
David Šišlák

david.sislak@fel.cvut.cz

Effective Software

Lecture 11: JVM - Object Allocation, Bloom Filters, References, Effective Caching

[1] Tarkoma, S., Esteve, R.,Lagerspetz, E.: Theory and Practice of Bloom Filters for Distributed Systems.
IEEE Communications Surveys and Tutorials, issue 3, vol. 14, 2012.

[2] Oaks, S.: Java Performance: The Definitive Guide. O'Reilly, USA 2014.

[3] JVM source code - http://openjdk.java.net

6th May 2018 ESW – Lecture 11 2

Fast Object Allocation

» based on bump-the-pointer technique

• track previously allocated object

• fit new object into remainder of generation end

» thread-local allocation buffers (TLABs)

• each thread has small exclusive area (few % of Eden in total) aligned NUMA

• remove concurrency bottleneck

• no synchronization among threads (remove slower atomics)

• remove false sharing (cache line used just by one CPU core)

• exclusive allocation takes about few native instructions

• infrequent full TLABs implies synchronization (based on lock inc)

• thread-based adaptive resizing of TLAB

• not working well for thread pools with varying allocation pressure

» tuning options

• -XX:+UseTLAB ; -XX:AllocatePrefetchStyle=1; -XX:+PrintTLAB

• -XX:AllocateInstancePrefetchLines=1 ; -XX:AllocatePrefetchLines=3

• -XX:+ResizeTLAB ; -XX:TLABSize=10k ; -XX:MinTLABSize=2k

6th May 2018 ESW – Lecture 11 3

Fast Object Allocation - Example

C2 compiler, standard OOP, size 96 Bytes:

read TLAB allocation pointer

bump the pointer

fits into TLAB check
store TLAB allocation pointer

fill object header

8B - mark word

4B / 8B – Klass ref.

… object data

prepare for object nulling
RDI object data; ECX=10 qwords

null instance

prefetch 3 cache lines ahead

Note: all examples are in JVM 8 64-bit,
Intel Haswell CPU, AT&T syntax

6th May 2018 ESW – Lecture 11 4

Flight Recording to Analyze TLAB

example with million of allocations of Structure, compressed OOP used

6th May 2018 ESW – Lecture 11 5

Flight Recording to Analyze TLAB

example with million of allocations of Structure; compressed OOP used

6th May 2018 ESW – Lecture 11 ? 6

Example – Dynamic Memory Analysis

6th May 2018 ESW – Lecture 11 7

Example – Dynamic Memory Analysis

allocations when called with 40 elements (27 without digits):

6th May 2018 ESW – Lecture 11 8

Example – Optimized – Dynamic Memory Analysis

6th May 2018 ESW – Lecture 11 9

Example – Optimized – Dynamic Memory Analysis

allocations when called with 40 elements (27 without digits):

6th May 2018 ESW – Lecture 11 10

Know Your Application Behavior

» simple code could be very inefficient – know what you are using

» a lot of small short-lived objects still slow down your application

• allocations in TLAB are quite fast but not as fast as no allocation

– check escape analysis or change your code

• objects in TLAB fulfill cache data locality and are NUMA aligned

• no false sharing between cores (data in cache line are just used by one
CPU core)

• increase pressure on young generation and thus minor GC

– other objects are promoted earlier to old generation

– increase number of major GC

» a lot of long-lived objects slow your application even more

• each time all live objects have to be traversed

• compacting GC have to copy objects

– breaks original data locality

– can imply false sharing between cores

6th May 2018 ESW – Lecture 11 11

Escape Analysis – Not All Objects Are Allocated

» C2 compiler perform escape analysis of new object after inline of hot methods

» each new object allocation is classified into one of the following types:

• NoEscape – object does not escape method in which it is created

– all its usages are inlined

– never assigned to static or object field, just to local variables

– at any point must be JIT-time determinable and not depending on any
unpredictable control flow

– if the object is an array, indexing into it must be JIT-time constant

• ArgEscape – object is passed as, or referenced from, an argument to a
method but does not escape the current thread

