B4M36DS2, BEAM36DS2: Database Systems 2
https://cw.fel.cvut.cz/wiki/courses/b4m36ds2/

Lecture 9 ';";B IG o
Wide Column Stores: (Ll =5

. &1 I\ STORAGE
Cassandra DMA :
Yuliia Prokop

prokoyul@fel.cvut.cz

26,11, 2025 No

Authors:
Martin Svoboda (martin.svoboda@matfyz.cuni.cz)
Yuliia Prokop

Czech Technical University in Prague, Faculty of Electrical Engineering

https://cw.fel.cvut.cz/wiki/courses/b4m36ds2/
https://cw.fel.cvut.cz/wiki/courses/b4m36ds2/
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@fit.cvut.cz
mailto:martin.svoboda@matfyz.cuni.cz

Lecture Outline

Wide column stores
* Introduction
Apache Cassandra
e Sharding, replication
e CAP theorem
* Data model

e Cassandra query language
" DDL statements
" DML statements

Wide Column Stores

Data model
e Column family
= Table is a collection of similar rows (not necessarily identical)
e Row
= Row is a collection of columns
— Should encompass a group of data that is accessed together
= Associated with a unique row key
e Column

= Column consists of a column name and column value
(and possibly other metadata records)
= Scalar values, but also flat sets, lists or maps may be allowed

Apache Cassandra

&

g

cassandra

Apache Cassandra Uber I3 recevoo

. @ Spotify Nerrtx - Netflix
Column-family database
e http://cassandra.apache.org/
e Features

* Open-source, high availability, linear scalability, sharding
(spanning multiple datacenters), peer-to-peer configurable
replication, tunable consistency, MapReduce support

Developed by Apache Software Foundation

* Originally at Facebook

Implemented in Java

Operating systems: cross-platform

Initial release in 2008

B4M36DS2, BEAM36DS2: Database Systems 2 | Lecture 9: Wide Column Stores: Cassandra | 24. 11. 2025

http://cassandra.apache.org/
http://cassandra.apache.org/

Key Features and Architecture

* Decentralized Peer-to-Peer Architecture
= All nodes are equal; no master-slave hierarchy.

* High Availability and Fault Tolerance:
= Data automatically replicated across multiple nodes.
= Ensures uptime during node or hardware failures.

* Linear Horizontal Scalability:
= Seamless addition of nodes increases capacity and performance.
= No downtime is required for scaling operations.

* Gossip Protocol:
= Nodes communicate state information periodically.
= Maintains cluster synchronization without a central coordinator.

* Ring Topology:
= Logical arrangement of nodes for efficient data distribution.
= Simplifies scaling and data partitioning.

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 9: Wide Column Stores: Cassandra | 24. 11. 2025

Data Partitioning

COUNTRY cITy POPULATION COUNTRY POPULATION COUNTRY POPULATION
AU Sydi 4.900.000 59 Sydney 4.900.000
USA New York 8.000.000 i
USA Los Angeles 4.000.000 CcA Toronto 6.200.000 -) 12 Toronto 6.200.000
Montreal 4.200.000 Fiiitansy 12 Montreal 4.200.000
FR Paris 2.230.000 o4 i
DE erli 3.350.000 DE Berlin 3.350.000 Hashing Function as Berlin 3.350.000
erlin 8 .
DE Nuremberg 500.000 48 | MNuremberg 500.000
UK London 9.200.000
AU \—V—, \4
Sydney 4.900.000 Partition Key Tokens
DE Nuremberg 500.000
CA Toronto 6.200.000 UsA New York 8.000.000
CA Montreal 4.200.000 usa Los Angeles 4.000.000
FR Toulouse 1.100.000
37.430.
ki TOkyo i DE Berlin 3.350.000 ER Paris 2.230.000
IN Mumbai 20.200.000 DE Nuramberg 500,000 FR Toulouse 1100000

