
Crash Course in Memory

Management (in C/C++)

Jakub Hendrich, Daniel Meister

(2)

Crash Course in Memory Management (in C/C++)

http://abstrusegoose.com/483

http://abstrusegoose.com/483

(3)

Crash Course in Memory Management (in C/C++)

Memory Storage Types in C/C++

◼ global / static local – in the data segment

– lives forever (throughout the process lifetime)

◼ automatic – on the stack

– lexical scope (within a function / method / block)

◼ dynamic – on the heap

– ? → programmer defined

What about allocation / disposal, initialization /

finalization?

(4)

Crash Course in Memory Management (in C/C++)

Java vs C/C++ differences

◼ Java: (almost) everything is an object on the heap

– variables are references

– automatic garbage collection

◼ C/C++: free to choose the most suitable storage

– variables are objects themselves, or pointers, or

references

– automatic variables garbage collection: RAII

– no automatic garbage collection of dynamic variables

(5)

Crash Course in Memory Management (in C/C++)

Issues found

◼ Dynamic memory abuse

– up to 740 MB or 16 million allocations
• crippling the performance severely!

– ~59 MB and tens of allocations should be enough
• color buffers in 8 contexts → 8 * (800 * 600 * 3 * sizeof(float)) bytes

• depth buffers → 8 * (800 * 600 * sizeof(float)) bytes

+ context & matrix stacks & vertex buffer

– local variables: should be automatic, not dynamic

– class instances should normally contain the data within

themselves, not via another level(s) of reference:
• class CMatrix { float matrix[4][4]; } vs class CMatrix { float ** matrix; }

(6)

Crash Course in Memory Management (in C/C++)

Issues found

◼ Uninitialized memory usage

– automatic & dynamic variables of built-in types have no

implicit initialization
• mostly the color buffer (float*) not prepared for reading by the testapp

◼ No/bad destruction/disposal

– causes memory leaks or corruption
• calling the destructor explicitly instead of delete / delete[]

• new vs new[], delete vs delete[]

◼ Taking address of temporary

– suspicious and error-prone idiom
• temporary objects die immediately after full-expression evaluation

(7)

Crash Course in Memory Management (in C/C++)

Diagnostics

◼ Compiler output
OurVector4 applyTransform (OurVector4 v) { … }

void sglEllipse(float cx, float cy, float cz, float a, float b) { …

OurVector4* center = new OurVector4(cx,cy,cz,1);

center = &applyTransform(*center);

drawPixel(*center);

delete center;

… }

sgl/sgl.cpp: In function ‘void sglEllipse(float, float, float, float, float)’:

sgl/sgl.cpp:514:35: warning: taking address of temporary [-fpermissive]

center = &applyTransform(*center);

^

http://en.cppreference.com/w/cpp/language/lifetime

http://en.cppreference.com/w/cpp/language/lifetime

(8)

Crash Course in Memory Management (in C/C++)

Diagnostics

◼ Memory loggers/debuggers

– top

– eFence

– Valgrind suite (Memcheck et al.)

==686== Memcheck, a memory error detector

==686== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.

==686== Using Valgrind-3.10.1 and LibVEX; rerun with -h for copyright info

==686== Command: ./testapp

(9)

Crash Course in Memory Management (in C/C++)

Valgrind output

==575== Memcheck, a memory error detector

==575== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.

==575== Using Valgrind-3.10.1 and LibVEX; rerun with -h for copyright info

==575== Command: ./testapp

==575==

==575==

==575== HEAP SUMMARY:

==575== in use at exit: 0 bytes in 0 blocks

==575== total heap usage: 25 allocs, 25 frees, 46,204,900 bytes allocated

==575==

==575== All heap blocks were freed -- no leaks are possible

==575==

==575== For counts of detected and suppressed errors, rerun with: -v

==575== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

(10)

Crash Course in Memory Management (in C/C++)

Valgrind output

==32083== HEAP SUMMARY:

==32083== in use at exit: 0 bytes in 0 blocks

==32083== total heap usage: 759,144 allocs, 759,144 frees, 110,074,668 bytes allocated

==32083==

==32083== All heap blocks were freed -- no leaks are possible

==32331== Conditional jump or move depends on uninitialised value(s)

==32331== at 0x804E985: float const& std::min<float>(float const&, float const&)

(stl_algobase.h:199)

==32331== by 0x804963D: WriteTGA(char const*) (testapp.cpp:157)

==32331== by 0x804C6F1: main (testapp.cpp:1186)

(11)

Crash Course in Memory Management (in C/C++)

Valgrind output

==32182== 960,000 (192,000 direct, 768,000 indirect) bytes in 12,000 blocks are definitely

lost in loss record 890 of 890

==32182== at 0x4007D83: operator new[](unsigned int) (in

/usr/lib/valgrind/vgpreload_memcheck-x86-linux.so)

==32182== by 0x80542EE: CMatrix::operator=(CMatrix const&) (sgl.cpp:160)

==32182== by 0x805243B: sglBegin(sglEElementType) (sgl.cpp:695)

==32182== by 0x804B6B2: DrawTestScene1A() (testapp.cpp:750)

==32182== by 0x804C6D7: main (testapp.cpp:1184)

==32182==

==32182== LEAK SUMMARY:

==32182== definitely lost: 6,080,080 bytes in 380,005 blocks

==32182== indirectly lost: 24,320,272 bytes in 1,520,017 blocks

==32182== possibly lost: 48 bytes in 3 blocks

==32182== still reachable: 0 bytes in 0 blocks

==32182== suppressed: 0 bytes in 0 blocks

(12)

Crash Course in Memory Management (in C/C++)

Valgrind output

==32182== Mismatched free() / delete / delete []

==32182== at 0x40086BD: operator delete(void*) (in

/usr/lib/valgrind/vgpreload_memcheck-x86-linux.so)

==32182== by 0x8054475: CMatrix::~CMatrix() (sgl.cpp:179)

==32182== by 0x8051561: sglInit() (sgl.cpp:414)

==32182== by 0x804C55C: Init() (testapp.cpp:1011)

==32182== by 0x804C5ED: main (testapp.cpp:1139)

==32182== Address 0x403c1a8 is 0 bytes inside a block of size 16 alloc'd

==32182== at 0x4007D83: operator new[](unsigned int) (in

/usr/lib/valgrind/vgpreload_memcheck-x86-linux.so)

==32182== by 0x80540AD: CMatrix::CMatrix(float const*) (sgl.cpp:118)

==32182== by 0x805153E: sglInit() (sgl.cpp:414)

==32182== by 0x804C55C: Init() (testapp.cpp:1011)

==32182== by 0x804C5ED: main (testapp.cpp:1139)

(13)

Crash Course in Memory Management (in C/C++)

Valgrind output

==32182== More than 100 errors detected. Subsequent errors

==32182== will still be recorded, but in less detail than before.

==32182==

==32182== More than 10000000 total errors detected. I'm not reporting any more.

==32182== Final error counts will be inaccurate. Go fix your program!

==32182== Rerun with --error-limit=no to disable this cutoff. Note

==32182== that errors may occur in your program without prior warning from

==32182== Valgrind, because errors are no longer being displayed.

(14)

Crash Course in Memory Management (in C/C++)

Thank you for your attention!

Jakub Hendrich

14.10.2024

