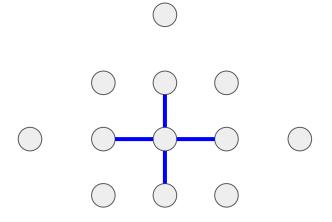
Multimedia and computer animation

Exercise - Cloth simulation

From the lecture...

- Cloth simulation variants
 - Diskrete
 - Grid of mass points
 - Points are connected i.e. by springs
 - Continuous
 - Using curves
 - Particle based
 - Similar to the discrete variant

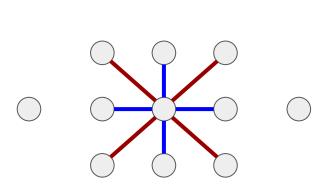
From the lecture...


- Xavier Provot Deformation constraints in a mass-spring model
 - Cloth is divided into discrete parts
 - Points of mass
 - Springs
 - Simple algorithm
 - For each mass point
 - Add forces acting on the point as a result of all connected springs
 - Apply the resulting force to the point

Types of spring

Structural

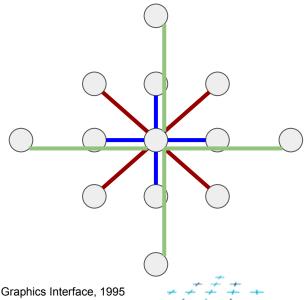
- Covers forces of...
 - Compression
 - Stretching


Types of spring

Structural

- Covers forces of...
 - Compression
 - Stretching

- Shear


- Covers...
 - Shearing forces

Types of spring

- Structural
 - Compression
 - Stretching
- Shear
 - Shear forces movement to the side
- Flex / Bend
 - Forces acting on the cloth when bending or flexing

Source: X. Provot, Deformation Contraints in a Mass-Spring Model to Describe Rigid Cloth Behavior Proceedings of Graphics Interface, 1995 (https://graphicsinterface.org/wp-content/uploads/gi1995-17.pdf)

Forces of a spring

- Elasticity
 - Spring wants to return to its original (rest) length:

$$K_{i,j,k,l}igg[\mathbf{l}_{i,j,k,l}-l_{i,j,k,l}^0rac{\mathbf{l}_{i,j,k,l}}{|\mathbf{l}_{i,j,k,l}|}igg]$$

 $K_{i,j,k,l}$ - Coefficient of elasticity $\mathbf{l}_{i,j,k,l}$ - Vector for points (i,j) -> (k,l) $l_{i,j,k,l}^0$ - Rest length of a spring $C_{dis},\ C_{damp}$ - Damping coefficient $\mathbf{x}_{i,j}$ - Position of point (i,j)

Velocity of point (i,j)

 $\mathbf{v}_{i,j}$

Forces of a spring

- Elasticity
 - Spring wants to return to its original (rest) length:

$$K_{i,j,k,l}igg[\mathbf{l}_{i,j,k,l}-l_{i,j,k,l}^0rac{\mathbf{l}_{i,j,k,l}}{|\mathbf{l}_{i,j,k,l}|}igg]$$

- Damping
 - Can be implemented as viscosity (an external force):

$$-C_{dis}\mathbf{v}_{i,j}$$

 $K_{i,j,k,l}$ - Coefficient of elasticity $\mathbf{l}_{i,j,k,l}$ - Vector for points (i,j) -> (k,l) $l_{i,j,k,l}^0$ - Rest length of a spring $C_{dis},\ C_{damp}$ - Damping coefficient $\mathbf{x}_{i,j}$ - Position of point (i,j)

Velocity of point (i,j)

 $\mathbf{v}_{i,j}$

Forces of a spring

Elasticity

- Spring wants to return to its original (rest) length:

$$K_{i,j,k,l}igg[\mathbf{l}_{i,j,k,l}-l_{i,j,k,l}^0rac{\mathbf{l}_{i,j,k,l}}{|\mathbf{l}_{i,j,k,l}|}igg]$$

 $K_{i,i,k,l}$ - Coefficient of elasticity

 $\mathbf{l}_{i,j,k,l}$ - Vector for points (i,j) -> (k,l)

 $l^0_{i,\,i,k,l}$ - Rest length of a spring

 $C_{dis},\ C_{damp}$ - Damping coefficient

 $\mathbf{X}_{i,j}$ - Position of point (i,j)

 $\mathbf{v}_{i,j}$ - Velocity of point (i,j)

Damping

Can be implemented as viscosity (an external force):

$$-C_{dis}\mathbf{v}_{i,j}$$

- Or by damping the spring force internally:

$$C_{damp}rac{\left(\mathbf{v}_{k,l}-\mathbf{v}_{i,j}
ight)\cdot\left(\mathbf{x}_{k,l}-\mathbf{x}_{i,j}
ight)}{\left|\mathbf{x}_{k,l}-\mathbf{x}_{i,j}
ight|}rac{\left(\mathbf{x}_{k,l}-\mathbf{x}_{i,j}
ight)}{\left|\mathbf{x}_{k,l}-\mathbf{x}_{i,j}
ight|}$$

Cloth simulation

Task - implement spring force computation

- ClothSpring.cpp
 - GetActingForce()
 - Include:
 - Damping
 - Elasticity
 - AddForceToNodes()
 - Add a symmetric force acting on both particles in a pair

Cloth simulation

Task - implement spring force computation

- ClothSpring.cpp
 - GetActingForce()
 - Include:
 - Damping
 - Elasticity
 - AddForceToNodes()
 - Add a symmetric force acting on both particles in a pair
- You will need to...
 - Get the rest length of a spring
 - Compute the elastic force of the spring based on the real and rest length
 - Compute the damping force of the spring
 - Add the forces and return the result

Super-elasticity

- Cloth stretches too much unrealistic
- Real cloth loses elasticity when stretched to its limit (elasticity is not a constant parameter of a spring)
- Possible solution: limit the maximum deformation of a spring
 - After moving mass points to their new positions
 - Compute the deformation factor of each spring
 - If above critical value, move both (or the one that is not fixed) in the direction of the spring to return the deformation factor back to the critical value
- See: X. PROVOT: Deformation Constraints in a Mass Spring Model to Describe Rigid Cloth Behavior
 - https://graphicsinterface.org/wp-content/uploads/gi1995-17.pdf