
Statistical Data Analysis – solved problems

Goals: The text provides a pool of solved problems for labs in the course on Statistical
Data Analysis. The exercises help to deepen knowledge gained in parallel Rmd files. At
the same time, they serve as illustrative examples of future exam questions.

1 Linear and non-linear regression

Problem 1. (10 p) You built a linear model that predicts the median value of owner-
occupied homes in $1,000’s in a certain town (medv). The model works with the only
independent variable (lstat) that captures the percentage of population with lower (econom-
ical) status in the given town. The model was built from a training set based on 506 towns
and is this:

lm(formula = medv ∼ lstat, data = Boston)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 34.55384 0.56263 61.41 <2e-16 ***

lstat -0.95005 0.03873 -24.53 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.216 on 504 degrees of freedom

Multiple R-squared: 0.5441, Adjusted R-squared: 0.5432

F-statistic: 601.6 on 1 and 504 DF, p-value: < 2.2e-16

(a) (2 p) Verbally describe the relationship between lstat and medv. Decide whether lstat
affects medv and quantify how. Is it a statistically significant relationship? Why?

The model says that with each additional percentage of people with lower status the median value

of homes decreases on average by $950. This relationship is statistically significant, based on the

F-statistic as well as the lstat’s t-value we can reject the null hypothesis that there is no relationship

between lstat and medv.

(b) (1 p) How do you understand the meaning of Intercept? Is the value of this coefficient
a reliable figure to be interpreted literally? Explain.

The value of Intercept says that the average median value of homes in a town with 0 percentage of

people with lower status is around $34,553. This value looks reasonable, however, its true reliability
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depends on how far the model extrapolates (do we have any towns that at least approach no

lower status representation in our training set?) and how far the model meets the linear regression

assumptions (is the relationship between these variables truly linear?).

(c) (1 p) How much do we improve our median value forecast compared to the simple
average forecast that ignores the knowledge of lstat? In other words, how much the
knowledge of lstat helps?

The value of R-squared shows that we will reduce the variance of the median home value estimates

by about half.

(d) (2 p) Calculate/estimate 95% confidence interval for βlstat. What is this interval good
for?

A rough estimate could be [-0.95005-2*0.03873,-0.95005+2*0.03873]=[-1.02751,-0.87259]. A more

precise estimate puts |tα/2,m−2| = |t0.025,504| instead of 2 into the formula above, however, the value

1.964682 is close to the rough estimate. This confidence interval has about 95% chance to contain

the true value of βlstat. This interval helps us to assume on the strength of relationship between

lstat and medv, the interval does not contain 0, the relationship could be considered significant.

(e) (2 p) Look at the model residual plot in the figure below (it plots differences between
the actual and predicted values of the dependent variable). What conclusions can be
drawn from the figure?

The plot shows that the assumption of linearity has not been met. The residuals should follow

the normal distribution for all the values of lstat, they are heavily skewed in the plot. We should

conclude that the relationship is non-linear and introduce new terms into the regression formula

(lstat2 is a good idea to start with).

(f) (2 p) Explain the concept of influential observations. Denote a couple of influential
points in the scatter plot below and explain how you would find them.
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An influential observation is an observation whose deletion from the dataset would noticeably change
the model parameter estimates. It could either be an outlier (a data point that differs significantly
from other observations) or a high-leverage point (an observation made at extreme values of inde-
pendent variables). The most influential observations can be found in the figure below.

Problem 2. (10 p) You are a mechanical locksmith and you are trying to find out how the
shaft machining error is related to the machine tool parameter setting. You have compiled a
multivariate linear model. The model expresses the relationship between the production error
(the difference between the ideal shaft diameter and the actual shaft diameter, ProdError)
and the setting of ten different continuous machine parameters (P1-P10). Below is the
output you received:

summary(lm(ProdError ∼ P1+P2+P3+P4+P5+P6+P7+P8+P9+P10),data=d)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.05270 0.09576 -0.550 0.5835

X1 0.01298 0.08924 0.145 0.8847
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X2 0.01596 0.10939 0.146 0.8843

X3 -0.02865 0.09079 -0.316 0.7531

X4 0.04611 0.09548 0.483 0.6303

X5 0.14151 0.09343 1.515 0.1334

X6 -0.02375 0.10277 -0.231 0.8178

X7 0.25522 0.10516 2.427 0.0172 *

X8 0.06672 0.08972 0.744 0.4590

X9 0.09949 0.10171 0.978 0.3306

X10 -0.04003 0.09317 -0.430 0.6685

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9039 on 89 degrees of freedom

Multiple R-squared: 0.1145, Adjusted R-squared: 0.01502

F-statistic: 1.151 on 10 and 89 DF, p-value: 0.3346

(a) (2 p) Decide whether at least one of the machine parameters (independent variables)
is useful for estimating a manufacturing error (ProdError). In other words, formally
decide whether you can decline H0 : β1 = β2 = · · · = β10 = 0. Justify correctly.

The reasoning should be based on the F-statistic and its corresponding p-value. The null hypothesis

cannot be rejected, the model does not seem to be useful. The reasoning that stems from the

statistics reached for the individual variables could be misleading due to multiple comparisons. For

10 variables, truly valid H0 and α = 0.05, there is only 0.9510 = 0.6 probability that there will be

no type I error in the individual coefficient tests, 40% of trials will find at least one falsely significant

coefficient.

(b) (2 p) Let us compare the full model constructed above with the intercept model and
with the model that employs only the variable P7 identified as the most relevant. Let
us compare them with F-test through an ANOVA run. Interpret the ANOVA table
below.

lm.const<-lm(ProdError ∼ 1,data=d) # the intercept model

lm.sel<-lm(ProdError ∼ P7,data=d) # the P7 model

anova(lm.const,lm.sel,lm.all)

Analysis of Variance Table

Res.Df RSS Df Sum of Sq F Pr(>F)

1 99 82.114

2 98 76.076 1 6.0384 7.3911 0.007879 **

3 89 72.711 9 3.3647 0.4576 0.899016

ANOVA easily compares nested models where the independent variables of a simpler model make a

subset of the independent variables of a more complex model. We order the models from the most

simple to the most complex and ANOVA compares all the pairs of neighboring models. The ANOVA

table suggests that lm.sel outperforms lm.const while lm.all does not further improve lm.sel. This
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conclusion is in contradiction with the conclusion in the previous answer. The contradiction arises

from a methodological fault that we did. We used the same dataset to select P7 as the best variable

and to test whether it performs well. This approach suffers from bias and could be misleading.

(c) (2 p) The dataset under consideration contains 100 samples. How do the type I error
and type II error in the individual coefficient tests change with increasing number of
samples if we maintain a constant level of significance α?

Type I error is a controlled parameter and its probability remains unchanged with the α value

unchanged. However, the power of the test will increase, so the type II error will decrease. At the

same time, the robustness of RSS, R2 and consequently the F-test power will increase as well.