I_V_I

Partition Key

37.430.000

London 9.200.000

cassandra

AU Sydney 4.900.000 Toronto 6.200.000

IN Mumbai 20.200.000 Montreal 4.200.000

Source https://cassandra.apache.org/_/cassandra-basics.html

Partition and Clustering Key

Sensor # Date Timestamp Metric1 Metric2 Metric3
- LSRR 20150101-000000 5.01 567 0678
PLEEREEE 20150101-000010 5.01 567 0678
M P IIERERE 20150101-000020 5.05 58 0678
(R MERGR N 20150102-000000 5.01 567 0678
(P SERGRZ N 20150102-000010 5.01 567 0678
C (P IIENERN 20150102-000020 5.05 58 0678
W 2 PIEESREA 20150102-000000 6.01 7.67 0978
PR LEEREPE 20150102-000010 6.01 767 0698
PB PIEEREEPE 20150102-000020 6.05 88 0679

—\ J\ J

Y Y
Partition Key Clustering Key
J
Primary Key

PRIMARY KEY ((Sensor,Date), Timestamp)

The Primary Key consists of two parts:

* Partition Key: (Sensor, Date) - defines which node will store the data

* Clustering Key: Timestamp - defines how data is sorted/organized within
each partition

Source https://www.instaclustr.com/blog/cassandra-data-partitioning/

Data Partitioning

* Data Partitioning (Sharding):

= Consistent Hashing: Distributes data based on partition key hashes.
Virtual Nodes (vnodes): Each physical node handles multiple token
ranges (256 virtual nodes by default).

Partition Key Design: Ensures even data distribution and prevents

hotspots.
Token Ring
Noce20 RIS _
Ty o Wl
H A
, N\

F C
---------- > Gormeenas Node 1b
D

i
__________ \’

Source: https://www.digihunch.com/2018/03/cassandra-architecture-summary/

Replication

* Replication Strategies:
= Replication Factor (RF): Number of replicas for each piece of data.
= SimpleStrategy:
Suitable for single data center deployments.
Replicates data to adjacent nodes in the ring.
= NetworkTopologyStrategy:
Ideal for multi-data center clusters.
Configures replication per data center.

* Replica Placement:
= Distributes replicas across different racks and data centers.
= Enhances fault tolerance and data availability.

* Impact on Performance and Availability:
= Higher RF increases data redundancy and fault tolerance.
= Balances storage costs with reliability and access speed.

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 9: Wide Column Stores: Cassandra | 24. 11. 2025

10

Consistency, Synchronization, and
CAP Theorem

* Tunable Consistency Levels:
= Levels Available: ANY, ONE, QUORUM, LOCAL_QUORUM,
EACH_QUORUM, ALL.
= Per-Operation Configuration: Set consistency levels for individual
reads and writes.
* Consistency and Synchronization Mechanisms:
= Read Repair: Corrects inconsistencies during read operations.
. Synchronous: Repairs during the read.
. Asynchronous: Repairs in the background.
= Hinted Handoff: Temporarily stores writes for unreachable nodes.
. Replays hints when nodes recover.
* Anti-Entropy Repair:
= Full Repair: Comprehensive data synchronization.
= Incremental Repair: Targets recently changed data.

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 9: Wide Column Stores: Cassandra | 24. 11. 2025

11

Consistency, Synchronization, and
CAP Theorem

* Clock Synchronization and Conflict Resolution:
= Uses timestamps (microsecond precision) to resolve write conflicts.
= Last Write Wins: Most recent write overwrites previous ones.
* CAP Theorem Positioning:
= AP System: Prioritizes Availability and Partition Tolerance.
= Tunable Consistency: Allows configurations to approach CP as
needed.
* Trade-offs and Implications:
= Higher Consistency Levels:
. Increased data accuracy.
. Potentially higher latency and reduced availability.
= Lower Consistency Levels:
= Enhanced performance and availability.
= Risk of reading stale or inconsistent data.

B4M36DS2, BEAM36DS2: Database Systems 2 | Lecture 9: Wide Column Stores: Cassandra | 24. 11. 2025

12

Cassandra Request Handling Flow

Client sends a write request to Coordinator (Node F)

Coordinator calculates token positions from its token map

Based on token, Coordinator sends write request to all three replica nodes
(R1-R3)

Coordinator waits for the answer from one, two or three replicas

depending on the Tunable Consistency level (ONE, QUORUM, ALL)
Data is replicated clockwise: B(R1), C(R2), D(R3)

For read request, Coordinator queries one, two or three replica nodes (R1-
R3) depending on the Tunable Consistency level (ONE, QUORUM, ALL)

Node

Client LB
application R1
\\ Clockwise

.
R3

Data Model

Database system structure

| Instance — keyspaces — tables — rows — columns

Keyspace
Table (column family)