• GlobalEscape – object is accessed by different method and thread

» NoEscape objects are not allocated at all but JIT does scalar replacement

• object deconstructed into its constituent fields (stack allocated)

• disappear automatically after stack frame pop (return from the method)

• no GC impact at all + do not need track references (write comp. barrier)

» ArgEscape objects are allocated on the heap but all monitors are eliminated

6th May 2018 ESW – Lecture 11 12

Escape Analysis Example

6th May 2018 ESW – Lecture 11 13

Escape Analysis Example

C2 compilation with inline:

no allocation at all, no synchronization
all done out of stack in registers only

6th May 2018 ESW – Lecture 11 14

Bloom Filter

» bloom filter operations

• add a new object to the set

• test whether a given object is a member of the set

• no deletion is possible

» strong memory reduction (few bits per element) compared to other
collections

• compensated by small false positive rate (usually 1%)

• guaranteed no false negative

• not storing object itself (where all standard collections must store objects)

» always constant add and test/query complexity (even for collisions)

» very useful in big data processing and other applications

• used to test that the object is certainly not present

• e.g. reduce a lot of I/O operations reading full collections in a particular file
where bloom filters are kept in RAM or read quickly from disk

6th May 2018 ESW – Lecture 11 15

Bloom Filter

» use bit array with a m bits

» use k independent hash functions

» add operation – O(k)

» query operation

6th May 2018 ESW – Lecture 11 16

Bloom Filter

» number of bits in the filter

» number of hash functions

» example – store 1 million of Strings with total size 25 MB

• Set<String> requires >50 MB retained size

• Bloom Filter with FP rate 1% requires 1.13 MB and 7 hash functions

– more than 44 times smaller and in 99% cases query is TP

ceil
n ln p

ln
1

2
ln 2

�

�

�

�

�

�

round
ln 2 m

n

�

�

�

6th May 2018 ESW – Lecture 11 17

» counting bloom filter

• support delete and count estimate operation

• each position in filter is buckets (e.g. 3 bits) working as counter

– add – increment

– delete – decrement; count is min value

– query – test non-zero

• bucket overflow problem

– no more increments when there is max counter value

– increasing FN errors by deletions of elements

» bitwise bloom filter

• multiple counting (dynamically added) filters to address issues above

Extensions of Bloom Filter

6th May 2018 ESW – Lecture 11 18

Reference Objects

» mortem hooks more flexible than finalization

» reference types (ordered from strongest one):

• {strong reference}

• soft reference – optional reference queue

• weak reference – optional reference queue

• {final reference} – mandatory reference queue

• phantom references – mandatory reference queue

» can enqueue the reference object on a designated reference queue when
GC finds its referent to be less reachable, referent is released

» references are enqueued only if you have strong reference to REFERENCE

» GC has to run to pass
them to Reference Handler
to enqueue them into
reference queue

» Reference is another instance on
the heap – 48 Bytes for standard OOP, 64-bit JVM

6th May 2018 ESW – Lecture 11 19

Reachability of Object

» strongly reachable – from GC roots without any Reference object

» softly reachable – not strongly, but can be reached via soft reference

» weakly reachable – not strongly, not softly, but can be reached via weak
reference; clear referent link and become eligible for finalization

» eligible for finalization – not strongly, not softly, not weakly and have non-
trivial finalize method

» phantom reachable – not strongly, not softly, not weakly, already finalized or
no finalize method, but can be reached via phantom reference

» unreachable – none of above; eligible for reclamation

6th May 2018 ESW – Lecture 11 20

Weak Reference

» pre-finalization processing

» usage:

• do not retain this object because of this reference

• don't own target, e.g. listeners

• canonicalizing map – e.g. ObjectOutputStream

• implement flexible version of finalization:

‒ prioritize

‒ decide when to run finalization

» get() returns

• referent if not cleared

• null, otherwise

» referent is cleared by GC (cleared when passed to Reference Handler) and can
be reclaimed

» need copy referent to strong reference and check that it is not null before
using it