(d) (4 p) Describe in detail the way in which you would validate your models over the
samples that you currently have. You can create additional auxiliary models. Describe
the validation method, define the error function, and specify with which baseline you
will compare the calculated error.

Let us assume that we want to compare lm.const, lm.sel and lm.all. Let us assume that our sample
set is small and thus the hold-out method that splits the sample set on training and testing set is
inappropriate (we need to use as many training samples as possible, the same holds for testing set).
Then, a good option seems to be to run 10-fold cross-validation. We will always train our models on
9 folds and test them on the remaining one. We will gradually shift the testing fold. The dependent
variable is continuous, we can use the root mean square error (RMSE) or mean absolute percentage
error (MAPE). The error will always be calculated over the testing fold and averaged over the folds.
If we repeat 10-fold cross-validation multiple times, we can statistically test whether performances
of the individual models truly differ.

Watch out. Feature selection is a part of training process. It cannot be done only once before

cross-validation, it must be repeated again and again for each split. Consequently, we will have 10

different lm.sel models to test, the set of relevant variables included into the model may change over

folds as well as their regression coefficients. These 10 models will serve to estimate the performance

of the final lm.sel model. Only the final model (to be reported and deployed) could be based on all

the available samples, and will thus certainly employ the variable P7.

Problem 3. (10 p) There is a cubic spline with one knot ξ given by the formula: f(x) =
β0 + β1x+ β2x

2 + β3x
3 + β4(x− ξ)3+.

(a) (1 p) Define the basis function (x− ξ)3+.

The definition is: (x− ξ)3 for x > ξ, otherwise 0.

(b) (1 p) How many degrees of freedom does the given cubic spline have? Why?

A cubic spline with K knots has K + 4 parameters or degrees of freedom. Our spline has one knot

and thus it has 5 independent parameters/degrees of freedom. The number of parameters can be

seen from the formula above too, there are β0, . . . , β4 there.

(c) (1 p) What are the properties of the cubic spline at the knot?

The spline is continuous at the knot and it has a continuous first and second derivative there. The

properties follow from the general properties for d-degree splines.
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(d) (2 p) Write down a cubic spline with one knot as a piecewise polynomial. Note: you
will only change the form of notation, name the parameters differently from the spline
parameters above.

f1(x) = a1 + b1x+ c1x
2 + d1x

3 for x < ξ

f2(x) = a2 + b2x+ c2x
2 + d2x

3 for x ≥ ξ

(e) (3 p) Express the piecewise polynomial parameters using the cubic spline parameters
β0, β1, . . . , β4.

The procedure is straightforward: the spline must match f1 before the knot and f2 after the

knot. For the first polynomial it is trivial, because the basis function is zero before the first knot:

a1 = β0, b1 = β1, . . . , d1 = β3. For the second polynomial it holds: a2 + b2x + c2x
2 + d2x

3 =

β0 + β1x + β2x
2 + β3x

3 + β4(x − ξ)3. By developing the last term we get: β0 + β1x + β2x
2 +

β3x
3 + β4(x3 − 3x2ξ + 3xξ2 − ξ3) = (β0 − β4ξ3) + (β1 + 3β4ξ

2)x+ (β2 − 3β4ξ)x
2 + (β3 + β4)x3,

of which follows: a2 = β0 − β4ξ3, b2 = β1 + 3β4ξ
2, c2 = β2 − 3β4ξ, d2 = β3 + β4.

(f) (2 p) Proof that the piecewise cubic polynomial found in the previous two steps main-
tains the knot properties of a cubic spline.

Continuity f1(ξ) = f2(ξ) can be proven by substituting for coefficients a, b, c, d: f1(ξ) = β0 +
β1ξ+β2ξ

2 +β3ξ
3, f2(ξ) = β0−β4ξ3 + (β1 + 3β4ξ

2)ξ+ (β2− 3β4ξ)ξ
2 + (β3 +β4)ξ3 = β0 +β1ξ+

β2ξ
2 + β3ξ

3 = f1(ξ).

Continuity of the first derivative f ′1(ξ) = f ′2(ξ) can be confirmed by substituting for the coefficients
and deriving: f ′1(ξ) = β1 + 2β2ξ + 3β3ξ

2 = f ′2(ξ).

Continuity of the second derivative f ′′1 (ξ) = 2β2 + 6β3ξ = f ′′2 (ξ).

Problem 4. (10 p) A robot must traverse a path defined by six points, as shown in the
figure below. The robot is required to visit all the points while finding the shortest path that
is smooth. Discuss the extent to which known non-linear methods achieve these goals.

(a) (2 p) Name the methods that lack smoothness and can, therefore, be excluded. Present
the best solution these methods can provide.
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Obviously, we cannot use step functions. A step function that passes directly through the set of
points and uses uses the minimum possible number of parameters is: y = β0I(x < ξ1) + β1I(ξ1 ≤
x < ξ2) + β2I(ξ2 ≤ x < ξ3) + β3I(x > ξ3), where β0 = 7, β1 = 6, β2 = 4, β3 = 5 and ξ1 = 4.5,
ξ2 = 9, ξ3 = 11.

Similarly, the linear spline would not be smooth too: y = β0 + β1x+ β2(x− ξ1)+ + β3(x− ξ2)+ +
β4(x − ξ3)+ + β5(x − ξ4)+, where β0 = 7, β1 = 0, β2 = −1, β3 = 1, β4 = −1, β5 = 1.5, and
ξ1 = 4, ξ2 = 5, ξ3 = 8, ξ4 = 10.

Both the solutions are shown in the summary figure below.

(b) (2 p) Could polynomial regression be applied? How many parameters would it need?

Polynomial regression proposes a solution that is smooth. The degree 5 polynomial with 6 parameters
interpolates all the points that robot must visit: y = β0 + β1x+ β2x

2 + β3x
3 + β4x

4 + β5x
5. The

path does not seem to be long and oscillate, extrapolation beyond the visited places (x < 2 and
x > 12) is not important here.

If we used a lower degree, the robot would miss (most) points. For larger degrees, the problem is

ill-posed. The degree 5 solution as well as the degree 3 solution are shown below.

(c) (2 p) Show a couple of solutions with higher-order regression splines. Propose the best
parametrization, compare them in terms of path length.

Quadratic or cubic spline could be a good solution here. The quadratic spline needs three knots,
for fewer it underfits (does not visit all the places), for more it overfits (starts to oscillate and
propose too long paths): y = β0 + β1x + β2x

2 + β3(x − ξ1)2+ + β4(x − ξ2)2+ + β5(x − ξ3)2+.
The cubic spline needs two knots only to reach 6 parameters and pass through the data directly:
y = β0 + β1x+ β2x

2 + β3x
3 + β4(x− ξ1)3+ + β5(x− ξ2)3+.

Natural splines can further help shorten the path and provide reasonable extrapolation as they
extrapolate linearly. Despite the fact the assignment does not specify whether we should consider the
outer regions or simply start in the leftmost place and finish in the rightmost one, linear extrapolation
also helps to shorten the path through the places.

