2 set M1 = m1.

5. Set

|~pi
′| =

√

λ(M2
i , M2

i−1, m
2
i)

2Mi
(158)

and ~pi
′ = |~pi

′| · (sin θi sin ϕi, sin θi cosϕi, cos θi). Set further

p′i = (
√

|~pi
′|2 + m2

i , ~pi
′), q′i−1 = (

√

|~pi
′|2 + M2

i−1,−~pi
′). (159)

6. Transform back to the original Lorentz system.

7. Decrease i = i − 1. If i ≥ 2 go back to step 2, otherwise set p1 = q1.

The weight of the generated event depends on the event and is given by

w = (2π)4−3n21−2n 1

Mn

n
∏

i=2

√

λ(M2
i , M2

i−1, m
2
i)

Mi
. (160)

Exercise 18: Lorentz transformation. Let q be a timelike fourvector with q2 = M2. Denote by S the
coordinate system in which q is given, and by S′ the rest frame of q, e.g. in S′ we have q′ = (M, 0, 0, 0).
Let p be an arbitrary fourvector in S and denote the corresponding representation in S′ by p′. Show that
p and p′ are related by

pt = γ

(

p′

t +
~p ′~q

qt

)

, ~p = ~p ′ + ~q

(

(γ − 1)
~p ′~q

|~q|2 + γ
p′

t

qt

)

, (161)

where γ = qt/M . Show also that the inverse transformation is given by

p′

t = γ

(

pt −
~p~q

qt

)

, ~p ′ = ~p + ~q

(

(γ − 1)
~p~q

|~q|2 − γ
pt

qt

)

. (162)

32

5.3.2 Democratic approach

Where as the sequential algorithm discussed above generates an event with a weight depending
on the generated fourvectors, it is sometimes desirable to have an algorithm which sweeps out
phase space (almost) uniformly. The RAMBO-algorithm [34] maps a hypercube [0, 1]4n of random

numbers into n physical four-momenta with center-of-mass energy
√

P 2. Massless fourvectors can
be generated with uniform weight, and we discuss this case first.

Let P = (P, 0, 0, 0) be a time-like four-vector. The phase space volume for a system of n massless

particles with center-of-mass energy
√

P 2 is

Φn =

∫ n
∏

i=1

d4pi

(2π)3
θ(p0

i)δ(p
2
i)(2π)4δ4

(

P −
n
∑

i=1

pi

)

. (163)

To derive the RAMBO-algorithm one starts instead from the quantity

Rn =

∫ n
∏

i=1

d4qi

(2π)3
θ(q0

i)δ(q2
i)(2π)4f(q0

i) = (2π)4−2n

∞
∫

0

xf(x)dx

n

. (164)

The quantity Rn can be interpreted as describing a system of n massless four-momenta qµ
i that are

not constrained by momentum conservation but occur with some weight function f which keeps
the total volume finite. The four-vectors qµ

i are then related to the physical four-momenta pµ
i by

the following Lorentz and scaling transformations:

p0
i = x

(

γq0
i +~b · ~qi

)

, ~pi = x
(

~qi +~bq0
i + a

(

~b · ~qi

)

~b
)

, (165)

where

Qµ =
n
∑

i=1

qµ
i , M =

√

Q2, ~b = − 1

M
~Q,

γ =
Q0

M
=

√

1 +~b2, a =
1

1 + γ
, x =

√
P 2

M
. (166)

Denote this transformation and its inverse as follows

pµ
i = xHµ

~b
(qi), qµ

i =
1

x
Hµ

−~b
(pi). (167)

By a change of variables one can show

Rn =

∫ n
∏

i=1

(

d4pi

(2π)3
δ(p2

i)θ(p
0
i)

)

(2π)4δ4

(

P −
n
∑

i=1

pi

)

·
(

n
∏

i=1

f

(

1

x
H0

−~b
(pi)

)

)

(P 2)2

x2n+1γ
d3bdx. (168)

With the choice f(x) = e−x the integrals over ~b and x may be performed and one obtains

Rn = Φn · Sn (169)

with

Sn = 2π(P 2)2−n Γ
(

3
2

)

Γ(n − 1)Γ(2n)

Γ
(

n + 1
2

) . (170)

This gives a Monte Carlo algorithm which generates massless four-momenta pµ
i according to the

phase-space measure (163). The algorithm consists of two steps:

33

1. Generate independently n massless four-momenta qµ
i with isotropic angular distribution and

energies q0
i distributed according to the density q0

i e−qidq0
i . Using 4n random numbers ui

uniformly distributed in [0, 1] this is done as follows:

ci = 2ui1 − 1, ϕi = 2πui2 , q0
i = − ln(ui3ui4),

qx
i = q0

i

√

1 − c2
i cosϕi, qy

i = q0
i

√

1 − c2
i sinϕi, qz

i = q0
i ci. (171)

2. The four-vectors qµ
i are then transformed into the four-vectors pµ

i , using the transformation
(165).

