B4M36DS2, BEAM36DS2: Database Systems 2
https://cw.fel.cvut.cz/b251/courses/b4m36ds2

Lecture 12

MapReduce,
Apache Hadoop

Yuliia Prokop
prokoyul@fel.cvut.cz

13.10. 2025

Author: Martin Svoboda

(martin.svoboda@matfyz.cuni.

DA

No

cz)

Czech Technical University in Prague, Faculty of Electrical Engineering

https://cw.fel.cvut.cz/b251/courses/b4m36ds2
https://cw.fel.cvut.cz/b251/courses/b4m36ds2
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@matfyz.cuni.cz

Lecture Outline

MapReduce
e Programming model and implementation
e Motivation, principles, details, ...

Apache Hadoop
e HDFS — Hadoop Distributed File System
* MapReduce

Programming Models

What is a programming model?
e Abstraction of an underlying computer system
= Describes a logical view of the provided functionality
= Offers a public interface, resources, or other constructs
= Allows for the expression of algorithms and data structures
= Conceals the physical reality of the internal implementation
= Allows us to work at a (much) higher level of abstraction
* The point is
how the intended user thinks to solve their tasks and not
necessarily how the system actually works

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025

Programming Models

Examples

e Traditional von Neumann model
= Architecture of a physical computer with several components
such as a central processing unit (CPU), arithmetic-logic unit
(ALU), processor registers, program counter, memory unit, etc.
= Execution of a stream of instructions

e Java Virtual Machine (JVM)
Do not confuse programming models with

e Programming paradigms (procedural, functional, logic, modular,
object-oriented, recursive, generic, data-driven, parallel, ...)

* Programming languages (Java, C++, ...)

Parallel Programming Models

Process interaction
Mechanisms of mutual communication of parallel processes

e Shared memory — shared global address space, asynchronous read
and write access, synchronization primitives

¢ Message passing
e |mplicit interaction
Problem decomposition
Ways of problem decomposition into tasks executed in parallel
» Task parallelism — different tasks over the same data
e Data parallelism — the same task over different data
e Implicit parallelism

MapReduce

MapReduce Framework

What is MapReduce?
* Programming model + implementation
e Developed by Google in 2004

Google:
A simple and powerful interface that enables automatic
parallelization and distribution of large-scale computations,
combined with an implementation of this interface that
achieves high performance on large clusters of distributed
systems.

Alternatives: Apache Spark, Apache Flink, Google Dataflow,
Dask/Ray

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025

History and Motivation

Google PageRank problem (2003) - one of the early
implementations, now superseded by more sophisticated ranking
algorithms

* How to rank tens of billions of web pages by their importance

= ... efficiently in a reasonable amount of time

= .. when data is scattered across hundreds of thousands of
computers

= ... data files can be enormous (petabytes or more)

= ... data files are updated only occasionally (just appended)

= ...sending the data between compute nodes is expensive

= ... hardware failures are rule rather than exception

» Centralized index structure was no longer sufficient

e Solution

= Google File System — a distributed file system
= MapReduce — a programming model

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025

MapReduce Framework

MapReduce programming model

 Cluster of commodity personal computers (nodes)
= Each running a host operating system, mutually interconnected
within a network, communication based on IP addresses, ...

e Datais distributed among the nodes

* Tasks executed in parallel across the nodes
Classification

e Process interaction: message passing

* Problem decomposition: data parallelism

* Fault tolerance: automatic failure handling

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025

Basic ldea

Divide-and-conquer paradigm
* Breaks down a given problem into simpler sub-problems
* Solutions of the sub-problems are then combined together
Two core functions

e Map function
= Generates a set of so-called intermediate key-value pairs
e Reduce function

= Reduces values associated with a given intermediate key
And that’s all!

Basic Idea

And that’s really all!
It means...

* We only need to implement Map and Reduce functions
* Everything else such as

input data distribution,

scheduling of execution tasks,
monitoring of computation progress,
inter-machine communication,
handling of machine failures,
container orchestration

cloud resource management

data security and encryption

is managed automatically by the framework!

