B4M36DS2, BEAM36DS2: Database Systems 2
https://cw.fel.cvut.cz/wiki/courses/b4m36ds2/

Lecture 10 u“J:g'[\':HESB I G“ A

Graph Databases: Neodj: l]A;l'AsmH@f
Cypher :

Yuliia Prokop

prokoyul@fel.cvut.cz

1.12.2025 N O

Author: Martin Svoboda
(martin.svoboda@matfyz.cuni.cz)

Czech Technical University in Prague, Faculty of Electrical Engineering

https://cw.fel.cvut.cz/wiki/courses/b4m36ds2/
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@matfyz.cuni.cz

Lecture Outline

Graph databases
e Introduction
Neodj
e Data model: property graphs

¢ Traversal framework
e Cypher query language
= Read, write, and general clauses

Neod4j Graph Database

@neoy]

Sample Data

Sample graph with movies and actors

(mIMOVIE { id: "vratnelahve", title: "Vratné lahve", year: 2006 })
(Mm2MOVIE{ id: "samotari", title: "Samotafi", year: 2000 })
(M3MOVIE{ id: "medvidek", title: "Medvidek", year: 2007 })
(m4MOVIE { id: "stesti", title: "Stésti", year: 2005 })

(@l:ACTOR { id: "trojan", name: "Ivan Trojan", year: 1964 })

(@2:ACTOR { id: "machacek", name: "Jifi Machdacek", year: 1966 })
(@3:ACTOR { id: "schneiderova", name: "Jitka Schneiderova", year: 1973 })
(a4¢:ACTOR { id: "sverak", name: "Zdenék Svérak", year: 1936 })

(m1)-[cl:PLAY { role: "Robert Landa" }]->(a2)
(m1)-[c2:PLAY { role: "Josef Tkaloun" }]->(a4)
(m2)-[c3:PLAY { role: "Ondfej" }]->(al)
(m2)-[c4:PLAY { role: "Jakub" }]->(a2)
(m2)-[c5:PLAY { role: "Hanka" }]->(a3)
(m3)-[c6:PLAY { role: "Ivan" }]->(al)
(m3)-[c7:PLAY { role: "Jirka", award: "Czech Lion" }]->(a2)
(a1)-[f1:KNOW]->(a2)

(a1)-[f2:KNOW]->(a3)

(a2)-[f3:KNOW]->(a3)

(a4)-[f4:KNOW]->(a2)

Sample Data

Sample graph with movies and actors

1 Vratné lahve | Troian 1964 |a1
m 2006 van Trojan a
Samotafi Jifi Machéadek |«

m2 a2
2000 1966 -

3 Medvidek Jitka Schneiderova x
m 2007 1973 @

a| &asti 2005 Zdenék Svérak 4
m ésti 1936 a

Sample Data (https://console.neo4j.org)

Cypher

Cypher

Cypher
e Declarative graph query language

= Allows for expressive and efficient querying and updates
= Inspired by SQL (query clauses) and SPARQL (pattern matching)

* OpenCypher

= Ongoing project aiming at Cypher standardization
=« http://www.opencypher.org/

Clauses
o E.g. MATCH, RETURN, CREATE, ...

* Clauses can be (almost arbitrarily) chained together
» Intermediate result of one clause is passed to a subsequent one

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 10: Graph Databases: Neodj. Cypher | 1. 12. 2025

http://www.opencypher.org/

Sample Query

Find names of actors who played in Medvidek movie

MATCH(m:MOVIE)-[r:PLAY]->(a:ACTOR)
WHERE m.title = "Medvidek"

RETURN a.name, a.year
ORDER BY a.year

Ivan Trojan 1964
Jifi Machacek 1966

m:MOVIE a:ACTOR

Medvidek PLAY . ?
? : ?

Clauses

Read clauses and their sub-clauses

e MATCH — specifies graph patterns to be searched for
= WHERE — adds additional filtering constraints

* ...