All the three solutions are shown below. Obviously, the natural spline with four knots represents the

optimal solution of our task. The quadratic spline tends to oscillate more than its counterparts.

(d) (2 p) Discuss to what extent smoothing splines meet the robot goals.

Smoothing spline is a shrinked natural cubic spline with knots in all the observed xs. For λ→∞ it
shrinks heavily and matches the straight line. The requirements are not met. For λ = 0 it shows zero
residual sum of squares and passes directly through all the points. This solution equals the natural
cubic spline shown above. The same outcome is reached if the number of degrees of freedom is set
to 6 (df=6). Note that there are two alternative ways to parametrize smoothing spline, through λ
or the number of degrees of freedom.
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(e) (2 p) Eventually, where would you place the cubic spline knots and does their placement
matter in our task?

The knot placement definitely matters. We will deal with the cubic spline with two knots as it
represents its best parametrization. The best general solution is to distribute the knots equally. In
our case, we should also place them directly to observed internal xs (not generally recommended
for spline learning in regression because of overfitting). The figure below compares four solutions:
a) the best solution: ξ1 = 5, ξ2 = 8, b) close the best is the automated solution that splits the
observed xs into 3 bins: ξ1 = 4.7, ξ2 = 8.7, c) a bad selection with outer knot selection that causes
oscillations: ξ1 = 2, ξ2 = 12, d) a bad selection with too close knots that underfits the data: ξ1 = 3,
ξ2 = 4.
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2 Linear regression and ANOVA

Problem 5. (10 p) You are analyzing salary data from an unknown university stored in a
data frame df. You want to find the key factors that actually influence the professors’ wages.
Besides the target variable salary you deal with the following set of independent variables:
rank . . . a factor with levels AssocProf, AsstProf, Prof; discipline . . . a factor with levels
A (“theoretical” departments) or B (“applied” departments); yrs.since.phd . . . a numerical
variable that gives the number of years since PhD completion; yrs.service . . . a numerical
variable that gives the number of years of service and sex . . . a factor with levels Female
and Male.

(a) (2 p) Explain in which way you would best decide whether sex influences salary with
the aid of linear regression. Below there are two ultimate sample lm calls. Interpret
both of them, decide whether any of them could be used to answer the role of sex. If
they are not applicable, propose your own lm call.

Call 1:

lm(salary ∼ sex, data = df)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 101002 4809 21.001 < 2e-16 ***

sexMale 14088 5065 2.782 0.00567 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 30030 on 395 degrees of freedom

Multiple R-squared: 0.01921, Adjusted R-squared: 0.01673

F-statistic: 7.738 on 1 and 395 DF, p-value: 0.005667

Call 2:

lm(salary ∼ rank + discipline + yrs.since.phd + yrs.service + sex, data = df)
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 65955.2 4588.6 14.374 < 2e-16 ***

rankAssocProf 12907.6 4145.3 3.114 0.00198 **

rankProf 45066.0 4237.5 10.635 < 2e-16 ***

disciplineB 14417.6 2342.9 6.154 1.88e-09 ***

yrs.since.phd 535.1 241.0 2.220 0.02698 *

yrs.service -489.5 211.9 -2.310 0.02143 *

sexMale 4783.5 3858.7 1.240 0.21584

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 22540 on 390 degrees of freedom

Multiple R-squared: 0.4547, Adjusted R-squared: 0.4463

F-statistic: 54.2 on 6 and 390 DF, p-value: < 2.2e-16

The first call suggests that males have higher salaries and the difference is significant. However, we
have to assume that the individual independent variables are related and deal with the multivariate
model that contains all the predictors.

The actual role of sex can be assumed from the coefficient that is related to sex variable in the Call
2 and its p-value. There, the absolute value of the regression coefficient adjoined to sex is much
smaller than in Call 1 and the difference between males and females seems to be insignificant. We
would need more data to decide with more power, however, the significance of sex in Call 1 was
obviously caused by the fact that males have higher ranks and longer careers. This could easily be
checked by e.g. aov(yrs.since.phd ∼sex,df):

This ANOVA application confirms that there is significant relationship between gender and the

length of career. Consequently, yrs.since.phd may play a role of confounder in Call 1. It has a

relationship both with salary and sex, its influence could thus be explained by sex in Call 1.

(b) (2 p) Now you will make the following call: summary(aov(salary∼sex,df)). Explain
what you will learn from the call.

One-way ANOVA (one independent variable and one dependent variable) could be considered equiv-
alent to single variate lm calls. Consequently, we will get nearly the same message as we got in
previous lm Call 1 (the same F-statistic and the same p-value). The main difference is in the form
of the output (the coefficients are not reported here). In particular:
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(c) (2 p) Now you will make the following call: summary(aov(salary ∼rank + discipline +
yrs.since.phd + yrs.service + sex,df)). Explain what you will learn from the call.

Unlike the previous case, this multivariate ANOVA call will not match the previous multivariate lm
call. The reason is that both the methods treat sum of squares in regression differently. In lm,
we search for main effects of the individual variables, their influence is considered in parallel (Type
III sum of squares). In aov, we evaluate the individual predictors sequentially, in the order of their
appearance in the formula (Type I sum of squares). For example, if we enter rank first, its sums
of squares are computed ignoring discipline and other variables. Therefore, any variance in salary
that is shared by rank and discipline will be attributed solely to rank. The sums of squares for
discipline will then be computed excluding any variance that has already been attributed to rank.
Consequently, in this type of call we may learn what is the contribution of a new variable to the
existing model based on all the variables that precede it in the formula.

The above described aov call in fact performs an analysis of covariance (ANCOVA) which blends
ANOVA and regression. It evaluates whether the means of a dependent variable (DV) are equal
across levels of a categorical independent variable (IV) often called a treatment, while statistically
controlling for the effects of other (continuous) variables that are not of primary interest, known as
covariates (CV). In particular:

(d) (2 p) Explain in which way you would best decide whether sex influences salary with
the aid of ANOVA. Show a particular R call or calls (aov and anova commands).

We have already shown that one-way ANOVA could be considered equivalent to single variate lm call
and it may oversimplify in multivariate tasks because of ignoring confounders. The best calls could
be: summary(aov(salary ∼rank + discipline + yrs.since.phd + yrs.service + sex,df)), in fact any
aov call that puts sex last in the full multivariate model. Another option is: anova(lm(salary ∼rank
+ discipline + yrs.since.phd + yrs.service,df),lm(salary ∼rank + discipline + yrs.since.phd +
yrs.service + sex,df)). The outcome of both the calls is exactly the same wrt the role of sex under
discussion.

However, this approach studies sequential effect of sex wrt the existing model. The question that

we answer with these calls is different from the original question whether sex influences salary. It

is much better answered by the previous Call 2 lm(salary ∼rank + discipline + yrs.since.phd +

yrs.service + sex, data = df).

