Basics of Description Logic \mathcal{ALC}

Petr Křemen

November 30, 2017

1 Understanding ALC

Consider the following \mathcal{ALC} theory $\mathcal{K} = (\mathcal{T}, \{\})$, where \mathcal{T} contains the following axioms:

 $Man \sqsubseteq Person$ $Woman \sqsubseteq Person \sqcap \neg Man$ $Father \equiv Man \sqcap \exists hasChild \cdot Person$ $GrandFather \equiv \exists hasChild \cdot \exists hasChild \cdot \top$ $Sister \equiv Person \sqcap \neg Man \sqcap \exists hasSibling \cdot Person$

Ex. 1 — What is the meaning of these particular axioms? Do they reflect your understanding of reality? Formulate them in natural language.

Ex. 2 — Rewrite the last axiom into the semantically equivalent FOPL formula.

Ex. 3 — Consider the following interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \bullet^{\mathcal{I}})$:

$$\Delta^{\mathcal{I}} = Person^{\mathcal{I}} = \{B, A\}$$

$$Man^{\mathcal{I}} = \{B\}$$

$$Woman^{\mathcal{I}} = \{A\}$$

$$Father^{\mathcal{I}} = GrandFather^{\mathcal{I}} = \{B\}$$

$$hasChild^{\mathcal{I}} = \{(B, B)\}$$

$$hasSibling^{\mathcal{I}} = \{\}$$

$$Sister^{\mathcal{I}} = \{B\}$$
(1)

- 1. Is \mathcal{I} a model \mathcal{K} ? If yes, decide, whether \mathcal{I} reflects reality.
- 2. We know that \mathcal{ALC} has the tree model property and finite model property. In case \mathcal{I} is a model, is \mathcal{I} tree-shaped? If not, find a model that is tree-shaped.

Ex. 4 — How does the situation change when we consider the same \mathcal{I} , except that $Sister^{\mathcal{I}} = \{\}$?

- **Ex. 5** Using the vocabulary from \mathcal{K} , define the concept "A father having just sons."
- **Ex. 6** Using the vocabulary from K, define the concept "A man who has no brother, but at least one sister with more than one child."
- Ex. 7 During knowledge modeling, it is often necessary to specify:
- **global domain and range**of given role, i.e. statement of the type "By *hasChild* we always connect a *Person* (domain) with another *Person* (range)".
- **local range**of given role, e.g. "Every father having only sons (domain) can be connected by hasChild (domain) just with a Man (range)".

Show, in which way it is possible to model global domain and range of these roles in \mathcal{ALC} .

2 Using Protégé

- 1. Go through the Protégé Crash Course on the tutorial web pages.
- 2. Create a new ontology in Protégé 4 and insert there all the definitions from Section 1. Verify correctness of your solution of the previous task (e.g. in the DL query tab).