Write clauses and their sub-clauses

e CREATE — creates new nodes or relationships

e DELETE — deletes nodes or relationships

e SET — updates labels or properties

e REMOVE — removes labels or properties

Clauses

General clauses and their sub-clauses
e RETURN — defines what the query result should contain

= ORDER BY — describes how the query result should be ordered
= SKIP - excludes certain number of solutions from the result
= LIMIT - limits the number of solutions to be included

e WITH- allows query parts to be chained together

Path Patterns

Path pattern expression
* Sequence of interleaved node and relationship patterns
» Describes a single path (not a general subgraph)

[rotepatam -
 —

* ASCII-Art inspired syntax

= Circles () for nodes
= Arrows <——, ——, ——> for relationships

(m:MOVIE)-[r:PLAY]->(a:ACTOR)
(a:ACTOR {name: "Jifi Machacek"})-[r:PLAY]->(m:MOVIE)

Path Patterns

Node pattern (a:ACTOR)
e Matches one data node (m:MOVIE {title: "Samotari"})
O @ - T 7@

* Variable
" Allows us to access a given node later on
* Set of labels
« Data node must have all the specified labels to be matched
MATCH (n:PERSON:ACTOR)
" Labels are case sensitive
* Property map
. Data node must have all the requested properties (including
their values) to be matched (the order is unimportant)

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 10: Graph Databases: Neodj. Cypher | 1. 12. 2025

11

Path Patterns

Property map (m:MOVIE {title: "Vratné lahve"})
7@

oa.\‘

@Dl
t ~]
W

Relationship pattern
* Matches one data relationship

L:.‘I - [oltonsip o | L:..f

-[r:PLAY]->
-[r:PLAY {award: "Czech Lion"}]->

Path Patterns

-[r:PLAY]->
-[r:PLAY {award: "Czech Lion"}]->

Relationship pattern

O @ o]
0~ |

——wav——mae

{
L

e Variable
= Allows us to access a given node later on
o Set of types

= Data relationship must be of one of the enumerated types
to be matched

(a)-[r:TYPE1| TYPE2]->(b)

Path Patterns

Relationship pattern (cont.)
* Property map
= Data relationship must have all the requested properties
* Variable path length

= Allows us to match paths of arbitrary lengths
(not just exactly one relationship)

-
©
oG-

= Examples: *, 4, *2..6, *..6, *2..

(a)-[r*1..3]->(b)

Path Patterns

Examples

O

(x)--(v)
(m:MOVIE)-->(a:ACTOR)

(:MOVIE)-->(a { name: "Ivan Trojan" })

(<-[r:PLAY]-()

(m)-[:PLAY { role: "Ivan" }]->()

(ACTOR { name: "Ivan Trojan" })}-:KNOW *2]->(:ACTOR)

O-[KNOW *5..1->(f)

Path Patterns

Example:
= are these queries equivalent?

(al:ACTOR {name: "Ivan Trojan"})-[:PLAY]->(m:MOVIE)<-[:PLAY]-(a2:ACTOR)

(al:ACTOR {name: "Ivan Trojan"})<-[:PLAY]-(m:MOVIE)-[:PLAY]->(a2: ACTOR)

(al:ACTOR {name: "Ivan Trojan"})-[:PLAY]-(m:MOVIE)-[:PLAY]-(a2: ACTOR)

Match Clause

MATCH clause

* Allows to search for sub-graphs of the data graph that
match the provided path pattern/patterns (all of them)

* Query result (table) = unordered set of solutions
= One solution (row) = set of variable bindings

e Each variable has to be bound

path pattern

° (matcH)
\‘1 OPTIONAL D-j b g % \‘(variable P@*I
O

o/

J
|

(

\ @D [-

MATCH p = (a:ACTOR)-[:PLAY]->(m:MOVIE {title: 'Medvidek’})
RETURN p;