= Collection of (similar) rows
— Rows do not need to have exactly the same columns

= Table schema must be specified, yet can be modified later on
e Row

= Collection of columns
= Each row is uniquely identified by a compulsory primary key

Column

= Name-value pair + additional data

Data Model

Column values
* Empty value
= null
e Atomic values

= Native data types such as text, integers, date, timestamp, ...
= Tuples
— Tuple of anonymous fields, each of any type (even different)
= User-defined types (UDT)
— Set of named fields of any type
* Collections
= Lists, sets, and maps

— Nested tuples, UDTs, or collections are also permitted,
however, currently only in a frozen mode

Data Model

Collections
¢ List = ordered collection of values
= This order is based on positions
= Values do not need to be unique

e Set = collection of unique values

® Values are internally ordered based on hash values
* Map = collection of key-value pairs

= Keys must be unique
= Pairs are internally ordered based on keys

Sample Data

tuple set
Table of actors P

'trojan’

('lvan', 'Trojan') {'samotari', 'medvidek'}

machacek’ I IMachacek')

{ 'medvidek’, 'vratnelahve', 'samotari' }

'schneiderova’
(Jitka', 'Schneiderova') | 1973 | {'samotari' }

'sverak’

('Zdenék’, 'Svérak') | 1936 || { 'vratnelahve' }

Sample Data

list

Table of movies

'samotari' title year actors
'SamotaFi' ‘2000‘ null

['comedy', 'drama’]

‘medvidek’ 'Medvidek' | ('Jan', 'Hiebejk') map

User-defined actors
type — {length: 100} {'trojan': 'lvan', 'machacek’: 'Jirka'}
'vratnelahve' title year
'Vratné lahve' | 2006
'zelary' title = year actors
'Zelary' ‘2003‘ {3 ['romance’, 'drama’']

Data Model

Additional data associated with...
the whole column in case of atomic values, or
each individual element of a collection
¢ Time-to-live (TTL)
= After a certain period of time (number of seconds)
a given column / element is automatically deleted
* Timestamp (writetime)
= Timestamp of the last modification
= Assigned automatically or manually as well
e Both the records can be queried

« Limited support for collections and their elements,
depending on the way of collection storage (frozen/non-
frozen)

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 9: Wide Column Stores: Cassandra | 24. 11. 2025

19

Cassandra API

CQLSH
¢ Interactive command line shell
* bin/cglsh (or via Docker container)
» Uses CQL (Cassandra Query Language)
Client drivers
o Officially supported by DataStax and community

e Available for various languages
Java, Python, Ruby, PHP, C++, Scala, Erlang, ...

Query Language

CQL = Cassandra Query Language
o Declarative query language
= Inspired by SQL
* DDL statements

= CREATE KEYSPACE — creates a new keyspace
= CREATE TABLE — creates a new table

e DML statements

= SELECT - selects and projects rows from a single table
= INSERT —inserts rows into a table

» UPDATE — updates columns of rows in a table

. DELETE — removes rows from a table

DDL Statements

Keyspaces

CREATE KEYSPACE
o~ (oreATE) ~(KevsPacE)
@@

— G

{
L—'-"—(Coption name}'@'[option value h—w

* Creates a new keyspace

* Replication option is mandatory
= SimpleStrategy
(single data centre, development/testing only)

= NetworkTopologyStrategy
(individual replication factor for each data center)

CREATE KEYSPACE moviedb
WITH replication = {'class': 'SimpleStrategy', 'replication_factor': 3}

Keyspaces

USE
e Changes the current keyspace
o~((USE) (keyspace name)

DROP KEYSPACE
* Removes a keyspace, all its tables, data etc.

o>(brop)-~(_KEYSPACE)-~(keyspace name

D) >0
@@
ALTER KEYSPACE
e Modifies options of an existing keyspace

Tables

CREATE TABLE
e Creates a new table within the current keyspace
e Each table must have exactly one primary key specified

-~) - @D 7 @D~

@ ~aor)-(axsrs)-

,
Lt- el \--f} |

J

{
ver——ware

¢ None of the columns is compulsory (except the primary key)
e The primary key consists of partition key and (optionally) clustering key