Each event has the uniform weight

w0 = (2π)4−3n
(π

2

)n−1 (P 2)n−2

Γ(n)Γ(n − 1)
. (172)

Phase-space configurations corresponding to massive particles can be generated by starting from a
massless configuration and then transforming this configuration into one with the desired masses.
This is done as follows : Let pµ

i be a set of massless momenta. One starts again from the phase-
space integral for massless particles

Φn({p}) =

∫ n
∏

i=1

d4pi

(2π)3
θ(p0

i)δ(p
2
i)(2π)4δ4

(

P −
n
∑

i=1

pi

)

. (173)

The pµ
i are transformed into the four-momenta kµ

i as follows :

k0
i =

√

m2
i + ξ2(p0

i)
2, ~ki = ξ~pi, (174)

where ξ is a solution of the equation

√
P 2 =

n
∑

i=1

√

m2
i + ξ2(p0

i)
2. (175)

It should be noted that in the general case no analytic expression for ξ exists and ξ has to be
computed numerically. After some manipulations one arrives at

Φn({p}) =

∫ n
∏

i=1

d4ki

(2π)3
θ(k0

i)δ(k2
i − m2

i)(2π)4δ4

(

P −
n
∑

i=1

ki

)

· W ({p}, {k}),

(176)

where the weight is given by

wm = (P 2)2−n

(

n
∑

i=1

|~ki|
)2n−3(n

∏

i=1

|~ki|
k0

i

)(

n
∑

i=1

|~ki|2
k0

i

)−1

. (177)

In contrast to the massless case, the weight is no longer constant but varies over phase space.

To generate events with massive particles in the final state one therefore proceeds as follows:

1. Generate an event with n massless particles.

2. Solve eq. 175 numerically.

3. Use eq. 174 to obtain the momenta of the massive particles.

The weight of such an event is then given by

w = wmw0 (178)

with w0 and wm defined in eq. 172 and eq. 177, respectively.

34

5.3.3 Generating configurations close to soft or collinear regions

In massless QCD individual terms in the leading order squared matrix element are of the form

M =
m

si1i2si2i3 ...sik−1ik

. (179)

Integration over phase space leads to collinear singularities when one of the sij approaches zero,
and to soft singularities when two adjacent invariants sij−1ij

and sij
sij+1 approach zero simul-

taneously. Event generators use therefore a cutoff smin to avoid this region. In perturbative
calculations these singularities cancel against similar divergences encountered in loop integrals,
but the cancelation occurs only after the phase space integration has been performed. On the
other hand the phase space integrations have to be done numerically. Two approaches exist to
handle this situation: phase space slicing and the subtraction method. Within the slicing ap-
proach the phase space is split into a region s > smin, where numerical integration is performed,
and a small region s < smin, where after approximation of the integrand one integration can
be performed analytically, and the resulting singularities cancel then against the corresponding
ones in the loop amplitudes. Within the subtraction method one adds and subtracts a suitable
chosen term, such that each integration (e.g. the integration over the real emission part and the
integration over the virtual correction) is finite. Nevertheless it will also be useful within the sub-
traction method to split the integration in the real emission part in two pieces in order to improve
the convergence of the Monte Carlo integration: One region s < smin which will give a small or
negligible contribution and a region s > smin.

In short in any case we are dealing with integrals of the form
∫

dsf(s)/s, with lower bound-
ary smin. To improve the efficiency of the Monte Carlo integration it is desirable to remap the
1/s-behaviour of the integrand. In the simple example above this could be done by a change of
variables y = ln s. In real problems there is more than one invariant s and the remapping is done
by relating a (n + 1)-parton configuration with one soft or collinear parton such that sasssb is the
smallest product of all adjacent products to a “hard” n-parton configuration [35]. In the region
where sasssb is the smallest product, we remap the phase space as follows: Let k′

a, ks and k′
b be

the corresponding momenta such that sas = (k′
a + ks)

2, ssb = (k′
b + ks)

2 and sab = (k′
a + ks + k′

b)
2.