(e) (2 p) Discuss the relationship between yrs.service and yrs.since.phd. Is there any issue
to be checked? Consider both the real meaning of these two variables and lm calls
above. If so, propose a solution.
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Obviously, these two variables are closely related and necessarily correlated. In general, the more years
from PhD, the longer service. This correlation could be strong and may cause collinearity problems
in the multivariate model. The issue may affect estimates regarding the individual predictors. In the
full multivariate model (lm Call 2) it is unexpected and suspicious that salary decreases with the
length of service. We would expect exactly the opposite and collinearity could be the reason.

A simple solution is to calculate correlation between yrs.service and yrs.since.phd (it is 0.91 in our
data) and/or draw a scatter plot for the two variables:

Knowing the collinearity, we would possibly remove one of the two variables from the model (if we
do so and remove yrs.since.phd in the first call and yrs.service in the second call, any of the two
variables comes out insignificant then):
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If we look at the model scores and compare the simplified models with lm Call 2, it is obvious that

shrinkage is beneficial (no decrease in Adjusted R-squared, slightly tighter coefficient estimates).

3 Generalized linear models (GLMs)

Problem 6. (10 p) Your task is to predict household size in the Philippines. In particular,
you are supposed to predict the number of people sharing a house (the variable denoted as
total) as a function of the age of the household head (age) and location island (location).
We have m = 1, 500 observations, they are stored in the data frame named fHH1. The
target variable is obviously a count variable, we will work with generalized linear models
and Poisson regression in particular.

(a) (2 p) Explain the terms saturated model and null model.

A saturated model has as many estimated parameters as observations. It is over-parametrized
and just interpolates the data. We can implement it with the aid of a categorical independent
variable that has as many different values as observations. This variable will be transformed into
m− 1 dummy binary variables, the total number of β parameters will be equal to m (including the
intercept).

The null model is the model that matches the null hypothesis. In regression it commonly means
that there is no relationship between the dependent variable and predictors. The predictors are thus
unimportant and the model contains only intercept.

In GLMs, these two models commonly serve to calibrate the fit of any reasonable model. The fit

can be quantified in terms of likelihood, log-likelihood or deviance. The closer our model is to the

saturated model, the better. The further our model is from the null model, the better.

(b) (2 p) Show how you would construct these two models in the household size task.
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We deal with the Poisson models yi ∼ Poisson(µi), their µi can be defined as follows:

null model: logµi = β0,

saturated model: logµi = β0 + β1I(i = 1) + β2I(i = 2) + · · ·+ βm−1I(i = m− 1),

where I(.) is an indicator function (takes 1 if its condition is met, 0 otherwise).

In R the models can easily be constructed as follows:

(c) (2 p) Create a reasonable Poisson model based on the variables contained in fHH1.
Interpret the model.

The most straightforward model just includes both the independent variables:

The number of variables is small wrt the sample size. Therefore, knowing the p-values for age

and Visayas island we may prejudge that both of the independent variables are important for

the household size prediction. The model suggests that the mean household size decreases by

the multiplicative factor of e−0.004598 = 0.9954 for each year that the head of household is older.

Similarly, the location Visayas has a larger mean household size than the referential island (its name

is not shown), the ratio is e0.1275 = 1.136.

(d) (2 p) How would you statistically evaluate the model, i.e., how would you decide
whether any of the predictors is useful?

GLMs can be evaluated in terms of their deviance (similar role as the residual sum of squares in
linear regression). Vaguely, the null deviance shows the difference between the perfect fit (saturated
model) and the worst fit (the null model). The residual deviance shows the difference between the
perfect fit and the model. A criterion technically identical to R2 can be used:

R2 = 1− Dres

Dnull
= 0.018
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In linear regression, R2 quantifies the percentage of variance explained. In here, R2 quantifies the
percentage of deviance explained. Our model explains less than 2% of deviance contained in the
null model. This is not much. At the same time, p-values related to two of the predictors seem to
be high. Is it a contradiction? Not necessarily. We can statistically test the difference in deviances
of two nested models:

Consequently, we can reject the null hypothesis that our model fits the data equally well as the null

model in favor of the alternative hypothesis that our model significantly outperforms the null model.

Despite the small relative difference in deviances, our model (very likely) helps.

(e) (2 p) Describe the method that serves to estimate parameters in GLMs. Specify for
Poisson regression and saturated model.

GLMs tune their parameters by maximizing model likelihood. To do so, they employ the method of
iteratively reweighted least squares. For Poisson regression, the optimization formula is:

Poisson(µ) =
µye−µ

y!
= exp (y logµ− µ− log(y!))

(knowing that: µy = exp(y logµ))

Log-likelihood to be maximized: `(β) =

m∑
i=1

(yi logµi − µi − log(yi!))

`(β) =

m∑
i=1

(
yi(β0 + β1xi1 + · · ·+ βpxip)− exp(β0 + β1xi1 + · · ·+ βpxip)− log(yi!)

)
(knowing that: logµi = β0 + β1xi1 + · · ·+ βpxip for canonical link)

For the saturated model in Poisson regression it is clear that ∀i : µi = yi. In other words, inter-
polation and over-parametrized model fit the targets with means perfectly. At the same time it
holds that the variance will also be equal to µi as it must be equal to mean in Poisson distribution.
Consequently, the saturated model will not have zero log-likelihood, its log-likelihood will be:

`(βsat) =

m∑
i=1

(yi log yi − yi − log(yi!))

The log-likelihood is 0 only for targets where yi = 0. Otherwise, it takes non-zero values (-1 for

yi = 1, -1.31 for yi = 2, -1.50 for yi = 3, etc.)
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4 Classification

Problem 7. (10 p) Let us consider a 2-class classification problem represented by a training
set visualized below (there are two independent variables X1 ∈ R and X2 ∈ R, the class
Y ∈ {C1, C2} is shown in colors and point shapes). The main goal is to propose a classifier
f : X → Y .

(a) (2 p) Draw a decision boundary that perfectly splits the training data (as simple as
you can). Write down a formula for such a decision boundary (only its mathematical
form is important, use symbols for coefficients, not numbers).

Obviously, the training examples are not linearly separable. As for polynomial decision boundaries,
the third degree polynomial represents the least flexible split. One of its analytical forms could be:
X2 = θ0 + θ1X1 + θ2X

2
1 + θ3X

3
1 .
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(b) (2 p) Is linear discriminant analysis (LDA) able to reach 100% accuracy on this training
set? Quadratic discriminant analysis (QDA)? Logistic regression (LR)? Explain.

The training examples are not linearly separable. LDA and logistic regression have a linear decision
boundary, they cannot be 100% accurate. In fact, they classify correctly only 5 out of 8 training
examples (the best linear classifier makes 2 training errors, it does not have to follow any assump-
tions). QDA works with conic section boundaries, its flexibility is also insufficient to reach 100%
accuracy on this training set. In this training set, it classifies correctly 5 out of 8 training examples
too (the best conic section classifies all the training examples correctly).

(c) (3 p) Explain the difference between LDA and QDA application to this training set?
Which method is more likely to better fit future test data?