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025 11

Model Description

Map function
* Input: input key-value pair = input record
e Qutput: list of intermediate key-value pairs
= Usually from a different domain

= Keys do not have to be unique
= Duplicate pairs are permitted

o (key,value) — list of (key, value)
Reduce function
e Input: intermediate key + list of (all) values for this key
e QOutput: possibly smaller list of values for this key
= Usually from the same domain
o (key, list of values) — (key, list of values)

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025 12

Example: Word Frequency

/**
* Mapfunction
* @param key Document identifier
* @param value Document contents
*/
map (String key, String value) {
foreach word w in value: emit(w, 1);

/**
* Reduce function
* @param key Particular word
* @param values List of count values generated for this word
*/
reduce (String key, Iterator values) {
int result = 0;
foreach v in values: result += v;
emit (key, result);

}

Logical Phases

——————— -I———————* Map —————{'———) Shuffle ————-I————> Reduce —————|'———>
Stésti 1 Medvidek k
Medvidek | 1 Medvidek

Samotafi | 1 Medvidek

[eomaacrwente f= [—
Pupendo | 1

Samotafi

Samotafi | 1 > Samotafi

Zelary 1 Samotafi

Samotafi | 1 Samotafi

Samotafi
TR e
Stasti 1 Y s

Stésti

Medvidek | 1
Samotafi | 1 Zelary
Zelary 1 Zelary

—— Input Records ——>» Qutput File

Logical Phases

Mapping phase
* Map function is executed for each input record
* Intermediate key-value pairs are emitted
Shuffling phase

e Intermediate key-value pairs are grouped and sorted
according to the keys

Reducing phase
¢ Reduce function is executed for each intermediate key
e Qutput key-value pairs are generated

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025

i

Cluster Architecture

Master-slave (coordinator-worker or manager-worker) architecture

* Two types of nodes, each with two basic roles
* Master

= Manages the execution of MapReduce jobs
— Schedules individual Map / Reduce tasks to idle workers

= Maintains metadata about input / output files
— These are stored in the underlying distributed file system

» Slaves (workers)
* Physically store the actual data contents of files

— Files are divided into smaller parts called splits
— Each split is stored by one / or even more particular workers

" Accept and execute assigned Map / Reduce tasks

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025

16

Cluster Architecture

Master ‘
Worker W3

Worker W1

Worker W4

Worker W2

MapReduce Job Submission

Master MapReduce Job
Submission
Worker W3
Worker W1
Worker W4

Worker W2

MapReduce Job Submission

Submission of MapReduce jobs

* Jobs can only be submitted to the master node
* Client provides the following:

= Implementation of (not only) Map and Reduce functions
= Description of input file (or even files)
= Description of output directory

Localization of input files
e Master determines locations of all involved splits
= |.e. workers containing these splits are resolved

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025

19

Input Splits Localization

Master ‘
;
! Worker W3
[| |

Worker W1

split 51

Split s2 Worker W4

Worker W2

Input Splits Localization

Master ‘
|
i Worker W3

Worker W1

split 51

Worker W4

Worker W2

Map Task Assignment

Master

Sk Worker W3
Map Tasks
Assignment
Worker W1
Worker W4

Worker W2

Map Task Execution

Map Task = processing of 1 split by 1 worker
* Assigned by the master to an idle worker that is (preferably)
already containing (physically storing) a given split
Individual steps...
e |nput reader is used to parse the contents of the split
= l.e. input records are generated
¢ Map function is applied on each input record
= Intermediate key-value pairs are emitted
e These pairs are stored locally and organized into regions

= Either in memory with monitoring & adaptive spilling or
compressed and flushed to a local hard drive when necessary
= Partition function is used to determine the intended region
— Intermediate keys (not values) are used
— E.g. hash of the key modulo the overall number of reducers