We want to relate this (n + 1) particle configuration to a nearby “hard” n-particle configuration
with (ka + kb)

2 = (k′
a + ks + k′

b)
2, where ka and kb are the corresponding “hard” momenta. Using

the factorization of the phase space, we have

dΦn+1 = dΦn−1
dK2

2π
dΦ3(K, k′

a, ks, k
′
b). (180)

The three-particle phase space is given by

dΦ3(K, k′
a, ks, k

′
b) =

1

32(2π)5sab
dsasdssbdΩ′

bdφs

=
1

4(2π)3sab
dsasdssbdφsdΦ2(K, ka, kb) (181)

and therefore

dΦn+1 = dΦn
dsasdssbdφs

4(2π)3sab
. (182)

The region of integration for sas and ssb is sas > smin, ssb > smin (since we want to restrict the
integration to the region where the invariants are larger than smin) and sas + ssb < sab (Dalitz
plot for massless particles). It is desirable to absorb poles in sas and ssb into the measure. A naive
numerical integration of these poles without any remapping results in a poor accuracy. This is
done by changing the variables according to

sas = sab

(

smin

sab

)u1

, ssb = sab

(

smin

sab

)u2

, (183)

35

where 0 ≤ u1, u2 ≤ 1. Note that u1, u2 > 0 enforces sas, ssb > smin. Therefore this transformation
of variables may only be applied to invariants sij where the region 0 < sij < smin is cut out. The
phase space measure becomes

dΦn+1 = dΦn
1

4(2π)3
sasssb

sab
ln2

(

smin

sab

)

Θ(sas + ssb < sab)du1du2dφs. (184)

This give the following algorithm for generating a (n + 1)-parton configuration:

1. Take a “hard” n-parton configuration and pick out two momenta ka and kb. Use three
uniformly distributed random number u1, u2, u3 and set

sab = (ka + kb)
2,

sas = sab

(

smin

sab

)u1

,

ssb = sab

(

smin

sab

)u2

,

φs = 2πu3. (185)

2. If (sas + ssb) > sab, reject the event.

3. If not, solve for k′
a, k′

b and ks. If sas < ssb we want to have k′
b → kb as sas → 0. Define

Ea =
sab − ssb

2
√

sab
, Es =

sas + ssb

2
√

sab
, Eb =

sab − sas

2
√

sab
, (186)

θab = arccos

(

1 − sab − sas − ssb

2EaEb

)

, θsb = arccos

(

1 − ssb

2EsEb

)

. (187)

It is convenient to work in a coordinate system which is obtained by a Lorentz transformation
to the center of mass of ka + kb and a rotation such that k′

b is along the positive z-axis. In
that coordinate system

p′a = Ea(1, sin θab cos(φs + π), sin θab sin(φs + π), cos θab),

ps = Es(1, sin θsb cosφs, sin θsb sin φs, cos θsb),

p′b = Eb(1, 0, 0, 1). (188)

The momenta p′a, ps and p′b are related to the momenta k′
a, ks and k′

b by a sequence of
Lorentz transformations back to the original frame

k′
a = ΛboostΛxy(φ)Λxz(θ)p

′
a (189)

and analogous for the other two momenta. The explicit formulae for the Lorentz transfor-
mations are obtained as follows :

Denote by K =
√

(ka + kb)2 and by pb the coordinates of the hard momentum kb in the
center of mass system of ka + kb. pb is given by

pb =

(

Q0

K
k0

b −
~kb · ~Q

K
,~kb +

(

~kb · ~Q

K(Q0 + K)
− k0

b

K

)

~Q

)

(190)

with Q = ka + kb. The angles are then given by

θ = arccos

(

1 − pb · p′b
2pt

bp
t′
b

)

,

φ = arctan

(

py
b

px
b

)

. (191)

36

The explicit form of the rotations is

Λxz(θ) =

1 0 0 0
0 cos θ 0 sin θ
0 0 1 0
0 − sin θ 0 cos θ

,

Λxy(φ) =

1 0 0 0
0 cosφ − sinφ 0
0 sin φ cosφ 0
0 0 0 1

. (192)

The boost k′ = Λboostq is given by

k′ =

(

Q0

K
q0 +

~q · ~Q

K
, ~q +

(

~q · ~Q

K(Q0 + K)
+

q0

K

)

~Q

)

(193)

with Q = ka + kb and K =
√

(ka + kb)2.

4. If sas > ssb, exchange a and b in the formulae above.

5. The “soft” event has then the weight

wn+1 =
π

2

1

(2π)3
sasssb

sab
ln2

(

smin

sab

)

wn, (194)

where wn is the weight of the original “hard” event.

5.4 Summary on generating specific samples

In this section we presented some methods to generate samples according to a specified distribu-
tion. If the inverse of the cumulative distribution function is known, the inverse transform method
can be used, otherwise one often relies on the acceptance-rejection method. For high-dimensional
problems the Metropolis algorithm is a popular choice. It is often applied to spin glasses and to
lattice field theories.