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 10: Graph Databases: Neodj. Cypher | 1. 12. 2025

16

Match Clause

WHERE sub-clause may provide additional constraints

e These constraints are evaluated directly during the
matching phase (i.e. not after it)
e Typical usage
= Boolean
= expressions
= Comparisons
= Path patterns — true if at least one solution is found

Match Clause: Example

Find names of actors who played with Ivan Trojan in any movie

MATCH(i:ACTOR)<-[:PLAY]-(m:MOVIE)-[:PLAY]->(a:ACTOR)
WHERE (i.name = "Ivan Trojan")
RETURN a.name

MATCH(i:ACTOR { name: "Ivan Trojan" })
<-[:PLAY]-(m:MOVIE)-[:PLAY]->

(a:ACTOR)
RETURN a.name
i m a
(a1) (m2) @) | o Jiti Machacek
(a1) (m2) (a3) Jitka Schneiderova
(a1) (m3) (a2) Jiti Machacek

The second query might be slightly more efficient because it can use an
index on the name property of ACTOR nodes (if such an index exists) from
the start of the query execution

Match Clause

Uniqueness requirement

* One data node may match several query nodes, but one
data relationship may not match several query relationships

MATCH (a:ACTOR)-[r:KNOWS]->(b: ACTOR)-[s:KNOWS]->(c: ACTOR)

OPTIONAL MATCH
* Attempts to find matching data sub-graphs as usual...

¢ but when no solution is found,

one specific solution with all the variables bound to NULL
is generated

¢ Note that
either the whole pattern is matched, or nothing is matched

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 10: Graph Databases: Neodj. Cypher | 1. 12. 2025

19

Match Clause: Example

Find movies filmed in 2005 or earlier and names of their actors
(if any)

MATCH(m:MOVIE)

WHERE (m.year <= 2005)
OPTIONAL MATCH(m)-[:PLAY]->(a:ACTOR)
RETURN m.title, a.name

m a
m (m2) (a1) Samotari Ivan Trojan
(m2) = (m2) | (a2) | = | Samotafi Jifi Machacek
(m4) (m2) (a3) Samotari Jitka Schneiderova
(m4) | NULL Stésti NULL

Return Clause

RETURN clause

e Defines what to include in the query result
= Projection of variables, properties of nodes or
relationships (via dot notation), aggregation functions, ...

e Optional ORDER BY, SKIP and LIMIT sub-clauses
H-ﬁ.-?

(.

o - (s]) [

RETURN DISTINCT
* Duplicate solutions (rows) are removed

Return Clause

Projection
e * = all the variables
= Can only be specified as the very first item
* AS allows to explicitly (re)name output records

o>

. 7
@—r @G- }

r \-ﬂ'

Return Clause

ORDER BY sub-clause

e Defines the order of solutions within the query result
= Multiple criteria can be specified
= Default direction is ASC

* The order is undefined unless explicitly defined
* Nodes and relationships as such cannot be used as criteria

Luci

Return Clause

SKIP sub-clause

e Determines the number of solutions to be skipped
in the query result

o+-—> expression >0

LIMIT sub-clause

¢ Determines the number of solutions to be included
in the query result

c»-» expression 0

With Clause

WITH clause

* Constructs intermediate result
= Analogous behavior to the RETURN clause

= Does not output anything to the user,
just forwards the current result to the subsequent clause

e Optional WHERE sub-clause can also be provided
”.*T-ﬁ*-jl
(

= 7 SN ey S ey }

(

\ G [-

With Clause: Example

Numbers of movies in which actors born in 1965 or later played

MATCH(a:ACTOR .
WHER(E (a.year >)= 1965) The created list
WITH a, [(a)<-[:PLAY]-(movie:MOVIE) | movie] AS moviesList can contain O
RETURN a.name,
SIZE(moviesList) AS movies
ORDER BY movies ASC;

