
1 Managing Semantic Data

Motivation – reuse of ontological resources

• Types of ontologies:

– top-level (upper) ontologies

– domain ontologies and task ontologies

– application ontologies

• Ways to reuse ontological resources:

– ontologies as wholes

– syntactic/semantic ontology modules

– ontology design patterns

– ontology statements

1.1 Ontology Design Patterns

1.1.1 Basics

Why should we use ontology design patterns ?

• It is hard to extract only useful pieces of comprehensive higher level ontologies
(e.g. foundational ontologies)

• There is need for small ontologies to address each design issue separately

• The ontology should be accompanied with explicit documentation of its design
rationales and best reengineering practices

• Therefore, in analogy to software design patterns there are ontology design pat-
terns

1.1.2 Ontology Design Pattern Catalogues

Overview of ontology design pattern catalogues
Most known public ODP catalogues are :

1



1 Managing Semantic Data

• ODPs from W3C Semantic Web Best Practices and Deployment Work-
ing Group – contains 4 pattens i.e. n-ary relations, classes as property values,
value partitions/sets, simple part-whole relations. (http://www.w3.org/2001/
sw/BestPractices)

• ODPs from the University of Manchester – contains 17 patterns devided
into groups extension ODPs (solutions to bypass the limitations of OWL such as
n-ary relations), good practice ODPs (making robust and cleaner design e.g. value
partitions), domain modelling ODPs (solutions for concrete modeling problems in
biology). (http://www.gong.manchester.ac.uk/odp/html)

• ODPs from ontologydesignpatterns.org – contains over 100 patterns catego-
rized into 6 groups of patterns hosted on Semantic Web portal dedicated to ODPs
providing review process for creation of certified patterns. (http://ontologydesignpatterns.
org)

1.1.3 Types of Ontology Design Patterns

Classification of ODPs (1)

Classification of ODPs according to ontologydesignpatterns.org portal (ODP portal)

Classification of ODPs (2)

• Content ODP – represents domain-specific pattern

• Structural ODP – is structure to solve architectural and logical issues of OWL
ontologies

• Correspondence ODP – is used for reengineering and mappings

• Reasoning ODP – is typical reasoning procedure

2

http://www.w3.org/2001/sw/BestPractices
http://www.w3.org/2001/sw/BestPractices
http://www.gong.manchester.ac.uk/odp/html
http://ontologydesignpatterns.org
http://ontologydesignpatterns.org


1.1 Ontology Design Patterns

Figure 1.1: Pattern 1

• Presentation ODP – relates to usability of ontology from user perspective

• Lexico-Syntactic ODP – is linguistic structure/schema that allow to generalize
and extract some conclusions about the meaning they express

1.1.4 Selected Ontology Design Patterns
Diagramming conventions within selected ODPs

The figure shows diagramming conventions that will be
used in subsequent slides for selected ODPs. Squares (1,9) –
classes; octagons (2) – individuals; closed hollow arrows (3) –
rdfs:subClassOf or rdfs:subPropertyOf relations; opened
arrows (4) – rdf:type relations; semi-closed solid arrows (5,6,7)
having origin of the arrow decorated by: a) hollow blob (5) – ex-
istential restrictions of the class at the origin of the arrow, b)
solid blob (6) – universal restriction of the class at the origin of
the arrow, c) no decoration (7) – domain and range axioms of
the property if used with classes, facts if used with individuals;
solid/dashed arrows (3,4,5,6,7)/(8) – asserted/inferred axioms,
respectively; normal/bold edges of a square (1)/(9) – the classes
represented by the square are defined partially/completely with
restrictions and other relevant axioms defined in the figure, re-
spectively; texts within {} brackets (A) – additional information
about restriction or property represented by the arrow, someVal-
uesFrom/allValuesFrom information is already represented with
arrow having solid/hollow decoration of the origin, thus may be
omitted.

