
Statistical Data Analysis – solved problems

Goals: The text provides a pool of solved problems for labs in the course on Statistical
Data Analysis. The exercises help to deepen knowledge gained in parallel Rmd files. At
the same time, they serve as illustrative examples of future exam questions.

1 Linear and non-linear regression

Problem 1. (10 p) You built a linear model that predicts the median value of owner-
occupied homes in $1000’s in a certain town (medv). The model works with the only inde-
pendent variable (lstat) that captures the percentage of population with lower (economical)
status in the given town. The model was built from a training set based on 506 towns and
is this:

lm(formula = medv ∼ lstat, data = Boston)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 34.55384 0.56263 61.41 <2e-16 ***

lstat -0.95005 0.03873 -24.53 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.216 on 504 degrees of freedom

Multiple R-squared: 0.5441, Adjusted R-squared: 0.5432

F-statistic: 601.6 on 1 and 504 DF, p-value: < 2.2e-16

(a) (2 p) Verbally describe the relationship between lstat and medv. Decide whether lstat
affects medv and quantify how. Is it a statistically significant relationship? Why?

The model says that with each additional percentage of people with lower status the median value

of homes decreases on average by $950. This relationship is statistically significant, based on the

F-statistic as well as the lstat’s t-value we can reject the null hypothesis that there is no relationship

between lstat and medv.

(b) (1 p) How do you understand the meaning of Intercept? Is the value of this coefficient
a reliable figure to be interpreted literally? Explain.

The value of Intercept says that the average median value of homes in a town with 0 percentage of

people with lower status is around $34,553. This value looks reasonable, however, its true reliability
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depends on how far the model extrapolates (do we have any towns that at least approach no

lower status representation in ou training set?) and how far the model meets the linear regression

assumptions (is the relationship between these variables truly linear?).

(c) (1 p) How much do we improve our median value forecast compared to the simple
average forecast that ignores the knowledge of lstat? In other words, how much the
knowledge of lstat helps?

The value of R-squared shows that we will reduce the variance of the median home value estimates

by about half.

(d) (2 p) Calculate/estimate 95% confidence interval for βlstat. What is this interval good
for?

A rough estimate could be [-0.95005-2*0.03873,-0.95005+2*0.03873]=[-1.02751,-0.87259]. A more

precise estimate puts |tα/2,m−2| = |t0.025,504| instead of 2 into the formula above, however, the value

1.964682 is close to the rough estimate. This confidence interval has about 95% chance to contain

the true value of βlstat. This interval helps us to assume on the strength of relationship between

lstat and medv, the interval does not contain 0, the relationship could be considered significant.

(e) (2 p) Look at the model residual plot in the figure below (it plots differences between
the actual and predicted values of the dependent variable). What conclusions can be
drawn from the figure?

The plot shows that the assumption of linearity has not been met. The residuals should follow

the normal distribution for all the values of lstat, they are heavily skewed in the plot. We should

conclude that the relationship is non-linear and introduce new terms into the regression formula

(lstat2 is a good idea to start with).

(f) (2 p) Explain the concept of influential observations. Denote a couple of influential
points in the scatter plot below and explain how would you find them.
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An influential observation is an observation whose deletion from the dataset would noticeably change
the model parameter estimates. It could either be an outlier (a data point that differs significantly
from other observations) or a high-leverage point (an observation made at extreme values of inde-
pendent variables). The most influential observations can be found in the figure below.

Problem 2. (10 p) You are a mechanical locksmith and you are trying to find out how the
shaft machining error is related to the machine tool parameter setting. You have compiled a
multivariate linear model. The model expresses the relationship between the production error
(the difference between the ideal shaft diameter and the actual shaft diameter, ProdError)
and the setting of ten different continuous machine parameters (P1-P10). Below is the
output you received:

summary(lm(ProdError ∼ P1+P2+P3+P4+P5+P6+P7+P8+P9+P10),data=d)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.05270 0.09576 -0.550 0.5835

X1 0.01298 0.08924 0.145 0.8847
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X2 0.01596 0.10939 0.146 0.8843

X3 -0.02865 0.09079 -0.316 0.7531

X4 0.04611 0.09548 0.483 0.6303

X5 0.14151 0.09343 1.515 0.1334

X6 -0.02375 0.10277 -0.231 0.8178

X7 0.25522 0.10516 2.427 0.0172 *

X8 0.06672 0.08972 0.744 0.4590

X9 0.09949 0.10171 0.978 0.3306

X10 -0.04003 0.09317 -0.430 0.6685

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9039 on 89 degrees of freedom

Multiple R-squared: 0.1145, Adjusted R-squared: 0.01502

F-statistic: 1.151 on 10 and 89 DF, p-value: 0.3346

(a) (2 p) Decide whether at least one of the machine parameters (independent variables)
is useful for estimating a manufacturing error (ProdError). In other words, formally
decide whether you can decline H0 : β1 = β2 = · · · = β10 = 0. Justify correctly.