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025

23

Input Parsing

Parsing phase

* Each split is parsed so that input records are retrieved
(i.e. input key-value pairs are obtained)
= Schema validation and type inference
= Error handling for malformed data
= Support for compressed/encoded formats

Split 51 1

Map Phase

——————————————— |-————————> Map —————{*——-) Partition —————+—————————————>
i Region R1
| Medvidek

Seasti 1 ! 4 Medvidek Medvidek
Pupendo
Medvidek | 1
r Pupendo p
. I
Split $1 i samotafi | 1 - Samotari
! Samotafi
! Medvidek | 1 —
! Samotari
| P d
i vpendo. g8 SamotaFi
I
i Samotafi | 1
Zelary |1 Region R2
Samotafi | 1 T
Zelary

Map Phase

Region R1

Medvidek
Medvidek

Master

Samotafi
Samotafi

Region R2 :
Samotafi i Worker W3
Samotafi
SamotaFi | Zelary .
Worker W1
Medvidek
Worker W4

Worker W2

Map Task Confirmation

Region R1

Medvidek
Medvidek

Samotafi

Master

Region R2

Samotafi

Samotafi

Map Tasks
Confirmation

Samotafi
Samotafi

Worker W2

Worker W3

Worker W4

Reduce Task Assignment

Region R1

Medvidek
Medvidek

Pupendo

Master

I
i Region R2

Samotafi

Worker W3

Samotafi

Samotafi

Reduce Tasks
Assignment

Samotafi
Samotafi

Worker W4

Worker W2

Reduce Task Execution

Reduce Task = reduction of selected key-value pairs by 1 worker
* Goal: processing of all emitted intermediate key-value pairs
belonging to a particular region
Individual steps...
¢ Intermediate key-value pairs are first acquired

= All relevant mapping workers are addressed
= Data of corresponding regions are transferred (remote read)

e Once downloaded, they are locally merged
= l.e. sorted and grouped based on keys
= External merge sort for large datasets

¢ Reduce function is applied on each intermediate key

e Output key-value pairs are emitted and stored (output writer)

Note that each worker produces its own separate output file

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025

29

Region Data Retrieval

Region R1

Medvidek
Medvidek

Pupendo

Master

Samotafi Worker W3
Intermediate
Key-Value Pairs

Request

Samotafi

Samotafi

Samotafi
Samotafi

Worker W4

Worker W2

Region Data Retrieval

- =
| Region R1
i Master

Medvidek 1
Medvidek .

| s |

SamotéFi Worker W3
Intermediate
Key-Value Pairs

Transfer Keys K1

Samotafi

Samotafi

Worker W1
S 0
| RegionRL =~

I
| [reoviaek i
! Samotafi |
| | samotati

Worker W4

i

NS L

Worker W2

Reduce Phase

—————————————— -I—————> Merge ————-I————> Reduce ——————-I—————————————>
Region R1
from Medvidek
Worker W1 Medvidek Medvidek
Medvidek
Medvidek 1 N\ 7T i
i ! Qutput 01
Samotafi Medvidek]
Samotafi :
P Pupendo i
Samotari SamotaFi - i
1
o |
—— |
. f 1
Region R1 Samotafi =
from Samotai
Worker W2
Samotafi

Reduce Phase

Master

Worker W3

Output 01

I
i

Medvidek i

i

:
!

|
]

Worker W1

, |
Worker W2 i = .
I H

Reduce Task Confirmation

Master

Worker W3

. Output 01
Reduce Tasks
Confirmation

Worker W1

. ouputoz |

|
Worker W2 ; e
| -

MapReduce Job Termination

MapReduce Job

Master Termination

Worker W3

Output 01

I
i

Medvidek i

i

:
i

]

]

Worker W1

, |
Worker W2 i = .

Combine Function

Optional Combine function

e Objective

Decrease the amount of intermediate data

i.e. decrease the amount of data that is needed to be
transferred from Mappers to Reducers

Optimize network and storage usage

* Analogous purpose and implementation to Reduce function

e Executed locally by Mappers

e However, only applicable when the reduction is...

