
B4M36DS2 – Database Systems 2

Yuliia Prokop
prokoyul@fel.cvut.cz, Telegram @Yulia_Prokop

https://cw.fel.cvut.cz/wiki/courses/b4m36ds2/

Lecture 6 – Key-Value stores: Redis
27. 10. 2025

mailto:prokoyul@fel.cvut.cz
https://cw.fel.cvut.cz/wiki/courses/b4m36ds2/

Outline

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 2

Key-value stores
•Introduction

Redis
•Data model
•Keys
•Redis Data Types
•Basic commands and operations
•Examples
•NoSQL principles
•Redis architecture

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 3

Key-value databases

Key-Value Stores

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 4
Source: https://redis.com, https://www.michalbialecki.com

Data model
• The most simple NoSQL database type

§ Works as a simple hash table (mapping)
• Key-value pairs

§ Key (id, identifier, primary key)
§ Value: binary object, black box for the database system

ü The value can be any sequence of bytes. It could be strings, numbers, serialized
objects, images, or any other data in binary format.

ü Modern systems often provide richer capabilities for working with structured
data, while maintaining the simplicity and efficiency of the key-value mode

Query patterns
• Create, update or remove value for a given key
• Get value for a given key

Characteristics
• Simple model ⇒great performance, easily scaled, …
• Simple model ⇒not for complex queries nor complex data

Key-Value Stores

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 5

• Key-value storage systems store large numbers (billions or even more) of small (KB-
MB) sized records.

• Records are partitioned across multiple machines, with the system intelligently
routing queries to the appropriate node.

• Records are also replicated across multiple machines to ensure availability and
fault tolerance

• Consistency mechanisms ensure that updates are propagated to all replicas,
maintaining data integrity across the distributed system.

• These systems offer various consistency models, balancing between performance
and data consistency needs.

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 6

Key-Value Stores

How the keys should actually be designed?

• Real-world identifiers
§ E.g. e-mail addresses, login names, …

• Automatically generated values
§ Auto-increment integers

– Not suitable in peer-to-peer architectures!
§ Complex keys

– Multiple components / combinations of time stamps, cluster node
identifiers, …

– Used in practice instead

Prefixes describing entity types are often used as well
• E.g. movie_medvidek, movie_223123, …

Composite keys: combining multiple attributes to form a key:
• E.g. user:1234:profile

Key Management

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 7

Basic CRUD operations
• Only when a key is provided
• ⇒ knowledge of the keys is essential

Modern key-value systems like Redis offer efficient methods such as the SCAN
command to list available keys without blocking the server, though this operation
may still be resource-intensive for very large databases.

Modern key-value systems allow comprehensive access to value contents
• But we could instruct the database how to parse the values
• … so that we can index them based on certain search criteria

Batch / sequential processing

Query Patterns

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 8

Expiration of key-value pairs
• Objects are automatically removed from the database after a certain

interval of time
• Useful for user sessions, shopping carts etc.

Links between key-value pairs
• Values can be mutually interconnected via links
• These links can be traversed when querying

Collections of values
• Not only ordinary values can be stored, but also their collections
 (e.g. ordered lists, unordered sets, …)

Particular functionality always depends on the store we use!

Other Functionality

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 9

• Handling Large Volume of Small and Continuous Reads and Writes
• Storing Both Basic and Complex Data Structures
• Applications with Frequent Updates and Range from Simple to

Moderately Complex Queries
• When your application needs to handle lots of small continuous

reads and writes, that may be volatile

Use cases
• Session Management on a Large Scale
• Using Cache to Accelerate Application Responses
• Storing Personal Data on Specific Users
• Product Recommendations and Personalized Lists
• Managing Player Sessions in Massive Multiplayer Online Games

When to use a key-value database

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 10

• Data Caching
§ Scenario: Web application with frequent database queries.
§ Application: Query results are stored in a key-value store (e.g., Redis).
§ Advantage: Significant speedup for repetitive queries.
§ Example: Caching search results, user profiles, and popular articles.

• User Session Management
§ Scenario: Web application with user authentication.
§ Application: Session information (user ID, tokens, last activity time) is stored in a key-

value system.
§ Advantage: Fast access to session data and easy scalability.
§ Example: Storing JWT tokens, a shopping cart on an e-commerce site.

• Storing Settings and Configurations
§ Scenario: Application with user preferences or dynamic configuration.
§ Application: Settings are stored as key-value pairs.
§ Advantage: Quick reading and updating of settings without complex queries.
§ Example: User preferences in an app, interface theme settings.

Key-value database use cases

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 11

• Message and Task Queues
§ Scenario: System with asynchronous task processing.
§ Application: Tasks are added to a queue and retrieved for processing.
§ Advantage: Efficient load distribution and scalability.
§ Example: Email sending queue, processing user-uploaded files.

