—r—
—_

o o = —f— —4—
—f

” DCGI

DEPARTMENT OF COMPUTER GRAPHICS AND INTERACTION

Crash Course in Memory
Management (in C/C++)

Jakub Hendrich, Daniel Meister

++++++++++

+ o+ + 4+ - + + + + + +

o+ o+ + + + + o+ + + + + + + +

o+ o+ + + + + o+ + + + + + + +

+ +

+ + + +

+ + + +

+ + + + 4+ + 4+ +

+ + + + + + + +

+ + + + + + + 4

+ + + + + 4+ + + +

4+ 4+ 4+ 4+ o+ o+ o4 o4+ o4

SMART POINTERS ARE FOR
WUSSES, REAL PROGRAMMERS

GO RALL

REAL FROGRAMMERS ALWAYS
KEEP TOTAL CONTROL OF

Y.
MEMOR -

IN FACT, REAL PROGRAMMERS
DON'T EVEN HAVE TO CHECK
FOR BAD MEMORY
ALLOCATIONS,

O

THAT'S RIGHT. I Ar1 THE BAD
BoY OF PROGRAMIMING, I'M

GONNA LIVE FAST, DIE EARLY,
AND CODE CLOSE TO THE METAL,

£
(- “
= (=
o

THE CODING STANDARDS
MANVAL READ IT !
LEARN IT f LOVE IT !

/
27 _ IR

WE'RE TIRED OF CORRECTING
YOUR MISTAKES, YOU'RE
SLOWING DOWN THE

/ ENTIRE TEAM.

GET YOUR ACT
TOGETHER |

WE BAD BO¥S ARE
OFTEN FMISUNDERSTOOD.

k|

o S
- 4.*4,.
C" - __,L:?éq
L= r', <

R -

O]

Crash Course in Memory Management (in C/C++)

http://abstrusegoose.com/483

Memory Storage Types in C/C++

= global / static local — in the data segment
— lives forever (throughout the process lifetime)

= automatic — on the stack
— lexical scope (within a function / method / block)

= dynamic — on the heap
— ? — programmer defined

What about allocation / disposal, initialization /
finalization?

+++++
i ++ - Crash Course in Memory Management (in C/C++) %
DCGI

®)

Java vs C/C++ differences

= Java: (almost) everything is an object on the heap
— variables are references
— automatic garbage collection

= C/C++: free to choose the most suitable storage

— variables are objects themselves, or pointers, or
references

— automatic variables garbage collection: RAII
— no automatic garbage collection of dynamic variables

-~ Crash Course in Memory Management (in C/C++)
DCGI

(4)

Issues found

= Dynamic memory abuse

— up to 740 MB or 16 million allocations
* crippling the performance severely!

— ~59 MB and tens of allocations should be enough
* color buffers in 8 contexts — 8 * (800 * 600 * 3 * sizeof(float)) bytes
 depth buffers — 8 * (800 * 600 * sizeof(float)) bytes
+ context & matrix stacks & vertex buffer

— local variables: should be automatic, not dynamic

— class instances should normally contain the data within
themselves, not via another level(s) of reference:
 class CMatrix { float matrix[4][4]; } vs class CMatrix { float ** matrix; }

>~ -~ -] ;
DCGI Crash Course in Memory Management (in C/C++) %

®)

Issues found

= Uninitialized memory usage
— automatic & dynamic variables of built-in types have no
Implicit initialization
» mostly the color buffer (float*) not prepared for reading by the testapp

= No/bad destruction/disposal

— causes memory leaks or corruption
« calling the destructor explicitly instead of delete / delete][]
* new vs new[], delete vs delete]]

= Taking address of temporary

— suspicious and error-prone idiom
« temporary objects die immediately after full-expression evaluation

-~ Crash Course in Memory Management (in C/C++)
DCGI

(6)

Diagnostics

= Compiler output
OurVector4 applyTransform (OurVector4 v) { ... }

void sglEllipse(float cx, float cy, float cz, float a, float b) { ...
OurVector4* center = new OurVector4(cx,cy,cz,1);
center = &applyTransform(*center);
drawPixel(*center);
delete center;

2

sgl/sgl.cpp: In function ‘void sglEllipse(float, float, float, float, float)’:
sgl/sgl.cpp:514:35: warning: taking address of temporary [-fpermissive]
center = &applyTransform(*center);

N

-
—_

>~ -~ - . .
Crash Course in Memory Management (in C/C++)

DCGI

fet

http://en.cppreference.com/w/cpp/language/lifetime

Diagnostics

= Memory loggers/debuggers
— top
— eFence
— Valgrind suite (Memcheck et al.)