Commutative

Associative

Idempotent: f{f(x)) = f(x)
Memory efficient
Cost-effective vs. raw transfer

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025

36

Improved Map Phase

————-I———> Partition ————+ —————— > Combine —-—-- {' ————————————— >
Stésti 1 : Region R1
Medvidek | 1 :
Samotafi | 1 1
|
Medvidek | 1 i
Pupendo | 1 1
Samotafi | 1
Zelary | 1 : Region R2
Samotafi | 1 1
I
I
I

Improved Reduce Phase

Master

b)
| Region R1 |

Intermediate

Transfer

Worker W2

Key-Value Pairs

Worker W3

Worker W4

Improved Reduce Phase

—————————————— -I—————> Merge ————-I————> Reduce ——————-I—————————————>
Region R1
from
Worker W1 e —
! Qutput 01
|
i
|
i
- i
from b]
Worker W2

Data between Map and Reduce Phases

Region R1
from
Worker W1 T
Medvidek
Medvidek [it 1
o 1 - | Qutput 01
) o] : i
= pendo I !
Samotari |
e K -Pupenda i
pamotsl] Samotafi i i
: s
Region R1 Samotafi [
from Samotafi
Worker W2 =
Samotafi

Medvidek, {1, 1, 1}
Pupendo, {1}
Samotari, {1, 1,1, 1, 1}

/ AN

Key List of values

Reduce Phase

In MapReduce, a Reducer processes all values associated with a single
key. These values are represented as an Iterable in Java, not a collection.

An Iterable is an interface that allows objects to be the target of the “for-
each” loop. It doesn’t guarantee the ability to iterate over its elements
multiple times like collections do. This means you can only iterate over
an Iterable once.

public void reduce (Text key, Iterable<IntWritable> values,
Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}

context.write (key, new IntWritable (sum));

Functions Overview

Input reader
e Parses a given input split and prepares input records

Map function
e Transforms input records into intermediate key-value pairs

Partition function
e Determines a particular Reducer for a given intermediate key

Compare function
e Defines ordering between intermediate keys for sorting
Combine function

* Local pre-reduction on Mapper side (optional))

Reduce function
* Processes grouped values per intermediate key

Output writer
* Writes the output of a given Reducer

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025

Advanced Aspects

Counters

e Allow to track the progress of a MapReduce job in real time
= Predefined counters
— E.g. numbers of launched / finished Map / Reduce tasks,
parsed input key-value pairs, ...
= Custom counters (user-defined)

— Can be associated with any action that a Map or Reduce
function does

— Support monitoring and error tracking

Advanced Aspects

Fault tolerance

* When a large number of nodes process a large number of data

= fault tolerance is necessary
Worker failure

* Master periodically pings every worker; if no response is received in a
certain amount of time, master marks the worker as failed

e All its tasks are reset back to their initial idle state and become
eligible for rescheduling on other workers

* Detection via modern health checks and heartbeat mechanisms

Master failure
e Strategy A — periodic checkpoints are created; if master fails, a
new copy can then be started
e Strategy B — master failure is considered to be highly unlikely;
users simply resubmit unsuccessful jobs

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025 42

Advanced Aspects

Stragglers

e Straggler = node that takes unusually long time to complete
a task it was assigned

¢ Solution

= When a MapReduce job is close to completion, the master
schedules backup executions of the remaining in-progress tasks

= A given task is considered to be completed whenever either
the primary or the backup execution completes

Advanced Aspects

Task granularity

¢ Intended numbers of Map and Reduce tasks
* Practical recommendation (by Google)
= Map tasks

— Choose the number so that each individual Map task has
roughly 16 — 64 MB of input data

= Reduce tasks

— Small multiple of the number of worker nodes we expect to use
— Note also that the output of each Reduce task ends up
in a separate output file

Additional Examples

URL access frequency

Input: HTTP server access logs
* Map: parses a log, emits (accessed URL, 1) pairs
* Reduce: computes and emits the sum of the associated values
e Qutput: overall number of accesses to a given URL