The reasoning should be based on the F-statistic and its corresponding p-value. The null hypothesis

cannot be rejected, the model does not seem to be useful. The reasoning that stems from the

statistics reached for the individual variables could be misleading due to multiple comparisons. For

10 variables, truly valid H0 and α = 0.05, there is only 0.9510 = 0.6 probability that there will be

no type I error in the individual coefficient tests, 40% of trials will find at least one falsely significant

coefficient.

(b) (2 p) Let us compare the full model constructed above with the intercept model and
with the model that employs only the variable P7 identified as the most relevant. Let
us compare them with F-test through an ANOVA run. Interpret the ANOVA table
below.

lm.const<-lm(ProdError ~ 1,data=d) # the intercept model

lm.sel<-lm(ProdError ~ P7,data=d) # the P7 model

anova(lm.const,lm.sel,lm.all)

Analysis of Variance Table

Res.Df RSS Df Sum of Sq F Pr(>F)

1 99 82.114

2 98 76.076 1 6.0384 7.3911 0.007879 **

3 89 72.711 9 3.3647 0.4576 0.899016

ANOVA easily compares nested models where the independent variables of a simpler model make a

subset of the independent variables of a more complex model. We order the models from the most

simple to the most complex and ANOVA compares all the pairs of neighboring models. The ANOVA

table suggests that lm.sel outperforms lm.const while lm.all does not further improve lm.sel. This
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conclusion is in contradiction with the conclusion in the previous answer. The contradiction arises

from a methodological fault that we did. We used the same dataset to select P7 as the best variable

and to test whether it performs well. This approach suffers from bias and could be misleading.

(c) (2 p) The dataset under consideration contains 100 samples. How do the type I error
and type II error in the individual coefficient tests change with increasing number of
samples if we maintain a constant level of significance α?

Type I error is a controlled parameter and its probability remains unchanged with the α value

unchanged. However, the power of the test will increase, so the type II error will decrease. At the

same time, the robustness of RSS, R2 and consequently the F-test power will increase as well.

(d) (4 p) Describe in detail the way in which you would validate your models over the
samples that you currently have. You can create additional auxiliary models. Describe
the validation method, define the error function, and specify with which baseline you
will compare the calculated error.

Let us assume that we want to compare lm.const, lm.sel and lm.all. Let us assume that our sample
set is small and thus the hold-out method that splits the sample set on training and testing set is
inappropriate (we need to use as many training samples as possible, the same holds for testing set).
Then, a good option seems to be to run 10-fold cross-validation. We will always train our models on
9 folds and test them on the remaining one. We will gradually shift the testing fold. The dependent
variable is continuous, we can use the root mean square error (RMSE) or mean absolute percentage
error (MAPE). The error will always be calculated over the testing fold and averaged over the folds.
If we repeat 10-fold cross-validation multiple times, we can statistically test whether performances
of the individual models truly differ.

Watch out. Feature selection is a part of training process. It cannot be done only once before

cross-validation, it must be repeated again and again for each split. Consequently, we will have 10

different lm.sel models to test, the set of relevant variables included into the model may change over

folds as well as their regression coefficients. These 10 models will serve to estimate the performance

of the final lm.sel model. Only the final model (to be reported and deployed) could be based on all

the available samples, and will thus certainly employ the variable P7.

Problem 3. (10 p) There is a cubic spline with one knot ξ given by the formula: f(x) =
β0 + β1x+ β2x

2 + β3x
3 + β4(x− ξ)3+.

(a) (1 p) Define the basis function (x− ξ)3+.

The definition is: (x− ξ)3 for x > ξ, otherwise 0.

(b) (1 p) How many degrees of freedom does the given cubic spline have? Why?

A cubic spline with K knots has K + 4 parameters or degrees of freedom. Our spline has one knot

and thus it has 5 independent parameters/degrees of freedom. The number of parameters can be

seen from the formula above too, there are β0, . . . , β4 there.