• Counters and Statistics
§ Scenario: Need to track various metrics in real time.
§ Application: Using atomic increment/decrement operations.
§ Advantage: High performance for frequent updates.
§ Example: Counting page views, likes, and number of online users.

• Temporary Data Storage
§ Scenario: Data needed only for a short period.
§ Application: Storage with Time-To-Live (TTL) setting.
§ Advantage: Automatic deletion of outdated data.
§ Example: Confirmation codes for two-factor authentication, temporary tokens.

Key-value database use cases

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 12

• Distributed Locks
• Scenario: Need for synchronization in a distributed system.
• Application: Using atomic operations to create and remove locks.
• Advantage: Preventing conflicts in parallel access.
• Example: Resource locking in a microservices architecture.

• Computation Result Caching
• Scenario: Application with resource-intensive computations.
• Application: Saving computation results for reuse.
• Advantage: Significant speedup for repeated requests.
• Example: Caching results of complex SQL queries, web page rendering.

• IoT Device Data Storage
• Scenario: Collecting and processing data from multiple IoT devices.
• Application: Fast writing and reading of device data.
• Advantage: High-speed processing of a large number of small records.
• Example: Storing sensor readings and device statuses.

Key-value database use cases

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 13

• Geospatial Indexes
§ Scenario: Applications with geolocation features.
§ Application: Storing object coordinates for quick search.
§ Advantage: Efficient search for nearest objects.
§ Example: Finding nearby restaurants, tracking moving objects.

• Rate Limiting Management
§ Scenario: Need to limit API request frequency.
§ Application: Tracking the number of requests from a user/IP in a given time interval.
§ Advantage: Quick checking and updating of limits.
§ Example: Limiting the number of API requests to prevent overload.

• Large Object Storage
§ Scenario: Need to store and quickly retrieve large data objects.
§ Application: Storing objects with a unique key.
§ Advantage: Fast access to large objects without complex database structure.
§ Example: Storing images, documents, and audio files.

Key-value database use cases

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 14

• Limited data structure: optimized only for simple key-value pairs.

• Lack of value-based filtering: inability to query based on value
content.

• Inefficiency in collection scanning: no optimization for complete
data traversal.

• Key-value stores are not compatible with SQL.

• Limited transaction support: while some systems offer atomic
operations, they often lack full ACID-compliant transaction
capabilities, including automatic rollbacks.

• There is no standard query language as opposed to SQL.

Limitations of Key-Value Stores

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 15

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 16

Redis

• In-memory data structure store

Can be used as Database, Cache, Message broker, and Streaming engine

• Open-source software: https://redis.io/

• Developed by Redis Labs

• Implemented in C

• First released in 2009

• Redis is really fast: 100,000+ read/writes per second

Redis

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 17

REDIS (Remote Dictionary Server)

https://redis.io/

• High performance:

§ In-memory operations ensure very low latency.

• Flexible data model:

§ Redis supports various data structures (strings, hashes, lists, sets, etc.).

• Persistence:

§ Despite operating in-memory, Redis offers mechanisms for saving data

to disk.

Redis: unique characteristics

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 18

• Very flexible

• Very fast

• No schemas, column names

• Rich Datatype Support

• Caching & Disk persistence

WHY Redis? Who uses Redis?

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 19

• Standard key-value store

• Support for structured values (e.g. lists, sets, …)

• Time-to-live

• Transactions

• Cluster support for horizontal scaling

• Pub/Sub (publish/subscribe system) and Streams for processing streaming data

• Lua scripting for executing complex operations

• Real-world users:
Twitter, GitHub, Pinterest, StackOverflow, Instagram, Snapchat, Airbnb, Uber,
and many others

20B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 20

Redis functionality

Instance → databases→ objects

• Database = collection of objects

§ Databases do not have names but integer identifiers

• Object = key-value pair

§ Key is a string (i.e. any binary data)

ü The maximum key size is 512MB

§ Values can be…

– Atomic: string

– Structured: list, set, sorted set, hash, bitmaps, hyperloglog, streams…

Data Model

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 21

22B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 22

Redis keys

• Keys are binary safe – it is possible to use anybinary sequence as a key

• The empty string "" is also a valid key

ü Use with caution to avoid confusion

• Key length considerations
ü Too long: Can consume more memory and increase lookup time
ü Too short: May lack clarity and increase chances of key collisions

• Key naming best practices
ü Use descriptive names

(e.g., "user:1000:password" instead of "u:1000:pwd")
ü Improves readability and maintainability

• Recommended schema: "object-type:id:field" (Use consistent separators!) :

ü Example: "user:1000:email"

23B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 23

Redis keys commands
• SET key value [EX seconds]

Sets the string value of a key.
Optional EX parameter sets an expiration time in seconds