Both LDA and QDA perform discriminative analysis. They both stem from the Bayes’ theorem
and assume that each class can be modeled by a Gaussian distribution. LDA also assumes that all
the classes share the same covariance matrix. The decision boundaries they construct for the given
training set are shown below (LDA left, QDA right).

Without any knowledge about data distributions we cannot decide which method will perform better.

However, we deal with an extremely small training set. For such a small training set it is reasonable

to employ the simpler method with a smaller number of parameters to set, which is LDA. This

method is less likely to suffer from variance that makes a bigger issue than bias here.
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(d) (3 p) Assume that the underlying data distribution is as follows: the samples have
bivariate normal distribution given their class, the class means are different, however,
the class covariance matrices match. Decide and explain, which method (LDA, QDA
or logistic regression) will best classify test samples when using the given training set.
Then, make the same decision for a sufficiently large training set having e.g., 10,000
samples per class. Explain both the decisions.

The task definition obviously matches the LDA assumptions. This method will benefit from the
right flexibility as well as its normality assumption. It is going to work best, especially for small
sample sizes. For very large sample sizes, all the considered methods will perform equally.

QDA and LR are more difficult to theoretically compare. QDA will suffer from higher variance as it is
too flexible for the given task, on the other hand, it may benefit from the knowledge of within-class
normality.

The figure below shows an empirical comparison of the three methods for the setting S: µC1 =
c(1, 1), µC2 = c(2, 3), ΣC1 = ΣC2 = matrix(c(2, 1, 1, 1), 2, 2).

The plot summarizes relationship between train set size and testing accuracy. In this experiment, a
train set of each size was randomly generated 100 times. Testing accuracy comes from a large test
set that remained constant during the experiment. The comparison confirms our reasoning about
LDA dominance. It also shows that LR outperforms QDA for small training sets. The negative role
of QDA flexibility outweighs the positive role of its knowledge of within-class normality.

Deeper understanding can be gained from the plots below. They illustrate how LDA, QDA and LR
work with the small training set presented in the beginning of this exercise (this set was actually
generated with the setting S too, red ∼ C1, blue ∼ C2). The plots show a large test set where
red triangles represent C1 and green crosses represent C2. The first benchmark plot demonstrates
the best decision boundary, it can be easily approached by e.g., LDA with a large train set.
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5 Dimensionality reduction

Problem 8. (10 p) Let us consider a real data matrix X that contains 1,000 samples and
100 variables. The matrix has been centered, the variables in the matrix columns have zero
means. Your goal is to visualize the data in 2 dimensional space in order to understand
them.

(a) (3 p) Your first option to reduce the dimension is principal component analysis (PCA).
Explain how the method works, provide a mathematical description of principal com-
ponents.

PCA is a linear dimension reduction method that transforms the original data in such a way that the
maximum amount of variance contained in the original data remains contained in a small number of
principal components. Principal components can be seen as mutually orthogonal lines that minimize
the average squared distance from the original points to the line.

In our case: m = 1, 000, D = 100, L = 2. The principal components can be reached as eigenvectors
of covariance matrix: CX = 1

mXTX. The jth principal component is the eigenvector with the jth

largest eigenvalue λj : CXp·j = λjp·j, p·j = 〈p1j , p2j , . . . , pDj〉,
∑D
i=1 p

2
ij = 1. The vector of jth

principal component scores is a vector of length m that is a normalized linear combination of the
original variables weighted by p·j: t·j = p1jx·1 + p2jx·2 + · · ·+ pDjx·D. The transformation has a
matrix form, the transformation matrix P contains p·j in its jth column.

The projection to the output space is reached as: T = XP.

19



(b) (2 p) Mathematically define dimension reduction mapping F and reconstruction map-
ping f in our task.

PCA generates a transformation matrix: PDxD (columns represent principal components),

dimensionality reduction mapping: F : TmxL = XmxDPDxL (only L first columns used),

reconstruction mapping: f : Xr
mxD = TmxLP

T
LxD = XmxDPDxLP

T
LxD.

(c) (3 p) You already performed PCA. Is there any way to guess whether PCA is a good
visualization method in our case?

Unsupervised learning has rather vague goals. It is not easy to say that a certain method works
well for the given data without deeper knowledge of the domain and comparative tests of several
dimension reduction methods.

However, the proportion of explained variance provides a simple test that helps us to decide whether
PCA could potentially be useful. A small proportion of explained variance means that the recon-
struction error is large and a lot of information gets lost.

In our case, it is unlikely to observe meaningful patterns in the final 2D visualization if the variance
captured by the first two principal components is small. If they captured only 2% variance contained
in our dataset (the ration between the new dimension and the original dimension) or slightly more,
PCA failed to effectively compress the data. The visualization can easily miss patterns contained in
the original data. On the other hand, if the variance captured by the first two principal components
approaches 100% of the variance in the original data, PCA is able to approach zero reconstruction
error and can hardly be overcome by its competitors. In general, uneven variance distribution
between the principal components suggests that PCA might be helpful.

Mathematically:

variance in the original data: var(X) =
∑D
j=1 var(x·j) (the sum of original variable variances),

explained variance: var(T) =
∑L
j=1 var(t·j) (the sum of reduced variable variances),

decision making from proportion of explained variance: var(T)
var(X) �

L
D?,

there is a couple of other ways to calculate the matrix variance too: var(X) = 1
m−1 ||X||

2
2 (nor-

malized squared L2 matrix norm), or var(X) =
∑D
j=1 eigenvalues(CX)) (sum of eigenvalues of the

covariance matrix of X), then the same decision making can be made as:
∑L

j=1 eigenvalues(CX)∑D
j=1 eigenvalues(CX)

� L
D?

(d) (2 p) Explain how we can run PCA with 1,000 samples and 100 variables when knowing
the curse of dimensionality principle. Is the sample size sufficient?

The curse of dimensionality principle says: in the absence of simplifying assumptions, the sample size
needed to estimate a function with D variables to a given degree of accuracy grows exponentially
with D. A general dimensionality reduction method requires a sample size exponential in the data
dimension to be able to capture the manifold shape.

PCA is a linear dimensionality reduction method. The data is projected onto a lower dimensional

linear subspace (hyperplane) and this way of projection represents the above mentioned simplifying

assumption. The hyperplane should approximately match the observations. If the assumption fails,

PCA does not work properly even with an arbitrarily large amount of input samples. If it holds

the necessary sample size depends on: 1) the intrinsic dimension d of the assumed hyperplane (the

manifold we learn could be a line, plane, . . . , D-dimensional hyperplane), 2) the amount of noise
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in the dataset (how precisely the samples hit the hyperplane). For example, in the case of zero

noise, the necessary sample size only grows linearly with the intrinsic dimension of the assumed

hyperplane. A plane with no noise embedded in 100-dimensional space only needs 3 samples to get

identified and PCA finds the embedding from these 3 samples. For these reasons we can run PCA

even though m < D. Of course, in presence of noise we can easily overfit the training data and we

need more than d+ 1 observations. At the same time, d is rarely known.