MATCH(a:ACTOR)
WHERE (a.year >= 1965) COUNT omits actors

MATCH (a)<-[:PLAY]-(m:MOVIE) ; X

WITH a, COUNT(m) AS movies without movies

RETURN a.name, movies

ORDER BY movies ASC;

‘ a a movies
(@2) | = | (a2) 3 = | Jitka Schneiderova 1
(a3) (a3) 1 Jiri Machacek 3

Query Structure

Chaining of Cypher clauses (simplified)

t : UNWIND clause g MERGE clause

{

[—,

¢ Read clauses: MATCH, ...
o Write clauses: CREATE, DELETE, SET, REMOVE, ...

Query Structure

Query parts

* WITH clauses split the whole query into query parts
e Certain restrictions apply...
= Read clauses (if any) must precede write clauses (if any)

in every query part
= The last query part must be terminated by a RETURN
clause

— Unless this part contains at least one write clause
. — l.e. read-only queries must return data

Werite Clauses

CREATE clause
¢ Inserts new nodes or relationships into the data graph

- (eRente)
P»%»f _T

MATCH(m:MOVIE { id: "stesti"})

CREATE
(a:ACTOR { id: "vilhelmova", name: "Tatiana Vilhelmova", year: 1978}),
(m)-[:PLAY]->(a)

Example

Werite Clauses

DELETE clause
* Removes nodes, relationships or paths from the data graph

* Relationships must always be removed before the nodes
they are associated with
= Unless the DETACH modifier is specified

o—»ﬁ expression o

Example

MATCH(:MOVIE { id: "stesti"})-[r:PLAY]->(a:ACTOR)
DELETE r

Werite Clauses

MATCH (a:ACTOR { name: "lvan Trojan" })

SET a += { year: 1964 }
SET clause RETURN a

e Allows to...
= set a value of a particular property
— orremove a property when NULL is assigned
= replace properties (all of them) with new ones
= add new properties to the existing ones
= add labels to nodes

e Cannot be used to set relationship types

o——.—— O—v(propaftykey)—»@-l expression
(variable)—-@-—l p ion I

@O @D

)
g\

Werite Clauses

REMOVE clause

e Allows to...
= remove a particular property
= remove labels from nodes

e Cannot be used to remove relationship types

varia |e)—>O—»(prope key)

MATCH (a:ACTOR { name: "Ivan Trojan" })
REMOVE a.year
RETURN a

Expressions

Literal expressions
e Integers: decimal, octal, hexadecimal
* Floating-point numbers
e Strings

= Enclosed in double or single quotes
= Standard escape sequences

¢ Boolean values: true, false
* NULL value (cannot be stored in data graphs)
Other expressions

* Collections, variables, property accessors, function calls,
path patterns, boolean expressions, arithmetic expressions,
comparisons, regular expressions, predicates, ...

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 10: Graph Databases: Neodj. Cypher | 1. 12. 2025

33

The shortest path

Find the shortest path between Ivan Trojan and Jiri Machacek

MATCH p = shortestPath((a1:ACTOR {name: "lvan Trojan"})
-[*]-(a2:ACTOR {name: "Jitka Schneiderova"}))
RETURN p;

MATCH p = shortestPath((a1:ACTOR {name: "lvan Trojan"})
-[r*]-(a2:ACTOR {name: "Jitka Schneiderova"}))
RETURN [node in nodes(p) | node.name] as names,

[rel in relationships(p) | type(rel)] as relations;

names: ["lvan Trojan", "Jitka Schneiderova"] relations: ["KNOW"]

Lecture Conclusion

Neodj = graph database

* Property graphs
¢ Traversal framework

= Path expanders, uniqueness, evaluators, traverser
Cypher = graph query language
* Read (sub-)clauses: MATCH, WHERE, ...
e Write (sub-)clauses: CREATE, DELETE, SET, REMOVE, ...
e General (sub-)clauses: RETURN, WITH, ORDER BY, LIMIT, ...