In perturbative calculations or event generators for high energy physics one often wants to sample
the phase space of the outgoing particles. We reviewed the standard sequential approach, the
democratice approach and a method for generating soft and collinear particles. The sequential
approach has an advantage if peaks due to massive particles occur in intermediate stages of the
process. By choosing the M2

i cleverly, VEGAS can take the invariant mass of the resonance along
one axis and easily adapt to the peak. The democratic approach has the advantage that each event
has a uniform weight and has its application in massless theories. The method for generating soft
and collinear particles is, as the name already indicates, designed to generate efficiently phase
space configurations, where one particle is soft or collinear. This is important for example in NLO
calculations where otherwise most computer time is spent in calculating the contributions from
the real emission part.

Further reading: The lecture notes by W. Krauth [25] and A.D. Sokal [26] deal with applica-
tions of Monte Carlo methods in statistical physics and are worth reading. Further there are
review articles on the Metropolis algorithm by G. Bhanot [24] and on the Potts model by F.Y. Wu
[27]. There are many introductions to lattice field theory, I borrowed the ideas from the review
article by R.D. Kenway [30]. The book by Byckling and Kajantie [33] is the standard book on
phase space for final state particles.

Exercise 19: Application of the Potts model to data clustering. This technique is due to M. Blatt, S.

37

Wiseman and E. Domany [29]. Given a set of data (for example as points in a d-dimensional vector

space), cluster analysis tries to group this data into clusters, such that the members in each cluster are

more similar to each other than to members of different clusters. An example is an measurement of four

different quantities from 150 Iris flowers. (In this specific example it was known that each flower belonged

to exactly one subspecies of the Iris: either Iris Setosa, Iris Versicolor or Iris Virginica. The four quanti-

ties which were measured are the petal length, the petal width, the sepal length and the sepal width.) Given

the data points alone, the task is to decide which flowers belong to the same subspecies.) M. Blatt et al.

suggested to use the Potts model for this problem as follows: Given N points xi in a d-dimensional vector

space one chooses a value q for the number of different spin states and a model for the spin-spin couplings

Jij = f(dij), where dij is the distance between the points xi and xj and f a function depending on the dis-

tance dij. To minimize computer time one usually chooses f(dij) = 0 for dij > dcut. One then performs a

Monte Carlo simulation of the corresponding Potts model. At low temperature all spins are aligned, where

as at high temperature the orientation of the spins is random. In between there is a super-paramagnetic

phase, where spins are aligned inside “grains”, but the orientation of different grains is random. Us-

ing the Swendsen-Wang algorithm one first tries to find this super-paramagnetic phase by monitoring the

magnetic susceptibility (there should be a strong peak in χ at the ferromagnetic-superparamagnetic phase

transition, furthermore, at higher temperature there will be a significant drop in the susceptibility where

the alignment of the spins inside a grain break up.) Having found the right temperature one then calculates

the probability that two neighbouring sides are in one Swendsen-Wang cluster. If this probability is greater

than 1/2 they are assigned to the same data cluster. The final result should depend only mildly on the

exact value of q and the functional form of f(dij). This can be verified by performing the simulation with

different choices for these parameters. Write a Monte Carlo simulation which clusters the data according

to the algorithm outlined above. You can find the data for the Iris flowers on the web, for example at

http://www.math.uah.edu/stat/data/Fisher.html.

A Orthogonal polynomials

We list here some properties of the most common known orthogonal polynomials (Legendre,
Tschebyscheff, Gegenbauer, Jacobi, Laguerre and Hermite). For each set we state the standard
normalization and the differential equation to which the polynomials are solutions. We further give
the explicit expression, the recurrence relation as well as the generating function and Rodrigues’
formula. The information is taken from the book by A. Erdélyi [36].

A.1 Legendre polynomials

The Legendre polynomials Pn(x) are defined on the interval [−1, 1] with weight function w(x) = 1.
The standard normalization is

1
∫

−1

dxPn(x)Pm(x) =
2

2n + 1
δnm. (195)

The Legendre polynomials are solutions of the differential equation

(1 − x2)y′′ − 2xy′ + n(n + 1)y = 0. (196)

The explicit expression is given by

Pn(x) =
1

2n

[n/2]
∑

m=0

(−1)m

(

n
m

)(

2n− 2m
n

)

xn−2m, (197)

where [n/2] denotes the largest integer smaller or equal to n/2. They can also be obtained through
the recurrence relation:

P0(x) = 1, P1(x) = x,

(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x). (198)

38

http://www.math.uah.edu/stat/data/Fisher.html

Alternatively one may use the generating function

1√
1 − 2xz + z2

=

∞
∑

n=0

Pn(x)zn, −1 ≤ x ≤ 1, |z| < 1, (199)

or Rodrigues’ formula :

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n. (200)

A.2 Tschebyscheff polynomials

The Tschebyscheff polynomials of the first kind Tn(x) are defined on the interval [−1, 1] with
the weight function w(x) = 1/

√
1 − x2. They can be viewed as a special case of the Gegenbauer

polynomials. Due to their special normalization we discuss them separately. They are normalized
as

1
∫

−1

dx(1 − x2)µ−1/2Tn(x)Tm(x) =

{

π/2, n 6= 0,
π, n = 0.