(c) (1 p) What are the properties of the cubic spline at the knot?

The spline is continuous at the knot and it has a continuous first and second derivative there. The

properties follow from the general properties for d-degree splines.
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(d) (2 p) Write down a cubic spline with one knot as a piecewise polynomial. Note: you
will only change the form of notation, name the parameters differently from the spline
parameters above.

f1(x) = a1 + b1x+ c1x
2 + d1x

3 for x < ξ

f2(x) = a2 + b2x+ c2x
2 + d2x

3 for x ≥ ξ

(e) (3 p) Express the piecewise polynomial parameters using the cubic spline parameters
β0, β1, . . . , β4.

The procedure is straightforward: the spline must match f1 before the knot and f2 after the

knot. For the first polynomial it is trivial, because the basis function is zero before the first knot:

a1 = β0, b1 = β1, . . . , d1 = β3. For the second polynomial it holds: a2 + b2x + c2x
2 + d2x

3 =

β0 + β1x + β2x
2 + β3x

3 + β4(x − ξ)3. By developing the last term we get: β0 + β1x + β2x
2 +

β3x
3 + β4(x3 − 3x2ξ + 3xξ2 − ξ3) = (β0 − β4ξ3) + (β1 + 3β4ξ

2)x+ (β2 − 3β4ξ)x
2 + (β3 + β4)x3,

of which follows: a2 = β0 − β4ξ3, b2 = β1 + 3β4ξ
2, c2 = β2 − 3β4ξ, d2 = β3 + β4.

(f) (2 p) Proof that the piecewise cubic polynomial found in the previous two steps main-
tains the knot properties of a cubic spline.

Continuity f1(ξ) = f2(ξ) can be proven by substituting for coefficients a, b, c, d: f1(ξ) = β0 +
β1ξ+β2ξ

2 +β3ξ
3, f2(ξ) = β0−β4ξ3 + (β1 + 3β4ξ

2)ξ+ (β2− 3β4ξ)ξ
2 + (β3 +β4)ξ3 = β0 +β1ξ+

β2ξ
2 + β3ξ

3 = f1(ξ).

Continuity of the first derivative f ′1(ξ) = f ′2(ξ) can be confirmed by substituting for the coefficients
and deriving: f ′1(ξ) = β1 + 2β2ξ + 3β3ξ

2 = f ′2(ξ).

Continuity of the second derivative f ′′1 (ξ) = 2β2 + 6β3ξ = f ′′2 (ξ).

2 Linear regression and ANOVA

Problem 4. (10 p) You are analyzing salary data from an unknown university stored in a
data frame df. You want to find the key factors that actually influence the professors’ wages.
Besides the target variable salary you deal with the following set of independent variables:
rank . . . a factor with levels AssocProf, AsstProf, Prof; discipline . . . a factor with levels
A (“theoretical” departments) or B (“applied” departments); yrs.since.phd . . . a numerical
variable that gives the number of years since PhD completion; yrs.service . . . a numerical
variable that gives the number of years of service and sex . . . a factor with levels Female
and Male.

(a) (2 p) Explain in which way you would best decide whether sex influences salary with
the aid of linear regression. Below there are two ultimate sample lm calls. Interpret
both of them, decide whether any of them could be used to answer the role of sex. If
they are not applicable, propose your own lm call.

Call 1:

lm(salary ∼ sex, data = df)
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 101002 4809 21.001 < 2e-16 ***

sexMale 14088 5065 2.782 0.00567 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 30030 on 395 degrees of freedom

Multiple R-squared: 0.01921, Adjusted R-squared: 0.01673

F-statistic: 7.738 on 1 and 395 DF, p-value: 0.005667

Call 2:

lm(salary ∼ rank + discipline + yrs.since.phd + yrs.service + sex, data = df)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 65955.2 4588.6 14.374 < 2e-16 ***

rankAssocProf 12907.6 4145.3 3.114 0.00198 **

rankProf 45066.0 4237.5 10.635 < 2e-16 ***

disciplineB 14417.6 2342.9 6.154 1.88e-09 ***

yrs.since.phd 535.1 241.0 2.220 0.02698 *

yrs.service -489.5 211.9 -2.310 0.02143 *

sexMale 4783.5 3858.7 1.240 0.21584

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 22540 on 390 degrees of freedom

Multiple R-squared: 0.4547, Adjusted R-squared: 0.4463

F-statistic: 54.2 on 6 and 390 DF, p-value: < 2.2e-16

The first call suggests that males have higher salaries and the difference is significant. However, we
have to assume that the individual independent variables are related and deal with the multivariate
model that contains all the predictors.