Problem 9. (10 p) Let us consider a problem with two concentric circles in a two-dimensional
space. The circles represent two different classes. There are 100 instances, with half belong-
ing to class A and the other half to class B. See the picture below. Your task is to reduce
the problem to an one-dimensional space, where the classes are linearly separable.

(a) (1 p) Start with your own custom mapping avoiding traditional methods such as PCA,
kernel PCA, multidimensional scaling, etc.

Obviously, the data have the radial structure. The conversion to polar coordinates can capture it:
r =

√
x2 + y2, θ = atan2(y, x) (the left figure below). The radial distance from the origin is the

coordinate that clearly splits the classes (the right figure below).
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(b) (1 p) If we apply PCA directly, it will fail in our task. Propose a simple explicit
transformation that will help PCA to solve the task.

The simplest transformation is: t = x2, u = y2. While the classes are already linearly separable
in two-dimensional space (as shown in the left figure below), they are not separable in t nor u
independently. After PCA, the main principal component captures the variance within class B,
whereas the second principal component separates the classes.

Is is important to note that PCA does not directly solve our task of class separation when reducing
to 1D, as it is not a classification algorithm. However, as a transformation method, it helps create
dimensions that facilitate finding a solution.

(c) (2 p) Apply kernel PCA (kPCA) with the quadratic kernel. Define the kernel and
explain the transformation that occurs. Will this approach achieve our goal?

A kernel computes a similarity measure between two input vectors x = (x1, y1) and x′ = (x2, y2)
without explicitly mapping them into a higher-dimensional space. The quadratic kernel is defined
as: K(x,x′) = 〈x,x′〉2. The kernel matrix K100×100 contains the similarity among all the instance
pairs. kPCA is performed through eigendecomposition of the kernel matrix.

The quadratic kernel implicitly maps data to a higher-dimensional intermediate feature space Φ such
that: K(x,x′) = 〈φ(x), φ(x′)〉. For a 2D input, this corresponds to the explicit mapping to a 3D
space φ(x) = (x2,

√
2xy, y2) (but that is not directly done, we only work with the kernel matrix).

This approach is thus not much different from the procedure ad (b). In the figure below you can
see that the third principal component linearly separates the classes.
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(d) (2 p) Apply kPCA with the RBF kernel. Define the kernel and explain the transfor-
mation that occurs. Will this approach achieve our goal?

The Radial Basis Function (RBF) kernel, also known as the Gaussian kernel, is defined as:

K(x,x′) = exp
(−‖x− x′‖2

2σ2

)
The kernel measures the similarity between two points. Points closer in the input space will have
a higher kernel value (closer to 1), while distant points will have a smaller kernel value (closer to
0). The parameter σ controls how ”localized” the kernel is. Small values focus on local struc-
tures, capturing finer details, while large values blur differences, making the kernel capture broader
relationships. The RBF kernel is an ideal choice for tasks like the concentric circles dataset. A
well-tuned σ is crucial.

The RBF kernel implicitly maps data to an intermediate feature space with infinite dimension. In
practice, the dimensionality of the transformed space is limited to the number of data points. For
concentric circles, most variance will be captured by a small number of principal components, the
rest will have zero or close to zero eigenvalues and can be discarded.

The figure in the bottom left shows the solution for σ = 0.5. Its value is too small, which leads
to overfitting. The figure in the bottom right shows the solution for σ = 2. The main pattern is
captured, the classes are separated in the first component, we achieved the optimal solution.
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(e) (2 p) Generalize the problem of concentric circles and explain how kPCA might improve
class separability.

kPCA transforms data into a higher-dimensional feature space where non-linear relationships between

data points can become linear. By selecting an appropriate kernel (e.g., an RBF kernel), kPCA can

project the data in such a way that the overlap between classes in the original space reduces or

disappears in the transformed space. kPCA finds the principal components in the transformed space

that maximize variance. These components capture the intrinsic geometry of the data better than

the original axes and may also separate the classes. Different kernel functions (e.g., polynomial,

RBF, or sigmoid kernels) allow customization to fit various non-linear patterns.

(f) (2 p) Explain how you would project a new instance xnew to the transformed space
without the need to rerun the complete kPCA.

We have already run kPCA. Assume than m training points were available. The kernel matrix
Km×m, its eigenvectors αk and eigenvalues λk are available (k = 1 . . .m). We only need to
calculate the vector of kernel values between the new instance and each of the training points xi:
Knew = (K(xnew,x1),K(xnew,x2), . . . ,K(xnew,xm))T . The projection on the k-th eigenvector
gives the k-th coordinate in the transformed space: tnew,k =

∑m
i=1 αk[i]Knew[i].

6 Robust statistics

Problem 10. (10 p) Answer the questions below.

(a) (3 p) There is a sample of 10 observations X10 = {x1, . . . , x10} drawn from a normal
distribution N(µ, σ) with no outliers. You estimated the parameter µ with the aid of
median, i.e. µ̂ = med(X10). Explain whether it is a good or bad estimator and why.

Sample median is an unbiased and consistent estimator of the population mean µ. It means that:
1) there is no difference between this estimator’s expected value and the true value of µ, 2) for large
samples, it will give the right value of µ. These are good properties.

At the same time, median is a location estimate that has a large breakdown point and low efficiency
for normal distributions. The first characteristic says that it is robust towards outliers, however,
there are no outliers here. The second property means that variance of the median is larger than
variance of ML estimate for this type of distribution, which is sample mean 1

n

∑10
i=1 xi. To conclude,

it is better to use sample mean, which is unbiased and consistent too and most efficient.

To compare the efficiency of the mean and the median, let us conduct the following experiment.
We will draw a sample of size 10 from N(0, 1) and calculate both the sample mean and the sample
median. We will repeat this experiment 10,000 times and compare the distributions of the means and
medians. The plot below demonstrates that both the distributions have a mean of zero (indicating
they are unbiased), but the variance of the sample means is only about 3/4 of the variance of the
medians. This indicates that smaller samples are needed to estimate µ using the sample mean as
accurately as when using the sample median (accuracy includes both bias and variance).
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(b) (2 p) There is a sample of 10 observations X10 = {x1, . . . , x10} drawn from a Laplace
distribution L(µ, σ) with no outliers. You estimated the parameter µ with the aid of
sample mean, i.e. µ̂ = 1

n

∑10
i=1 xi. Explain whether it is a good or bad estimator and

why.

The relationship between sample mean and sample median is inverse wrt the previous task. Sample
mean is an unbiased and consistent location estimator, however, sample median is an unbiased and
consistent location estimator too and it is most efficient on top of that.

Let us perform exactly the same experiment as we did in the previous task, we will only work
with L(0, 1). The plot below demonstrates that both the distributions have zero mean (they are
unbiased), but the variance in sample medians is only about 3/4 of variance in sample means (median
is in a blue dashed line). We need smaller samples to estimate µ with sample median as accurately
as with sample mean.
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(c) (2 p) Explain the term correlation. What is the difference between correlation and
covariance? Which measures of correlation do you know?