Inverted index

Input: text documents containing words
* Map: parses a document, emits (word, document ID) pairs

Reduce: emits all the associated document IDs sorted

Output: list of documents containing a given word

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025

45

Processing Big Data (Log Analysis)

Example: Counting the number of requests for each URL.
*Task: Count how many times each URL appears in server logs.
Input Data: Log files (text lines):

192.168.1.1 - [10/Jun/2024] "GET /index.html"
192.168.1.2 - [10/Jun/2024] "GET /about.html"
192.168.1.1 - [10/Jun/2024] "GET /index.html"

Map Phase

*Processing: Extract the URL and Reduce Phase

emit (URL, 1). *Processing: Sum all 1s for
*Map Output: Key-value pairs: each key.
("/index.html", 1) *Reduce Output: Final
(“/about .html", l) results-
("/index.html"™, 1)

Shuffle.and Sort ("/index.html", 2)
*Grouping by key: ("/about.html", 1)
"/index.html"™ - [1, 1] ’

"/about.html"™ - [1]

Indexing Data (Search Engines)

Example: Building an inverted index that links words to document IDs.
*Task: Link words in documents to the documents where they appear.
Input Data: Text documents:

docl: "hello world"
doc2: "hello hadoop"

Map Phase

*Processing: Emit (word, document ID)

*Map Output:

("hello", "docl") Reduce Phase

("world", "docl") *Processing: Combine
("hello"™, "doc2") document IDs for each word
("hadoop", "doc2") into a list.

Shuffle and Sort “Reduce Output:

*Grouping by word:

"hello" - ["docl", "doc2"]
"world" - ["docl"]
"hadoop" - ["doc2"]

("hello", ["docl", "doc2"])
("world", ["docl"])
("hadoop", ["doc2"])

Analytics and Business Reports

Example: Summing sales revenue by region. region, amount
*Task: Calculate total revenue per region. North, 100
*Input Data: Sales table: South, 200
North, 300
Map Phase
*Processing: Emit (region, amount).
*Map Output:
("North"™, 100) Reduce Phase
("South", 200) *Processing: Sum all amounts
("North"™, 300) for each region.
*Reduce Output:
Shuffle and Sort
*Grouping by region: ("North", 400)
"North" - [100, 300] ("South", 200)
"South" - [200]

ETL Processes (Data Cleaning)

Example: Removing invalid records.

*Task: Filter out records with missing or invalid values. John, 25

°Input Data:

Map Phase
*Processing: Validate the data and

emit valid records.
*Map Output:
("John", 25)
("Bob", 30)

Shuffle and Sort
*Grouping (optional):

user, age

Alice, null
Bob, 30

Reduce Phase

*Processing: No aggregation
required; output cleaned data.
°Reduce Output:

("John", 25)
("Bob", 30)

Additional Examples

Distributed sort
e [nput: records to be sorted according to a specific criterion
e Map: extracts the sorting key, emits (key, record) pairs
* Reduce: emits the associated records unchanged
Reverse web-link graph
e Input: web pages with links (<a href>, JSON-LD, structured data)
* Map: emits (target URL, current document URL) pairs
* Reduce: emits the associated source URLs unchanged
e QOutput: list of URLs of web pages targeting a given one

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025 46

The page http://pagel.com contains:

Ad d itio na I Exa m p I @G Link

Other

. Map output:
Reverse web-link graph (http://target.com, http://pagel.com)
(http://other.com, http://pagel.com)

/**
* Mapfunction
* @param key Source web page URL
* @param value HIML contents of this web page
*/
map (String key, String value) {

foreach <a> tag t in value: emit(t.href, key);
}

/**
* Reduce function
* @param key URL of a particular web page
* @param values List of URLs of web pages targeting this one
*/
reduce (String key, Iterator values) {
emit (key, values);

}

| http://target.com -> [http://pagel.com, http://page2.com, http://page3.com] |

Use Cases: General Patterns

Counting, summing, aggregation
* When the overall number of occurrences of certain items or a
different aggregate function should be calculated

Collating, grouping

* When all items belonging to a certain group should be found,
collected together or processed in another way

Filtering, querying, parsing, validation

* When all items satisfying a certain condition should be found,
transformed or processed in another way

Sorting

* When items should be processed in a particular order with respect
to a certain ordering criterion

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025

Use Cases: Real-World Problems

Just a few real-world examples...