(201)

The Tschebyscheff polynomials are solutions of the differential equation

(1 − x2)y′′ − xy′ + n2y = 0. (202)

The explicit expression reads

Tn(x) =
n

2

[n/2]
∑

m=0

(−1)m (n − m − 1)!

m!(n − 2m)!
(2x)n−2m. (203)

The recurrence relation is given by

T0(x) = 1, T1(x) = x,

Tn+1(x) = 2xTn(x) − Tn−1(x). (204)

The generating function is

1 − xz

1 − 2xz + z2
=

∞
∑

n=0

Tn(x)zn, −1 ≤ x ≤ 1, |z| < 1. (205)

Rodrigues’ formula reads

Tn(x) =
(−1)n(1 − x2)1/2

√
π

2n+1Γ
(

n + 1
2

)

dn

dxn

(

1 − x2
)n−1/2

. (206)

A.3 Gegenbauer polynomials

The Gegenbauer polynomials Cµ
n (x) are defined on the interval [−1, 1] with the weight function

w(x) = (1 − x2)µ−1/2 for µ > −1/2. The standard normalization is

1
∫

−1

dx(1 − x2)µ−1/2Cµ
n(x)Cµ

m(x) =
π21−2µΓ(n + 2µ)

n!(n + µ) (Γ(µ))2
δnm. (207)

The Gegenbauer polynomials are solutions of the differential equation

(1 − x2)y′′ − (2µ + 1)xy′ + n(n + 2µ)y = 0. (208)

39

The explicit expression reads

Cµ
n(x) =

1

Γ(µ)

[n/2]
∑

m=0

(−1)m Γ(µ + n − m)

m!(n − 2m)!
(2x)n−2m, (209)

The recurrence relation is given by

Cµ
0 (x) = 1, Cµ

1 (x) = 2µx,

(n + 1)Cµ
n+1(x) = 2(n + µ)xCµ

n (x) − (n + 2µ − 1)Cµ
n−1(x). (210)

The generating function is

1

(1 − 2xz + z2)
µ =

∞
∑

n=0

Cµ
n (x)zn, −1 ≤ x ≤ 1, |z| < 1. (211)

Rodrigues’ formula reads

Cµ
n (x) =

(−1)n2nn!Γ(2µ)Γ
(

µ + n + 1
2

)

Γ
(

µ + 1
2

)

Γ (n + 2µ) (1 − x2)µ−1/2

dn

dxn

(

1 − x2
)n+µ−1/2

. (212)

Special cases : For µ = 1/2 the Gegenbauer polynomials reduce to the Legendre polynomials, e.g

C
1/2
n (x) = Pn(x).

The polynomials C1
n(x) are called Tschebyscheff polynomials of the second kind and denoted

by Un(x).

The case µ = 0 corresponds to Tschebyscheff polynomials of the first kind. They cannot be
normalized accoring to eq. 207 and have been treated separately above.

A.4 Jacobi polynomials

The Jacobi polynomials P
(α,β)
n (x) are defined on the interval [−1, 1] with the weight function

w(x) = (1 − x)α(1 + x)β for α, β > −1. The standard normalization is given by

1
∫

−1

dx(1 − x)α(1 + x)βP (α,β)
n (x)P (α,β)

m (x) =
2α+β+1Γ(n + α + 1)Γ(n + β + 1)

(2n + α + β + 1)n!Γ(n + α + β + 1)
δnm.

(213)

Differential equation:

(1 − x2)y′′ + (β − α − (α + β + 2)x)y′ + n(n + α + β + 1)y = 0 (214)

Explicit expression:

P (α,β)
n (x) =

1

2n

n
∑

m=0

(

n + α
m

)(

n + β
n − m

)

(x − 1)n−m(x + 1)m (215)

Recurrence relation :

P
(α,β)
0 (x) = 1, P

(α,β)
1 (x) =

(

1 +
1

2
(α + β)

)

x +
1

2
(α − β) ,

2 (n + 1) (n + α + β + 1) (2n + α + β) P
(α,β)
n+1 (x) =

= (2n + α + β + 1)
((

α2 − β2
)

+ (2n + α + β + 2) (2n + α + β)x
)

P (α,β)
n (x)

−2 (n + α) (n + β) (2n + α + β + 2)P
(α,β)
n−1 (x). (216)

40

Generating function:

R−1(1 − z + R)−α(1 + z + R)−β =

∞
∑

n=0

2−α−βP (α,β)
n (x)zn,

R =
√

1 − 2xz + z2, −1 ≤ x ≤ 1, |z| < 1. (217)

Rodrigues’ formula:

P (α,β)
n (x) =

(−1)n

2nn!(1 − x)α(1 + x)β

dn

dxn

(

(1 − x)n+α(1 + x)n+β
)

(218)

In the case α = β the Jacobi polynomials reduce to the Gegenbauer polynomials with µ = α+1/2.
The exact relation is

P (α,α)
n (x) =

Γ(2α + 1)

Γ(2α + 1 + n)

Γ(α + 1 + n)

Γ(α + 1)
C

α+ 1
2

n (x). (219)

A.5 Generalized Laguerre polynomials

The generalized Laguerre polynomials L
(α)
n (x) are defined on the interval [0,∞] with the weight

function w(x) = xαe−x for a > −1. The standard normalization is given by

∞
∫

0

dxxαe−xL(α)
n (x)L(α)

m (x) =
Γ(n + α + 1)

n!
δnm. (220)

Differential equation:

xy′′ + (α + 1 − x)y′ + ny = 0 (221)

Explicit expression:

L(α)
n =

n
∑

m=0

(−1)m

m!

(

n + α
n − m

)

xm (222)

Recurrence relation:

L
(α)
0 (x) = 1, L

(α)
1 (x) = 1 + α − x,

(n + 1)L
(α)
n+1(x) = ((2n + α + 1) − x) L(α)

n (x) − (n + α)L
(α)
n−1(x). (223)

Generating function:

(1 − z)−α−1 exp

(

xz

z − 1

)

=

∞
∑

n=0

L(α)
n (x)zn, |z| < 1. (224)

Rodrigues’ formula:

L(α)
n (x) =

1

n!xαe−x

dn

dxn

(

xn+αe−x
)

(225)

Special cases : The polynomials L
(0)
n (x) are the Laguerre polynomials and denoted by Ln(x).

41

A.6 Hermite polynomials

The Hermite polynomials Hn(x) are defined on the interval [−∞,∞] with the weight function

w(x) = e−x2

. The Hermite polynomials appear in the quantum mechanical harmonic oscillator.
The standard normalization is given by

∞
∫

−∞

dxe−x2

Hn(x)Hm(x) = 2n
√

πn!δnm. (226)

Differential equation:

y′′ − 2xy′ + 2ny = 0 (227)

The explicit expression is given by

Hn(x) = n!

[n/2]
∑

m=0

(−1)m (2x)n−2m

m!(n − 2m)!
. (228)

Recurrence relation:

H0(x) = 1, H1(x) = 2x,

Hn+1(x) = 2xHn(x) − 2nHn−1(x). (229)

Generating function:

e−t2+2xt =

∞
∑

n=0

1

n!
Hn(x)tn (230)

Rodrigues’ formula:

Hn(x) = (−1)nex2 dn

dxn
e−x2

(231)

B Sampling some specific distriubtions

We list here some cooking recipes how to generate samples according to some special distributions
(Gaussian, χ2, binomial, Poisson, gamma, beta and Student t). The algorithms are taken from
Ahrens and Dieter [37] and the particle data group [38].

B.1 Gaussian distribution

A random variable distributed according to the probability density function

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (232)

is called normal or Gaussian distributed. As already mentioned in sect. 5.1.3 the Box-Muller
algorithm allows one to generate two independent variables x1 and x2, distributed according to a
Gaussian distribution with mean µ = 0 and variation σ2 = 1 from two independent variables u1

and u2, uniformly distributed in [0, 1] as follows:

x1 =
√

−2 lnu1 cos(2πu2),

x2 =
√

−2 lnu1 sin(2πu2). (233)

42

B.2 χ
2-distribution

If x1, ..., xn are n independent Gaussian random variables with mean µi and variance σ2
i for the

variable xi, the sum

x =

n
∑

i=1

(xi − µi)
2

σ2
i

(234)

is distributed as a χ2 with n degrees of freedom. The χ2(n) distribution has the probability density
function

p(x) =
x

n
2 −1e−

x
2

2
n
2 Γ
(

n
2

) , (235)

where x ≥ 0 is required. The χ2(n)-distribution has mean n and variance 2n. To generate a
random variable x which is distributed as χ2(n) one can start from the definition and generate n
Gaussian random variables. However there is a more efficient approach. For n even one generates
n/2 uniform numbers ui and sets

x = −2 ln
(

u1u2 · ... · un/2

)

. (236)

For n odd, one generates (n − 1)/2 uniform numbers ui and one Gaussian y and sets

x = −2 ln
(

u1u2 · ... · u(n−1)/2

)

+ y2. (237)

B.3 Binomial distribution

Binomial distributions are obtained from random processes with exactly two possible outcomes.
If the propability of a hit in each trial is p, then the probability of obtaining exactly r hits in n
trials is given by

p(r) =
n!

r!(n − r)!
pr(1 − p)n−r, (238)

where r = 0, 1, 2, 3, ... is an integer and 0 ≤ p ≤ 1. A random variable r distributed according
to eq. 238 is called binomialy distributed. The binomial distribution has mean np and variance
np(1−p). One possibility to generate integer numbers r = 0, ..., n, which are distributed according
to a binomial distribution, is directly obtained from the definition:

1. Set r = 0 and m = 0.

2. Generate a uniform random number u. If u ≤ p increase k = k + 1.

3. Increase m = m + 1. If m < n go back to step 2, otherwise return k.

The computer time for this algorithm grows linearly with n. The algorithm can be used for small
values of n. For large n there are better algorithms [37, 38].