==686== Memcheck, a memory error detector

==686== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.
==686== Using Valgrind-3.10.1 and LibVEX; rerun with -h for copyright info
==686== Command: ./testapp

-+~ ~ -] ;
DC I Crash Course in Memory Management (in C/C++) %
s ®)

Valgrind output

==575== Memcheck, a memory error detector

==575== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.
==575== Using Valgrind-3.10.1 and LibVEX; rerun with -h for copyright info
==575== Command: ./testapp

==575== HEAP SUMMARY:
==575== in use at exit: 0 bytes in O blocks

==575== total heap usage: 25 allocs, 25 frees, 46,204,900 bytes allocated

==575== For counts of detected and suppressed errors, rerun with: -v
==575== ERROR SUMMARY: 0 errors from O contexts (suppressed: 0 from 0)

-~ Crash Course in Memory Management (in C/C++)

©)

Valgrind output

==32083== HEAP SUMMARY:

==32083== in use at exit: O bytes in O blocks

==32083== total heap usage: 759,144 allocs, 759,144 frees, 110,074,668 bytes allocated
==32083==

==32083== All heap blocks were freed -- no leaks are possible

==32331== Conditional jJump or move depends on uninitialised value(s)

==32331== at 0x804E985: float const& std::min<float>(float const&, float const&)
(stl_algobase.h:199)

==32331== by 0x804963D: WriteTGA(char const*) (testapp.cpp:157)
==32331== Dby 0x804C6F1: main (testapp.cpp:1186)

-+~ ~ -] ;
Crash Course in Memory Management (in C/C++) %
DCGI y

Valgrind output

==32182== 960,000 (192,000 direct, 768,000 indirect) bytes in 12,000 blocks are definitely
lost in loss record 890 of 890

==32182== at 0x4007D83: operator new[](unsigned int) (in
/usr/lib/valgrind/vgpreload _memcheck-x86-linux.so)

==32182== by 0x80542EE: CMatrix:.operator=(CMatrix const&) (sgl.cpp:160)
==32182== by 0x805243B: sglBegin(sglEElementType) (sgl.cpp:695)
==32182== by 0x804B6B2: DrawTestScenelA() (testapp.cpp:750)
==32182== by 0x804C6D7: main (testapp.cpp:1184)

==32182==

==32182== LEAK SUMMARY:

==32182== definitely lost: 6,080,080 bytes in 380,005 blocks
==32182==indirectly lost: 24,320,272 bytes in 1,520,017 blocks

==32182==

==32182== still reachable: 0 bytes in 0 blocks

==32182== suppressed: 0 bytes in 0 blocks
< S~ o~ 4~ 4+
-+~ ~ -] ;
-~ Crash Course in Memory Management (in C/C++) %

DCGI

Valgrind output

==32182==

==32182==at 0x40086BD: operator delete(void*) (in
/ustr/lib/valgrind/vgpreload _memcheck-x86-linux.so)

==32182== by 0x8054475: CMatrix::~CMatrix() (sgl.cpp:179)
==32182== by 0x8051561: sgllnit() (sgl.cpp:414)

==32182== by 0x804C55C: Init() (testapp.cpp:1011)

==32182== by 0x804C5ED: main (testapp.cpp:1139)

==32182== Address 0x403cla8 is 0 bytes inside a block of size 16 alloc'd

==32182==at 0x4007D83: operator new[](unsigned int) (in
/usr/lib/valgrind/vgpreload _memcheck-x86-linux.so)

==32182== by Ox80540AD: CMatrix::CMatrix(float const*) (sgl.cpp:118)
==32182== by 0x805153E: sglInit() (sgl.cpp:414)

==32182== by 0x804C55C: Init() (testapp.cpp:1011)

==32182== by 0x804C5ED: main (testapp.cpp:1139)

-
—_

>~ -~ - . .
Crash Course in Memory Management (in C/C++)

DCGI

Valgrind output

==32182== More than 100 errors detected. Subsequent errors

==32182== will still be recorded, but in less detail than before.

==32182==

==32182== More than 10000000 total errors detected. I'm not reporting any more.
==32182== Final error counts will be inaccurate. Go fix your program!

==32182== Rerun with --error-limit=no to disable this cutoff. Note

==32182== that errors may occur in your program without prior warning from

==32182== Valgrind, because errors are no longer being displayed.

Crash Course in Memory Management (in C/C++)

DCGI

Thank you for your attention!

Jakub Hendrich
14.10.2024

+++++
i _/_+ - Crash Course in Memory Management (in C/C++) %
DCGI iy