Tables

Examples: tables for actors and movies

CREATE TABLE IF NOT EXISTS actors (
id TEXT PRIMARY KEY,
name TUPLE<TEXT, TEXT>,
year SMALLINT,
movies SET<TEXT>
)

CREATE TABLE IF NOT EXISTS movies (
id TEXT,
title TEXT,
director TUPLE<TEXT, TEXT>,

year SMALLINT,
actors MAP<TEXT, TEXT>,

genres LIST<TEXT>,
countries SET<TEXT>,
properties details,
PRIMARY KEY (id)

Primary Keys

Primary keys have two parts

e Compulsory partition key

= At least one column

= Defines how individual rows are distributed between shards
e Optional clustering columns

= Defines the order in which individual rows are locally stored by each
shard

Primary Key Types:
* Simple primary key:
= Can consist of a single column that becomes the partition key
= May have no clustering columns
* Composite primary key:
= Can have a composite partition key consisting of multiple columns
= May include clustering columns

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 9: Wide Column Stores: Cassandra | 24. 11. 2025 27

Primary Keys

Table-level primary key definition

¢ The first column / all columns in the embedded parentheses
become the partition key

 All the remaining ones (if any) form the clustering columns

H*(Dﬂj
e o, |
;@._J J

L@w

PRIMARY KEY(user_id, timestamp, action)
PRIMARY KEY((user_id, year), month, day)

Tables

DROP TABLE
* Removes a table together with all data it contains

o~(oroP)~(7ABLE)~(table name)
@G-

TRUNCATE TABLE
e Preserves a table but removes all data it contains

o>(TRUNCATE table name }>o
(TABLE)>

ALTER TABLE

* Allows to alter, add or drop table columns, modify table
properties and settings, manage secondary indexes,change
caching option

It is recommended to add IF EXISTS to all these commands

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 9: Wide Column Stores: Cassandra | 24. 11. 2025

29

Data Types

Types of columns
¢ Native types
e Tuples
e Collection types: lists, sets, and maps
e User-defined types

-@@6
Q-
@GED-O-[uee -
&GOl O—

@D -(O-[uwe - O-owe |-
user defined type I

Native Data Types

Native types

e tinyint, smallint, int, bigint

= Signed numbers (1B, 2B, 4B, 8B)

e varint

= Arbitrary-precision integer
decimal

= Variable-precision decimal
float, double

= Floating point numbers (4B, 8B)
boolean

« Booleanvaluestrue andfalse

Native Data Types

Native types
e text (preferable), varchar

= UTF8 encoded string (identical types)
= Enclosed in single quotes (not double guotes)
— Escaping sequence: '’

° ascii
® ASCIl encoded string
* date, time, timestamp
= Dates, times and timestamps
= Supports timezone
» E.g.'2016-12-05', '2016-12-05 09:15:00’,
'2016-12-05 09:15:00+0300'

Native Data Types

Native types

e counter — 8B signed integer
= Only 2 operations supported: incrementing and decrementing
- l.e. value of a counter cannot be set to a particular number
= Restrictions in usage

Counters cannot be a part of a primary key

Either all table columns (outside the primary key) are counters,
or none of them

TTL is not supported

— Counters do not support secondary indexes

* blob-— arbitrary bytes
e inet —IP address (both IPv4 and IPv6)

Tuple Data Types

Tuples
¢ Declaration
c»-+®®+c
e Literals

».W‘.-' @~
©
= Eg.('Jifi', 'Machacek')

When working with non-ASCII characters in tuples:

* Ensure cluster uses UTF-8 encoding

* Verify client app handles Unicode properly

* Maintain consistent encoding across all system components

Collection Data Types

Lists
e Declaration
@)~ |-

e Literals

A —wa e

term

o

» Eg. ['comedy’, 'drama’]

Note: Lists maintain order and allow duplicates.
Consider performance impact for large lists.

Collection Data Types

Sets
* Declaration
~ @D~ -
* Literals
~@ @~
O,

= E.g. { 'medvidek’, 'vratnelahve', 'samotari' }

Note: Sets ensure unique values, unordered collection. Efficient for
membership testing.

Collection Data Types

Maps
* Declaration
@8- {vee|-O-{ire]-G~
* Literals

O mom
o

= E.g.{ 'machacek': 'Robert Landa' }

Note: Maps are key-value pairs. Keys must be unique. Efficient
for key lookups.