» WeakHashMap<K,V> - uses weak keys; cleanup during all standard operations

6th May 2018 ESW – Lecture 11 22

Weak Reference – External Resource Clean-up

» clean-up approach for ReferenceQueue<T>

• own dedicated thread

• clean-up before creation of new objects

– limited clean-up processing to mitigate long processing

– use poll() – non-blocking fetch of first

6th May 2018 ESW – Lecture 11 23

Custom Finalizer Example

6th May 2018 ESW – Lecture 11 24

Custom Finalizer Example

» usage example, beware of implicit this strong reference in instance context

6th May 2018 ESW – Lecture 11 25

Soft Reference

» pre-finalization processing

» usage:

• would like to keep referent, but can loose it

• suitable for caches – create strong reference to data to keep them

– objects with long initialization

– frequently used information

• reclaim only if there is “memory pressure” based on heap usage

now – timestamp > (SoftRefLRUPolicyMSPerMB * amountOfFreeMemoryInMB)

-XX:SoftRefLRUPolicyMSPerMB=N (default 1000)

• all are cleared before OutOfMemoryError

» get() returns:

• referent if not cleared; null, otherwise

• updates timestamp of usage (can keep recently used longer)

» referent is cleared by GC (cleared when passed to Reference Handler) and can
be reclaimed

6th May 2018 ESW – Lecture 11 26

Efficient Cache Example

efficient LRU tracking in combination with memory pressure for older

V
a

lu
e

H
o

ld
e

r[
]

“strong” refs.

6th May 2018 ESW – Lecture 11 27

Final Reference – Object with Non-Trivial Finalize

» finalize hook cannot be used directly (package limited)

» instance allocation of object with non-trivial finalize method

• slower allocation than standard objects

• run time call of Finalizer.register with possible global safe point

– not inlined, all references saved in stack with OopMap

• allocates FinalReference instance and do synchronized tracking

» referent is not cleared and reclaimed before finalization

• all referenced objects cannot be reclaimed as well

» only one Finalizer thread for all Final references of all types

• call finalize method and clear referent

– issue when finalize creates strong reference again

– no priority control between multiple finalize methods

– long running finalize delays all other finalization

• daemon thread and JVM can terminate before finalization of all

» finalized objects can be reclaimed during subsequent GC cycle

6th May 2018 ESW – Lecture 11 28

Phantom Reference

» post-finalization processing, pre-mortem hook

» usage:

• notifies that the object is not used – before its reclamation

• used to guarantee given order of finalization of objects (not possible with
Weak references)

• A, B – finalizable objects (e.g. Weakly)

• A’, B’ - PhantomReferences

» get() returns:

• null always

• referent can be read using reflection

• avoid making strong reference again

» have to specify reference queue for constructor (can be cleared)

» referent is not cleared and reclaimed until all phantom references are not
become unreachable or manually cleared using method clear()

» all referenced objects cannot be reclaimed as well

6th May 2018 ESW – Lecture 11 30

Reference Object

» only one GC cycle needed to reclaim referent object if there is only soft
references or weak references to the same object

» multiple GC cycles needed for referent objects with multiple reference
types or have at least one final or phantom reference

Time

Reference Handler thread enqueue respective Reference(s) to their
ReferenceQueue(s) if there are defined some

referent object
was weakly and/or

softly reachable
and/or has finalize

method

GC

SoftReferences
WeakReferences
FinalReferences

Finalizer thread
executed

non-trivial finalize

referent object
was phantomly

reachable
GC

PhantomReferences

custom
thread
called
clear GC

object
reclaimed
if not in

the first GC(reclaimed)

6th May 2018 ESW – Lecture 11 31

Performance Cost for References

» creation cost

• allocation instance

• synchronization with tracking of Reference (strong references)

» garbage collection cost (-XX:+PrintReferenceGC –XX:+PrintGCDetails)

• tracking live not follow referents

• construct list of live References each GC cycle

– discovered field in Reference

• per-reference traversal overhead regardless referent is collected or not

– softly, weakly + finalizable, phantomly

• Reference Object itself are subject for garbage collection

» enqueue cost

• reference handler enqueue with synchronization

» reference queue processing cost

• synchronized queue consumption

6th May 2018 ESW – Lecture 11 32

Reachability of Object

6th May 2018 ESW – Lecture 11 ? 33

Reachability of Object