B.4 Poisson distirubtion

The Poisson distribution is the limit n → ∞, p → 0, np = µ of the binomial distribution. The
probability density function for the Poisson distribution reads

p(r) =
µre−µ

r!
, (239)

where µ > 0 and r = 0, 1, 2, 3, ... is an integer. The Poisson distribution has mean µ and variance
µ. For large µ the Poisson distribution approaches the Gaussian distribution. To generate integer
numbers r = 0, 1, 2, ... distributed according to a Poisson distribution, one proceeds as follows:

1. Initialize r = 0, A = 1.

2. Generate a uniform random number u, set A = uA. If A ≤ e−µ accept r and stop.

3. Increase r = r + 1 and goto step 2.

43

B.5 Gamma distribution

The probability density function of the gamma distribution is given by

p(x) =
xk−1λke−λx

Γ(k)
(240)

with x > 0, λ > 0 and k > 0 is not required to be an integer. The gamma distribution has mean
k/λ and variance k/λ2.

The special case k = 1 gives the exponential distribution

p(x) = λe−λx. (241)

To generate random numbers distributed according to a gamma distribution, we consider the cases
k = 1, k > 1 and 0 < k < 1 separately. For simplicity we use λ = 1. Results for λ 6= 1 are easily
obtained by dividing the resulting random number x by λ.

The case k = 1 is just the exponential distribution. One generates a uniform random number
u and sets x = − ln(u).

For the case 0 < k < 1 one uses a rejection technique: One first observes that the function

g(x) =

{

xk−1

Γ(k) , 0 ≤ x ≤ 1,
e−x

Γ(k) , 1 ≤ x.
(242)

is a majorizing function for p(x). The function

h(x) =

{ ek
e+kxk−1, 0 ≤ x ≤ 1,
ek

e+k e−x, 1 ≤ x.
(243)

with e = 2.71828... being the base of the natural logarithm is a probability density proportional
to g(x), which can easily be sampled. This yields the following algorithm:

1. Set v1 = 1 + k/e.

2. Generate two uniform random number u1, u2 and set v2 = v1u1.

3. If v2 ≤ 1, set x = v
1/k
2 and accept x if u2 ≤ e−x, otherwise go back to step 2.

4. If v2 > 1, set x = − ln((v1 − v2)/k) and accept x if u2 ≤ xk−1, otherwise go back to step 2.

For the case k > 1 one uses the majorization

xk−1e−x

Γ(k)
≤ 1

Γ(k)

(k − 1)k−1e−(k−1)

1 + (x−(k−1))2

2k−1

, k > 1, (244)

and obtains the following algorithm:

1. Set b = k − 1, A = k + b and s =
√

A.

2. Generate a uniform random number u1 and set t = s tan (π(u1 − 1/2)) and x = b + t.

3. If x < 0 go back to step 2.

4. Generate a uniform random number u2 and accept x if

u2 ≤ exp

(

b ln
(x

b

)

− t + ln

(

1 +
t2

A

))

, (245)

otherwise go back to step 2.

44

B.6 Beta distributions

The probability density function of the beta distribution is given by

p(x) =
xα−1(1 − x)β−1

B(α, β)
, 0 ≤ x ≤ 1, α, β > 0, (246)

where B(α, β) = Γ(α)Γ(β)/Γ(α + β). Samples according to a beta distribution can be obtained
from a gamma distribution. If x and y are two independent deviates which are (standard, e.g.
λ = 1) gamma-distributed with parameters α and β respectively, then x/(x + y) is B(α, β)
distributed.

B.7 Student’s t distribution

If x and x1, ..., xn are independent Gaussian random variables with mean 0 and variance 1, the
quantity

t =
x

√

z/n
with z =

n
∑

i=1

x2
i , (247)

is distributed according to a Student’s t distribution with n degrees of freedom. The probability
density function of Student’s t distribution is given by

p(t) =
1√
nπ

Γ
(

n+1
2

)

Γ
(

n
2

)

(

1 +
t2

n

)−n+1
2

. (248)

The range of t is −∞ < t < ∞, and n is not required to be an integer. For n ≥ 3 Student’s
t distribution has mean 0 and variance n/(n − 2). To generate a random variable t distributed
according to Student’s t distribution for n > 0 one generates a random variable x distributed as
Gaussian with mean 0 and variance 1, as well as a random variable y, distributed as according to
a gamma distribution with k = n/2 and λ = 1. Then

t = x

√

2n

y
(249)

is distributed as a t with n degrees of freedom.