User-Defined Data Types

User-defined types (UDT)
* Definition

- (CREATED - (FED - (Geane) - (O~ 7{({eidnane) - [Bpe - (D
;Q._J

= E.g. CREATE TYPE details (length SMALLINT,
annotation TEXT)

e Literals

o-»'\)

@» @
)

= Eg.{ length: 100 }

Note: UDTs allow creating complex, reusable data structures.
Support nesting.

DML Statements

Selection

SELECT statement
e Selects matching rows from a single table

+o[seiEcrame | {FRovaan |~ qJ
C.
\[orowevame]~/ “-[omemevame | “[iwmem - jJ
. "
.) - D

Notes:

WHERE clause must include the complete partition key and can
include only clustering columns (in the order they are defined).

Other columns require ALLOW FILTERING (not recommended).
ALLOW FILTERING may significantly impact performance.

Selection

Clauses of SELECT statements
e SELECT — columns or values to appear in the result
* FROM- single table to be queried
° WHERE — filtering conditions to be applied on table rows
e GROUP BY - columns to be used for grouping of rows
* ORDER BY — criteria defining the order of rows in the result
e LIMIT - number of rows to be included in the result

Examples

SELECT id, title, actors
FROM movies
WHERE id = 'medvidek’

SELECT id, title, actors
FROM movies
WHERE year = 2000 AND genres CONTAINS 'comedy’

Selection

FROM clause

e Defines the table to be queried
= From the current / selected keyspace
* Limited JOIN operations are supported:
= Only within the same partition
= Both tables must share the same partition key
= Best practice is still data denormalization

o~ D - — ==

keyspace name

Selection

WHERE clause

* One or more relations a row must satisfy
in order to be included in the query result

G - [-
* Conditions are limited:

* Primary key columns can be queried directly
* Non-key columns require secondary indexes
* Partition key supports:
* Equality (=)
* IN operator
* Clustering columns support:
* Equality (=)
* Inequality (<, >, <=, >=)
* IN operator
* ALLOW FILTERING enables non-indexed queries (not recommended)

Selection

WHERE clause: relations

T s 7 @ — = ~
;@._J ©)
&)
®

CONTAINS ﬁ—-—J

Selection

WHERE clause: relations
e Comparisons
o=l L <= =, >
° IN
= Returns true when the actual value is one of the enumerated
e CONTAINS

= May only be used on collections (lists, sets, and maps)
= Returns true when a collection contains a given element

* CONTAINS KEY

= May only be used on maps
= Returns true when a map contains a given key

Require secondary index for efficient queries

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 9: Wide Column Stores: Cassandra | 24. 11. 2025 45

Selection

SELECT clause

» Defines columns or values to be included in the result
= * =all the table columns
= Aliases can be defined using AS
= Supports aggregate functions (COUNT, MIN, MAX, AVG, SUM)

Collection functions supported (LIST, SET, MAP operations)
= Supports user-defined functions (UDFs)

o~(_SELECT) .

DISTINCT "j L(:/:elector j
(D ?:L\ﬂl
)

N

* DISTINCT — duplicate rows are removed
= DISTINCT operates only on partition key columns

= Performance consideration: DISTINCT operations are
memory-intensive

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 9: Wide Column Stores: Cassandra | 24. 11. 2025

46

Selection

SELECT clause: selectors

= (column name }
G- O-O-QO———
Qurirerme)~ (O Coolumn name Q——O-
G- (O~ Ceatumn name)-()—

« COUNT(*)

Number of all the rows in a group (see aggregation)
Functions SUM, AVG, MIN, MAX are also available

* WRITETIME and TTL

Selects modification timestamp / remaining time-to-live of a given
column

Cannot be used on collections and their elements

Cannot be used in other clauses (e.g. WHERE)

WRITETIME returns timestamp in microseconds since epoch

Can only be used on one column per query

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 9: Wide Column Stores: Cassandra | 24. 11. 2025 47

Selection

ORDER BY clause
e Defines the order of rows returned in the query result

* ORDER BY can only be used on clustering columns defined
in table schema

e The order must match the clustering order defined in
CREATE TABLE

)
o/
LIMIT clause
e Limits the number of rows returned in the query result

o~ QD ~ (i)~

Selection

GROUP BY clause
* Groups rows of a table according to certain columns
* Only groupings induced by primary key columns are allowed!