Correlation is any statistical relationship between two random variables. It is synonymous with
dependence. If we consider only linear relationship (the relationship can generally be non-linear too),
defined by the Pearson’s correlation coefficient ρ, correlation becomes very similar to covariance. It
refers to the scaled form of covariance:

cov(X,Y ) = σXY = E[(X − µX) (Y − µY )]

corr(X,Y ) = ρXY = E[(X − µX) (Y − µY )]/(σXσY )

The other well-known correlation coefficients (Spearman’s, Kendall’s) assess how well the relation-
ship between two variables can be described using a monotonic function. They further generalize
the Pearson’s coefficient. Spearman’s correlation can be calculated with the aid of ρ, we only deal
with ranks instead of the raw values of random variables:

r(X,Y ) = ρR(X)R(Y )

(d) (3 p) In the four bivariate plots below gradually show small sample problems where
Pearson’s correlation is large and Spearman’s correlation is large, Pearson’s correlation
is small and Spearman’s correlation is large, . . . Briefly describe each plot.
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Non-parametric Spearman’s correlation is more robust in case of outliers (the upper-left plot). It
is also able to detect non-linear correlation, in addition to standard linear correlation (the bottom-
right plot). Both the coefficients agree if there is no relationship between variables (the bottom-left
plot), or there is a strong linear relationship (the upper-right plot). In the latter case, Pearson’s
coefficient could be advantageous as it has more statistical power than Spearman’s coefficient (it
needs a smaller sample to detect the linear relationship = reject the null hypothesis that there is no
linear relationship between the variables, etc.).

7 Clustering

Problem 11. (10 p) You have a blood test result for six people. The result of the test
is a real number, here are the results: 10, 12, 13, 17, 18, 21. There are healthy and
sick people, but you do not know who is who. All you know is that the test result has a
normal distribution in both the healthy and sick populations. You also know that sick people
have higher blood test values, both the populations have the same size. You want to decide
on the statistical properties of the blood test and the division of people into groups using
Expectation-Maximization (EM) clustering with the Gaussian Mixture Model (GMM).

(a) (1 p) Initialize the EM clustering algorithm. Work with the values presented above.

EM clustering works with a latent variable that gives the probability of group given measurement.
The first option to initialize EM clustering is to initialize the latent variable vector, for example:
p(Ch|xi) = 〈1, 1, 1, 0, 0, 0〉 (the first three individuals are healthy, the rest of them are sick). In fact,
we start with the E-step and do the first estimate of the expected value for each latent variable.
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The algorithm also works with a GMM model that explains the data. We could propose the pa-
rameters of this model too, for example: µ̂h = 13, σ̂h = 2, µ̂s = 17, σ̂s = 3, αh = αs = 0.5 (the
healthy group has the mean value of blood test 13 with standard deviation 2, the sick group has
the mean value of blood test 17 with standard deviation 3, the populations are equiprobable). In
this option, we imitate the first M-step that finds the model parameters maximizing the expected
likelihood.

(b) (3 p) Perform the first step of the EM algorithm. Depending on the method of initial-
ization, start with either E-step – the output will be a soft split of people into groups,
or M-step – the output will be a model. Use the normal distributions in the figure
below to estimate the probabilities. The calculation does not have to be detailed for
all 6 samples . . .

Let us assume that we started with the model initialization. Then, the first E-step is as follows:

x1 = 10, from the normPDF plots it follows that f(x1|Ch) ∼ 0.065 (the blue curve, the distance
from mean is 3) and f(x1|Cs) ∼ 0.009 (the green curve, the distance from mean is 7),

p(Ch|x1) = f(x1|Ch)/(f(x1|Ch) + f(x1|Cs)) = 0.065/0.074 = 0.88

p(Cs|x1) = 1− p(Ch|x1) = 0.12

x4 = 17, from the normPDF plots it follows that f(x4|Ch) ∼ 0.03, (the blue curve, the distance
from mean is 4) and f(x4|Cs) ∼ 0.13 (the green curve, the distance from mean is 0),

p(Ch|x4) = f(x4|Ch)/(f(x4|Ch) + f(x4|Cs)) = 0.03/0.16 = 0.17

p(Cs|x4) = 1− p(Ch|x4) = 0.83

The full outcome is: p(Ch|xi) = 〈0.88, 0.84, 0.78, 0.17, 0.07, 0〉.

(c) (3 p) Perform the second step of the EM algorithm (depending on the previous step, you
will continue with either the M-step – the output will be a vector of model parameters,
or the E-step – the output will be the soft split of people into groups).
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We will carry on with the M-step, the model parameters will be calculated as the weighted average
of the observations:

µ̂h =
∑6

i=1 p(Ch|xi)xi∑6
i=1 p(Ch|xi)

= 0.88∗10+0.84∗12+0.78∗13+0.17∗17+0.07∗18+0∗21
0.88+0.84+0.78+0.17+0.07+0 = 12.1,

σ̂2
h =

∑6
i=1 p(Ch|xi)(xi−µ̂h)

2∑6
i=1 p(Ch|xi)

σ̂2
h = 0.88(10−12.1)2+0.84(12−12.1)2+0.78(13−12.1)2+0.17(17−12.1)2+0.07(18−12.1)2

0.88+0.84+0.78+0.17+0.07+0 = 4,

µ̂s =
∑6

i=1 xip(Cs|xi)∑6
i=1 p(Cs|xi)

= 0.12∗10+0.16∗12+0.22∗13+0.83∗17+0.93∗18+1∗21
0.12+0.16+0.22+0.83+0.93+1 = 17.7,

σ̂2
s =

∑6
i=1 p(Cs|xi)(xi−µ̂s)

2∑6
i=1 p(Cs|xi)

σ̂2
s = 0.12(10−17.7)2+0.16(12−17.7)2+0.22(13−17.7)2+0.83(17−17.7)2+0.93(18−17.7)2+1(21−17.7)2

0.12+0.16+0.22+0.83+0.93+1 = 8.8,

αh = αs = 0.5 remain unchanged.

(d) (2 p) Graphically and verbally describe the expected result of the EM algorithm at
the end of its run (what the model will look like, how the objects will be divided into
clusters).

The model is a mixture of two Gaussian distributions. The first element of the mixture represents
healthy individuals, the second one stands for sick people. The model performs soft clustering,
it splits the individuals between the groups probabilistically, see p(Ch|xi) and p(Cs|xi) calculated
above. In order to perform hard clustering, we can simply compare p(Ch|xi) and p(Cs|xi) for each
xi and put xi in the cluster with the higher posterior probability. Since αh = αs = 0.5, we can also
compare f(xi|Ch) and f(xi|Cs) with the same result.

A very simple guess is that the first mixture element will represent the three smallest test outcomes
(10, 12, 13), while the second element will stand for the three largest outcomes (17, 18, 21). Then,
µ̂h would be 11.7 (the average of the three leftmost values), σ̂2

h around 1.6 (the variance in the
three leftmost values), µ̂s would be 18.7 (the average of the three rightmost values), σ̂2

s around 2.9
(the variance in the three rightmost values).