The actual role of sex can be assumed from the coefficient that is related to sex variable in the Call
2 and its p-value. There, the absolute value of the regression coefficient adjoined to sex is much
smaller than in Call 1 and the difference between males and females seems to be insignificant. We
would need more data to decide with more power, however, the significance of sex in Call 1 was
obviously caused by the fact that males have higher ranks and longer careers. This could easily be
checked by e.g. aov(yrs.since.phd sex,df):
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(b) (2 p) Now you will make the following call: summary(aov(salary∼sex,df)). Explain
what you will learn from the call.

One-way ANOVA (one independent variable and one dependent variable) could be considered equiv-
alent to single variate lm calls. Consequently, we will get nearly the same message as we got in
previous lm Call 1 (the same F-statistic and the same p-value). The main difference is in the form
of the output (the coefficients are not reported here). In particular:

(c) (2 p) Now you will make the following call: summary(aov(salary ∼rank + discipline +
yrs.since.phd + yrs.service + sex,df)). Explain what you will learn from the call.

Unlike the previous case, this multivariate ANOVA call will not match the previous multivariate lm
call. The reason is that both the methods treat sum of squares in regression differently. In lm,
we search for main effects of the individual variables, their influence is considered in parallel (Type
III sum of squares). In aov, we evaluate the individual predictors sequentially, in the order of their
appearance in the formula (Type I sum of squares). For example, if we enter rank first, its sums
of squares are computed ignoring discipline and other variables. Therefore, any variance in salary
that is shared by rank and discipline will be attributed solely to rank. The sums of squares for
discipline will then be computed excluding any variance that has already been attributed to rank.
Consequently, in this type of call we may learn what is the contribution of a new variable to the
existing model based on all the variables that precede it in the formula.

The above described aov call in fact performs an analysis of covariance (ANCOVA) which blends
ANOVA and regression. It evaluates whether the means of a dependent variable (DV) are equal
across levels of a categorical independent variable (IV) often called a treatment, while statistically
controlling for the effects of other (continuous) variables that are not of primary interest, known as
covariates (CV). In particular:

(d) (2 p) Explain in which way you would best decide whether sex influences salary with
the aid of ANOVA. Show a particular R call or calls (aov and anova commands).

We have already shown that one-way ANOVA could be considered equivalent to single variate lm call
and it may oversimplify in multivariate tasks because of ignoring confounders. The best calls could
be: summary(aov(salary ∼rank + discipline + yrs.since.phd + yrs.service + sex,df)), in fact any
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aov call that puts sex last in the full multivariate model. Another option is: anova(lm(salary ∼rank
+ discipline + yrs.since.phd + yrs.service,df),lm(salary ∼rank + discipline + yrs.since.phd +
yrs.service + sex,df)). The outcome of both the calls is exactly the same wrt the role of sex under
discussion.

However, this approach studies sequential effect of sex wrt the existing model. The question that

we answer with these calls is different from the original question whether sex influences salary. It

is much better answered by the previous call lm(salary ∼rank + discipline + yrs.since.phd +

yrs.service + sex, data = df).

(e) (2 p) Discuss the relationship between yrs.service and yrs.since.phd. Is there any issue
to be checked? Consider both the real meaning of these two variables and lm calls
above. If so, propose a solution.

Obviously, these two variables are closely related and necessarily correlated. In general, the more years
from PhD, the longer service. This correlation could be strong and may cause collinearity problems
in the multivariate model. The issue may affect estimates regarding the individual predictors. In the
full multivariate model (lm Call 1) it is unexpected and suspicious that salary decreases with the
length of service. We would expect exactly the opposite and collinearity could be the reason.

A simple solution is to calculate correlation (it is 0.91 in our data) and/or draw a scatter plot for
the two variables:

Knowing the collinearity, we would possibly remove one of the two variables from the model (if we
do so and remove yrs.since.phd in the first call and yrs.service in the second call, any of the two
variables comes out insignificant then):
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If we look at the model scores and compare the simplified models with lm Call 2, it is obvious that

shrinkage is beneficial (no decrease in Adjusted R-squared, slightly tighter coefficient estimates).
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