Risk modeling, customer churn

Recommendation engine, customer preferences
Advertisement targeting

Fraudulent activity threats, security breaches detection
Hardware or sensor network failure prediction

Search quality analysis

loT data processing and analytics

Real-time anomaly detection

User behavior analytics

Supply chain optimization

Source: http://www.cloudera.com/

http://www.cloudera.com/

Problems with MapReduce

High Disk 1/0 Costs
= Intermediate results are written to and read from disk.

* Slow Execution for Iterative Jobs
= No in-memory processing; repetitive disk writes slow down
machine learning and graph tasks.

* Lack of Real-Time Support
= Designed for batch processing with high latency.

* Rigid Programming Model
= Only Map and Reduce phases limit flexibility for complex
workflows.

* Complex Multi-Stage Workflows
= Chaining multiple jobs is cumbersome and inefficient.

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025

49

Modern Alternatives to MapReduce

* Apache Spark

= Key Idea: In-memory processing using Resilient Distributed Datasets (RDDs).

= Improvement: Avoids disk I/O by storing intermediate results in RAM.

* Apache Flink

= Key Idea: Real-time stream and batch processing with stateful computations.

= Improvement: Designed for low-latency tasks; supports time windows and
state management.

* Google Dataflow / Apache Beam

= Key Idea: Unified model for batch and streaming data processing.

= Improvement: Provides flexibility while abstracting execution details.
* Dask and Ray

* Key Idea: Python-native frameworks for distributed parallel processing.
* Improvement: Simplifies big data processing for Python developers.

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025

49

The Core Concept: MapReduce Lives On

* Map Phase
= All systems (Spark, Flink, Beam) retain the concept of parallel data
transformation.

¢ Shuffle Phase

= Data is grouped or partitioned by key, similar to MapReduce.
* Reduce Phase
= Aggregation and summarization are still core principles.

What's Different?

* In-Memory Execution: Avoids repeated disk 1/0.

* Flexible Workflows: DAG execution models enable complex chains.

* Real-Time Streaming: Frameworks like Flink and Beam handle data
in motion.

Conclusion: MapReduce principles persist, but modern systems
optimize execution, flexibility, and speed.

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025 49

Apache Hadoop

%aap

Apache Hadoop

Open-source software framework

https://hadoop.apache.org/

Distributed storage and processing of very large data sets on
clusters built from commodity hardware and cloud infrastructure

= Implements a distributed file system (HDFS)
= Implements a MapReduce programming model

Part of the Hadoop ecosystem (YARN, HDFS, etc.)
Derived from the original Google MapReduce and GFS
Developed by Apache Software Foundation

Implemented in Java with support for multiple programming
languages

Operating system: cross-platform
Initial release in 2011

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025

51

http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/

Apache Hadoop

Modules
* Hadoop Common
= Common utilities and support for other modules
* Hadoop Distributed File System (HDFS)
= High-throughput distributed file system
* Hadoop Yet Another Resource Negotiator (YARN)
= Cluster resource management
= Job scheduling framework
* Container and GPU support