The actual EM GMM outcome is as follows (calculated in R with Mclust function):

29



The real parameters are: µ̂h = 11.7, σ̂2
h = 1.6, µ̂s = 18.7, σ̂2

s = 2.9. Obviously, both the Gaussians
consider the other test outcomes too, but their influence is insignificant due to negligible weights.
The above-mentioned simple estimate was very accurate.

(e) (1 p) Explain the difference between EM GMM and quadratic discriminant analysis
(QDA).

EM GMM learns in an unsupervised way. The input samples do not have to be annotated. The
model is trained to optimally solve a density estimation task through maximization of the data
likelihood. QDA learns in a supervised way, it assumes class assignments on its input and solves a
discrimination task.

However, when having the GMM model reached with EM, we can use it in exactly the same way
as we did in QDA. It has exactly the same form. In the task above, the decision boundary between
classes would be around 14.5 (there is one more decision boundary for outcomes smaller than 3.5,
but is uninteresting for the moment). In general, QDA is expected to show a higher classification
accuracy, it deals with more information on its input. In our simple task, the outcome of both the
methods (the mixture itself, the decision boundary) is nearly the same (assuming that the correct
classification of our sample provided to QDA is 〈healthy, healthy, healthy, sick, sick, sick〉).

Problem 12. (10 p) Let us consider a problem with two concentric circles in a two-
dimensional space. The circles represent two different classes. There are 100 instances,
with half belonging to class A and the other half to class B. See the picture below. Your
task is to cluster the instances into two clusters that match the classes.
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(a) (2 p) Name a clustering method that will not solve the problem at all. Explain why.

k-means relies on Euclidean distances and assigns points to clusters based on their proximity
to cluster centroids. This implicitly assumes that clusters are approximately spherical or isotropic
(equal variance in all directions) and separated by straight-line boundaries. The mismatch between
k-means’ assumptions and the data’s true structure leads to poor performance. A typical k-means
outcome is shown below. The data are commonly partitioned into spatially intuitive regions, such
as left vs. right halves or top vs. bottom halves.

(b) (2 p) Name another clustering method that may solve the problem but the solution
heavily depends on the method parameters and actual circle settings. Explain the
relationships.

DBSCAN can correctly cluster two concentric circles under certain conditions. DBSCAN does
not directly consider the geometric or global structure of the data, which is rather good in our
specific problem. It operates based on local density and in our problem will work correctly if: 1)
its parameters are properly selected (ε (neighborhood radius) parameter should be chosen such that
points within each circle are considered neighbors but points from different circles are not) and the
minPts (minimum number of points in a neighborhood to define a core point) is appropriately set,
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considering the density of the points in the circles, 2) there is clear density difference between circles
(each circle forms a dense, well-separated cluster in the feature space, and the points between the
circles are sparse), 3) data shows uniform distribution (the points within each circle are distributed
evenly). One of the best possible solutions is shown in the left pane below (ε=0.5, minPts=4). It
is considered as a partial solution to our problem, the main obstacle is that the outer circle is not
dense enough. It is difficult if not impossible to find a parameter setting that generates two correct
clusters with no noise (0 instances).

Single linkage hierarchical clustering determines clusters based on the smallest distance (or
linkage) between points in different clusters. In our case it will work perfectly, if the distance between
adjacent points within a circle is consistently smaller than the minimum distance between points
from different circles. However, this condition is not met in our data set. The algorithm will either
return three clusters similar to those returned by DBSCAN, or two clusters as shown in the right
pane below.

(c) (2 p) Would you recommend to apply kernel k-means in this task? Highlight its pros
and cons. Which kernel would you use and what is the expected outcome?

In theory, kernel k-means can be a good choice for the task of concentric circles. A kernel
may overcome the above-mentioned drawbacks of raw k-means. The main pros lie in non-linear
separation (a suitable kernel allows the data to be mapped into a higher-dimensional space where
the clusters become linearly separable), flexibility with kernel choice (we have already learned that
the RBF kernel works well for tasks like this), and ability to capture complex cluster patterns (kernel
k-means can model more complex relationships in the data compared to traditional k-means).

Cons of kernel k-means lie in kernel selection (the success of kernel k-means largely depends on
selecting the right kernel), parameter tuning (the RBF kernel requires careful tuning of σ), com-
putational complexity (the complexity of kernel matrix computation grows quadratically with the
number of data points, in each iteration we need to sum up kernel values for all the data pairs from
the same cluster) and sensitivity to outliers (similar to k-means).

In our task, the main difficulty is to find the optimal σ for the RBF kernel. The algorithm works
well only for σs around 1.5 and only in around 50% of the runs (k-means algorithm is initialization
dependent). The figure below exemplifies an incorrect outcome and the correct outcome for σ = 1.5.
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(d) (2 p) Would you recommend to apply spectral clustering in this task? Compare it with
kernel k-means in terms of the algorithm as well as the outcome.

For two concentric circles, spectral clustering is generally recommended. Similarly to previous kernel
methods in this task, it works well with the RBF kernel. The basic steps are: 1) construct the
neighborhood graph (the goal is to densely connect the points within the same circle and keep the
rest as much disconnected as possible), 2) construct the Laplacian matrix for the graph and find its
eigenvectors, 3) run k-means in the space of a few smallest eigenvectors.

When compared to kernel k-means, spectral clustering is preferred due to its ability to leverage the
graph structure to capture the global data topology. However, if computational efficiency is critical
and you have a good understanding of kernel parameters, kernel k-means can also be a practical
choice (as eigendecomposition is cubic with the number of data points).

The outcome of spectral clustering with the RBF kernel, 2 clusters and the default sigma parameter
in the specc() R function is shown below.

(e) (2 p) Now, compare spectral clustering with kernel PCA. What are the similarities and
differences? Propose one modification to make them more similar.
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Both methods rely on a similarity matrix derived from a kernel (e.g., the RBF kernel) to capture
non-linear relationships in the data. For the concentric circles, both methods can transform the data
into a higher-dimensional space where the circles become linearly separable. Both methods excel in
capturing the circular structure of the data, making them suitable for separating the two concentric
circles. Both methods use eigenvalue decomposition of a matrix: kernel PCA decomposes the kernel
matrix to find principal components in the transformed space, spectral clustering decomposes the
Laplacian matrix (a function of the similarity matrix) to identify clusters.

The main difference is in their objectives. kernel PCA is a dimensionality reduction method it
maps data to a new space to capture variance. It is a variance preserving algorithm. Spectral
clustering groups data points into clusters and thus focuses on minimizing inter-cluster similarity
and maximizing intra-cluster similarity. Technically, kernel PCA uses the largest eigenvectors of
the kernel matrix while spectral clustering uses the smallest non-zero eigenvectors of the Laplacian
matrix.

The application of k-means after kernel PCA would align the objectives of both the methods.
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