N-ary relations – general patterns
N-ary relations ODP [Noy:06:DNR] is logical ODPs that solves issue of representing

n-ary relations in OWL which has native support only for binary relations.

• most common representation of n-ary relations

• possible restrictions per argument (e.g. type for each argument, cardinality of each argument type)

• possibility to define required/optional arguments of the relation

3



1 Managing Semantic Data

Figure 1.2: Pattern 2

• determining owner of relations by direction of the object properties

• ordering of dynamic number of arguments

• argument types are content specific instead of generic ones as it is in case of generic list ODP

N-ary relations – pattern 1 example

The figure demonstrate use of nary-relations ODP pattern 1 for representation of ternary relation – medical
diagnosis of disease (expressed by class DiagnosisRelation). The ownership of the relation is captured by
direction of has diagnosis (1). Each diagnosis is obliged to have some diagnosis value (2), while the diagnosis
probability is understood as additional parameter of the relation which is only obliged to have correct type (3) if
the value exists. Similarly to diagnosis probability, Person is not obliged to have some diagnosis (1).

N-ary relations – pattern 2 example

4



1.1 Ontology Design Patterns

Figure 1.3: Pattern 1

The figure demonstrate use of nary-relations ODP pattern 2 for representation of n-ary relation that have dynamic
number of parameters where ordering of the parameters matters. It represents flight as ordered sequence of flight
segments that point to airport destinations.

Value partitions and value sets – general patterns

Value partition and value set ODP [Rector:05:RSV] is able to represent a feature of some
entity (sometimes also referred as “quality”, “attribute”, “characteristic”, or “modifier” of the
entity). There are two ways basic ways to represent the feature:

• values as sets of individuals

• no possibility of further sub-partitioning

5



1 Managing Semantic Data

Figure 1.4: Pattern 2

• no alternative partitioning of same feature space

• straightforward with database matching

• values as subclasses partitioning a “feature”

• possible sub-partitioning and alternative partitioning

• some people consider it less intuitive

Value partitions and value sets – pattern 1 example (Values as set of individuals)

The figure represents feature “health status of a person” by using feature space HealthValue as set of concrete
values poor health, medium health, good health.

Value partitions and value sets – pattern 2 example (Values as subclasses partitioning
a ”feature”)

6



1.1 Ontology Design Patterns

The figure represents feature “health status of a person” by partitioning feature space HealthValue into
sub-partitions PoorHealthValue, MediumHealthValue, GoodHealthValue.

Value partitions and value sets – pattern 2 example (Values as subclasses partitioning
a ”feature”)

7



1 Managing Semantic Data

The figure on the left depict previous example in adapted Venn diagram as an alternative diagrammatic format
to show partitioning more explicitly. The right part of the figure shows alternative representation of John’s health
status which is not expressed explicitly but inferred from other axioms

Part-whole relations – general pattern
Part-whole relation ODP [Rector:05:partwhole] provide us way to represent objects

called wholes and their parts.

The figure depicts general schema for part-whole relations.

Part-whole relations – inventory of parts example

The figure shows how to represent inventory of parts (i.e. parts of concrete objects).

8



1.1 Ontology Design Patterns

Part-whole relations – hierarchy of parts example

The figure shows how to represent hierarchy of hypothetical parts of wholes.

Part-whole relations – classes for parts example

The figure shows how to represent classes for parts, so the correct hierarchy of parts is inferred. For the
inferences, it assumes that the ontology about “hypothetical parts and wholes” is part of this ontology although

not depicted in the figure.

Part-whole relations – faults in parts example

9



1 Managing Semantic Data

The figure shows how to represent faults in parts using has locus property. For the inferences, it is assumes
that the ontology about “classes for parts” is part of this ontology although not depicted in the figure.

10


	Managing Semantic Data
	Ontology Design Patterns
	Basics
	Ontology Design Pattern Catalogues
	Types of Ontology Design Patterns
	Selected Ontology Design Patterns