* Hadoop MapReduce
" YARN-based implementation of the MapReduce model

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025

52

Apache Hadoop

Real-world Hadoop users (year 2016)
* Facebook — internal logs, analytics, machine learning, 2 clusters
1100 nodes (8 cores, 12 TB storage), 12 PB
300 nodes (8 cores, 12 TB storage), 3 PB

e LinkedIn — 3 clusters
800 nodes (2 X4 cores, 24 GB RAM, 6 X2 TB SATA), 9 PB
1900 nodes (2 X6 cores, 24 GB RAM, 6 X2 TB SATA), 22 PB
1400 nodes (2X6 cores, 32 GB RAM, 6 X2 TB SATA), 16 PB
» Spotify — content generation, data aggregation, reporting, analysis
1650 nodes, 43000 cores, 70 TB RAM, 65 PB, 20000 daily jobs

e Yahoo! — 40000 nodes with Hadoop, biggest cluster
4500 nodes (2X4 cores, 16 GB RAM, 4X1 TB storage), 17 PB

Source: http://wiki.apache.org/hadoop/PoweredBy

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025

54

http://wiki.apache.org/hadoop/PoweredBy

HDFS

Hadoop Distributed File System

e

Open-source, high-quality, cross-platform, pure Java

Highly scalable, high-throughput, fault-tolerant, erasure coding
Master-Slave (Primary-Secondary) architecture
Optimal applications

= Data lakes, MapReduce, web crawlers, data warehouses, Al/ML
pipelines, ...

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025 55

HDFS: Assumptions

Data characteristics
e Large data sets and files
» Streaming data access
* Batch and near real-time processing rather than interactive
access
¢ Write-once, read-many
Fault tolerance
* HDFS cluster may consist of thousands of nodes
" Each component has a non-trivial probability of failure
* = there is always some component that is non-functional

* le. failure is the norm rather than exception, and so
* automatic failure detection and recovery is essential

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025

56

HDFS: File System

Logical view: Linux-based hierarchical file system
¢ Directories and files
¢ Contents of files is divided into blocks

= The default block size is typically 128 MB (configurable per
file or globally)

e User and group permissions
e Stapdard operations are provided
Create, remove, move, rename, copy, ...
Namespace
e Contains names of all directories, files, and other metadata
l.e. all data to capture the whole logical view of the file system

e Typically, a single namespace for the entire cluster, but HDFS
Federation supports multiple namespaces for scalability

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025 57

HDFS: Cluster Architecture

Master-slave architecture

e Master (Primary):
. NameNode
* Manages the namespace
* Maintains physical locations of file blocks
Provides the user interface for all the operations
— Create, remove, move, rename, copy, ... file or directory
. — Open and close file
Regulates access to files by users
» Slaves (Secondary): DataNodes
" Physically store file blocks within their underlying file systems
Serve read/write requests from users
= — l.e. user data never flows through the NameNode

Have no knowledge about the namespace

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025 58

HDFS: Replication

Replication = maintaining of multiple copies of each file block

¢ Increases read throughput, increases fault tolerance
* Replication factor (number of copies)

= Configurable per file level, usually 3
Replica placement
e Critical to reliability and performance
¢ Rack-aware strategy

= Takes the physical location of nodes into account
= Network bandwidth between the nodes on the same rack
is greater than between the nodes in different racks

e Common case (replication factor 3):

= Two replicas on two different nodes in a local rack
= Third replica on a node in a different rack

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025

59

HDFS: NameNode

How the NameNode Works?

e Fslmage — data structure describing the whole file system
Contains: namespace + mapping of blocks + system properties Loaded
into the system memory (16 GB RAM is sufficient)

= Stored in the local file system, periodical checkpoints created
» EditLog — transaction log for all the metadata changes

= E.g. when a new file is created, replication factor is changed, ...
= Stored in the local file system

* Failures
* When the NameNode starts up

— Fslmage and EditLog are read from the disk, transactions from
EditLog are applied, new version of FsImage is flushed on the
disk, EditLog is truncated

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025 60

HDFS: DataNode

How each DataNode Works?

e Stores physical file blocks
= Each block (replica) is stored as a separate local file
= Heuristics are used to place these files in local directories

e Periodically sends HeartBeat messages to the NameNode

¢ Failures

= When a DataNode fails or in case of a network partition,
i.e. when the NameNode does not receive a HeartBeat
message within a given time limit
— The NameNode no longer sends read/write requests to this
node, re-replication might be initiated
* When a DataNode starts up