+-(GROUP BY)Tgcommn ﬂ

* When a non-grouping column would be accessed directly in
the SELECT clause (i.e. without being wrapped by an aggregate
function), the first value encountered will always be returned

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 9: Wide Column Stores: Cassandra | 24. 11. 2025 49

Selection

GROUP BY clause: aggregates

¢ Native aggregates
= COUNT(column)

— Number of all the values in a given column
— null values are ignored

= MIN(column), MAX(column)

— Minimal / maximal value in a given column
= SUM(column)

— Sum of all the values in a given column
* AVG(column)

— Average of all the values in a given column

e User-defined aggregates

Selection

ALLOW FILTERING modifier

* By default, only non-filtering queries are allowed

= |.e. queries where
the number of rows read ~ the number of rows returned

= Such queries have predictable performance

— They will execute in a time that is proportional
to the amount of data returned

e ALLOW FILTERING enables (some) filtering queries
= May cause full table scan
= Not recommended for production use
= Better alternative: proper data modeling
* Best Practice
= Use only on small tables or testing environments

B4M36DS2, BE4AM36DS2: Database Systems 2 | Lecture 9: Wide Column Stores: Cassandra | 24. 11. 2025 51

Insertions

INSERT statement

* Inserts a new row into a given table
= When a row with a given primary key already exists,
it is updated
e Values of at least primary key columns must be set

* Names of columns must always be explicitly enumerated

DO -0 e |
]
L&T—T&@@—l

;Q._J Lo

(
®-GeD-(eme)- @) (e -

Insertions

Example

INSERT INTO movies (id, title, director, year, actors, genres) VALUES (
'stesti’,
Stésti',
(‘Bohdan’, 'Slama’),
2005,
{ 'vilhelmova': 'Monika', 'liska": 'Tonik' },
['comedy’, 'drama’']
)
USING TTL 86400

Updates

UPDATE statement

¢ Updates existing rows within a given table
= When a row with a given primary key does not yet exist,
it is inserted
* At least all primary key columns must be specified
in the WHERE clause

f»-\

e X 1

\-» update parameters I !

L~—»«:

Updates

UPDATE statement: assignments

e Describe modifications to be applied
e Allowed assignments:

= Value of a whole column is replaced
= Value of a list or map element is replaced

— Items of lists are numbered starting with 0
® Value of a user-defined type field is replaced

column name @-»
column name @-‘-'O
(column name }O—v(feld name)

Updates

Examples

UPDATE
movies SET
year = 2006,
director = ('Jan’, 'Svérak’),
actors = { 'machacek’: 'Robert Landa’, 'sverak': Josef Tkaloun'},
genres = ['comedy'],
countries = {'CZ' }
WHERE id = 'vratnelahve'

UPDATE

movies SET
actors|'vilhelmova'] = 'Helenka',
genres[1] = 'comedy’,
properties.length = 99

WHERE id = 'vratnelahve'

Note: Due to consistency issues, working with list indices (genres[1] = 'comedy')
in Cassandra is not recommended. Use add/remove operations instead

Updates

Examples: modification of collection elements

UPDATE movies

SET
actors = actors + { 'vilhelmova': 'Helenka' },
genres = ['drama’] + genres,
countries = countries + { 'SK" }

WHERE id = 'vratnelahve'

UPDATE movies

SET
actors = actors - { 'vilhelmova', 'landovsky' },
genres = genres - ['drama’, 'sci-fi'],
countries = countries - { 'SK' }

WHERE id = 'vratnelahve'

Insertions and Updates

Update parameters
e TTL: time-to-live
= 0, null or simply missing for persistent values
e TIMESTAMP: writetime

TIMESTAMP)——>((integer)
@ T

{_AND)

¢ Only newly inserted / updated values are really affected

Deletions

DELETE statement

* Removes the matching rows /
Preserves these rows but removes the selected columns /
Preserves these columns but removes elements of collections
or fields of UDT values

G- @0 |

. \‘ column name /]
(column name)"O”(feld name)* J J

]
\ [From ciause [wrERE dase -

Lecture Conclusion

Cassandra

e Wide column store

Cassandra query language
e DDL statements

e DML statements
= SELECT, INSERT, UPDATE, DELETE