In the case n = 1 Student’s t distribution reduces to the Breit-Wigner distribution:

p(t) =
1

π

1

1 + t2
. (250)

In this case it it simpler to generate the distribution as follows: Generate to uniform random
numbers u1, u2, set v1 = 2u1 − 1 and v2 = 2u2 − 1. If v2

1 + v2
2 ≤ 1 set t = v1/v2, otherwise start

again.

References

[1] P.J. Davis and P. Rabinowitz, Methods of Numerical Integration, Academic Press, New York,
1975

[2] W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, Numerical Recipes, Cam-
bridge University Press, 1986

[3] D.A. Kosower, Nucl. Phys. B506, (1997), 439

[4] E.G. Floratos, C. Kounnas and R. Lacaze, Nucl. Phys. B192, (1981), 417

45

[5] J.M. Hammersley and D.C. Handscomb, Monte Carlo Methods, Methuen’s monographs, Lon-
don, 1964

[6] F. James, Rep. Prog. Phys. 43, (1980), 1145

[7] G.P. Lepage, Cornell preprint, (1980), CLNS-80/447

[8] G.P. Lepage, J. Comp. Phys. 27, (1978), 192

[9] R. Kleiss and R. Pittau, Comp. Phys. Comm. 83, (1994), 141

[10] T. Ohl, Comp. Phys. Comm. 120, (1999), 13

[11] D.E. Knuth, Semi-numerical algorithms, vol.2 in : The Art of Computer Programming, 2nd
ed. (Addison-Wesley,1981)

[12] F. James, Comp. Phys. Comm. 60, (1990), 329

[13] I. Vattulainen et al., Comp. Phys. Comm. 86, (1995), 209

[14] T.G. Lewis and W.H. Payne. J. Assoc. Comp. Mach. 20, (1973), 456

[15] G. Marsaglia, A. Zaman and W.-W. Tsang, Stat. prob. Lett. 9, (1990), 35

[16] G. Marsaglia, B. Narasimhan and A. Zaman, Comp. Phys. Comm. 60, (1990), 345

[17] M. Lüscher, Comp. Phys. Comm. 79, (1994), 100

[18] I.M. Sobol’, USSR Comp. Math. Math. Phys. 7, (1967), 86

[19] H. Faure, Acta Arithmetica 41, (1982), 337

[20] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF
Regional Conference Series in Applied Mathematics, Philadelphia, 1992

[21] B.L. Fox, ACM Trans. Math. Soft. 12, (1986), 362; P. Bratley and B.L. Fox, ACM Trans.
Math. Soft. 14, (1988), 88

[22] F. James, J. Hoogland and R. Kleiss, Comp. Phys. Comm. 99, (1997), 180

[23] N. Metropolis et al., J. Chem. Phys 21, (1953), 1087

[24] G. Bhanot, Rep. Prog. Phys. 51, (1988), 429

[25] W. Krauth, cond-mat/9612186

[26] A.D. Sokal, Lectures at the Cargèse Summer School on “Functional Integration: Basics and
Applications”, September 1996

[27] F.Y. Wu, Rev. Mod. Phys. 54, (1982), 235

[28] R.H. Swendsen and J.-S. Wang, Phys. Rev. Lett 58, (1987), 86; J.-S. Wang and R.H. Swend-
sen, Physica A167, (1990), 565

[29] M. Blatt, S. Wiseman and E. Domany, cond-mat/9702072

[30] R.D. Kenway, Rep. Prog. Phys. 52, (1989), 1475

[31] G. Marchesini et al., Comp.Phys.Comm. 67, (1992), 465

[32] T. Sjöstrand, Comp.Phys.Comm 82, (1994), 74

[33] E. Byckling and K. Kajantie, Particle Kinematics, John Wiley and Sons, London, 1973

46

http://arXiv.org/abs/cond-mat/9612186
http://arXiv.org/abs/cond-mat/9702072

[34] R. Kleiss, W.J. Stirling and S.D. Ellis, Comp.Phys.Comm. 40, (1986), 359

[35] S. Weinzierl and D.A. Kosower, Phys. Rev. D60, (1999), 054028

[36] A. Erdélyi, Higher Transcedental Functions, McGraw-Hill, New York, 1953

[37] J.H. Ahrens and U. Dieter, Computing 12, (1974), 223

[38] C. Caso et al., (Particle data group), EPJ C3, (1998), 1

47