— Generates a list of all its blocks and sends a BlockReport
message to the NameNode

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025

61

HDFS: API

Available application interfaces

e Java API
= Language bindings: Python, Go, C/C++
e HTTP interface
= Browsing the namespace and downloading the contents of files
= WebHDFS RESTful API
* FS Shell — command line interface
= Intended for the user interaction
® Bash-inspired commands
" E.g.:
- hadoop fs -1ls /
— hadoop fs -mkdir /mydir

Hadoop MapReduce

Hadoop MapReduce

* MapReduce programming model implementation

e Requirements
= HDFS
— Input and output files for MapReduce jobs
= YARN

— Underlying distribution, coordination, monitoring and
gathering of the results

Cluster Architecture

Master-slave architecture
e Master: JobTracker

= Provides the user interface for MapReduce jobs
= Fetches input file data locations from the NameNode
= Manages the entire execution of jobs

— Provides the progress information
* Schedules individual tasks to idle TaskTrackers
— Map, Reduce, ... tasks
— Nodes close to the data are preferred
— Failed tasks or stragglers can be rescheduled
e Slave: TaskTracker
= Accepts tasks from the JobTracker
= Manages containers for task execution
* Indicates the available task slots via HearBeat messages

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025

64

Execution Schema

&
Prolger'a“m Submit Job
Assign Tasktrackers.
Co-ordinate map and reduce phases
Provide Job progress info
DFS

Map Phase Reduce Phase

Java Interface

Mapper class
* Implementation of the map function
e Template parameters
= KEYIN, VALUEIN - types of input key-value pairs

= KEYOUT, VALUEOUT - types of intermediate key-value
pairs

e Intermediate pairs are emitted via context.write(k, v)

class MyMapper extends Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
@override
public void map (KEYIN key, VALUEIN value, Context context)
throws IOException, InterruptedException
{
// Implementation
}
}

Java Interface

Reducer class

* Implementation of the reduce function

e Template parameters
= KEYIN, VALUEIN - types of intermediate key-value pairs
= KEYOUT, VALUEOUT - types of output key-value pairs

e Qutput pairs are emitted via context.write (k, V)

class MyReducer extends Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
@override
public void reduce (KEYIN key, Iterable<VALUEIN> values, Context context)
throws IOException, InterruptedException
{
// Implementation
}
}

Example

Word Frequency
* Input: Documents with words
= Files located at /home/input HDFS directory
* Map: parses a document, emits (word, 1) pairs
* Reduce: computes and emits the sum of the associated values

e QOutput: overall number of occurrences for each word
= Output will be written to /home/output

MapReduce job execution

hadoop jar wc.jar WordCount /home/input /home/output

Example: Mapper Class

public class WordCount {

public static class MyMapper
extends Mapper<Object, Text, Text, IntWritable>
{
private final static IntWritable one = new IntWritable(l);
private Text word = new Text();
@override
public void map (Object key, Text value, Context context)
throws IOException, InterruptedException
{
StringTokenizer itr = new StringTokenizer (value.toString());
while (itr.hasMoreTokens()) {
word. set (itr.nextToken()) ;
context.write (word, one);

}

Example: Reducer Class

public class WordCount {

public static class MyReducer
extends Reducer<Text, IntWritable, Text, IntWritable>
{
private IntWritable result = new IntWritable();
@Override
public void reduce (Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException
{
int sum = 0;
for (IntWritable val : values) {
sum += val.get();

}
result.set (sum) ;

context.write (key, result);

Lecture Conclusion

MapReduce criticism

. MapReduce is a step backwards
= Does not use database schema
= Does not use index structures

= Does not support advanced query languages
= Does not support transactions, integrity constraints, views, ...

= Does not support data mining, business intelligence, ...

* MapReduce is not novel
= |deas more than 20 years old and overcome
= Message Passing Interface (MPI), Reduce-Scatter

The end of MapReduce?

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 4: MapReduce, Apache Hadoop | 13. 10. 2025

72