• GET key

Returns the string value of a key

• EXISTS key [key …]
Checks if one or more keys exist
Can check multiple keys in one command

• TYPE [key]

Returns the data type of the value stored at the key

• DEL key [key …]
Deletes one or more keys
Can delete multiple keys in one command

SET a hello
OK

GET a
"hello"

RENAME a ahoj
OK

GET a
(nil)

EXISTS a
(integer) 0

GET ahoj
"hello"

TYPE ahoj
String

SET x 120
OK

TYPE x
String

DEL x
(integer) 1

EXISTS x
(integer) 0

24B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 24

Keys – Examples

25B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 25

Volatile Objects

Keys with limited time to live
• When a specified timeout elapses, a given object is

automatically removed
• Works with any Redis data type

ü Temporary lockdowns

ü Temporary subscriptions

ü Burnable bonuses

ü SMS timeout (not more often than in a minute)

ü Verification by code (within 1 minute).

26B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 26

Volatile Objects

• Set:
§ EXPIRE key seconds

ü Sets a timeout for a given object, making it volatile.
ü Can be called repeatedly to change the timeout.

§ EXPIRE AT key timestamp
ü Sets an absolute Unix timestamp for expiration

§ PEXPIRE key milliseconds
ü Sets timeout in milliseconds

§ PEXPIREAT key milliseconds-timestamp
ü Sets expiration at a specific millisecond timestamp

§ SET key value [EX seconds | PX milliseconds]
ü Sets a value and expiration in one command (addition)

27B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 27

Volatile Objects
• Examine:

§ TTL key
ü Returns the remaining time to live for a key that has a timeout (in seconds)

§ PTTL key
ü Returns the remaining time to live for a key that has a timeout

(in milliseconds)
• Remove:

§ PERSIST key
ü Removes the existing timeout, i.e. makes the object persistent

• Additional notes
§ Redis uses the LFU (Least Frequently Used) eviction policy

ü When the cache is full, it removes the least frequently used items first
§ Lazy freeing of large objects is supported for better performance

ü Marks large objects for deletion
ü Actual memory freeing happens in a background process
ü Reduces latency for commands that delete large objects

Volatile Objects: passive and active expiration processes

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 28

• Passive expiration:

§ Triggered when a key with an expiration time is accessed

§ Redis checks if the key has expired upon access

§ If expired, the key is deleted before processing the command

• Active expiration:

§ Redis uses a probabilistic algorithm to expire keys actively.

§ The algorithm runs 10 times per second (every 100ms).

§ In each run, Redis does the following:
ü Samples 20 random keys with expiration times
ü Deletes all sampled keys that have expired
ü If more than 25% of sampled keys expired, repeats the process

Key eviction

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 29

• Purpose:

§ Free up memory when Redis reaches maximum memory limit

§ Allow new data to be added by removing less essential or outdated data

• Eviction policies:

§ noeviction: No keys evicted – when data retention is critical

§ allkeys-lru: Least Recently Used keys

§ volatile-lru: LRU among keys with expiration

§ allkeys-random: Random keys – good for caching

§ volatile-random: Random among keys with expiration

§ volatile-ttl: Shortest time-to-live keys - suitable for preserving keys with longer TTL

§ allkeys-lfu: Least Frequently Used keys

§ volatile-lfu: LFU among keys with expiration

Redis: Volatile Objects examples

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 30

SET counter 100
OK

GET counter
"100"

EXPIRE counter 10
(integer) 1

EXISTS counter
(integer) 1

EXISTS counter
(integer) 0

SET key 100 EX 10
OK

TTL key
(integer) 2

• Strings

• Lists

• Sets

• Sorted sets

• Hashes

• Bitmaps

• Hyperlogs

• Geospatial indexes

Data Types

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 31

Datatypes cannot be nested!
(no lists of hashes)

Further information: https://redis.io/docs/data-types/ Source: https://architecturenotes.co/redis/

• String

§ The only atomic data type

§ May contain any binary data

 (e.g. string, integer counter, PNG image, …)

§ Maximal allowed size is 512 MB

§ Use cases:

ü Store JPEG’s

ü STORE serialized objects

Data Types : Strings

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 32

• List – a double-linked list of Strings

• Max size 4294967295 (2^32 - 1)

• Can be used for

• F. ex. timelines of social networks

• Speed

• Actions at the start or end of the list are very fast

• Actions in the middle are a little less fast

• Lists support blocking operations (e.g., BLPOP), making them

convenient for implementing queues

Data Types : Lists

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 33

• Set

§ Unordered collection of Strings

ü Each time you retrieve or view the elements of a set, their order may be different

§ Duplicate values are not allowed

§ Useful for tracking unique items

§ Allow extracting random members

 Using SPOP, SRANDMEMBER

§ Useful for intersect and diffs

§ Operation efficiency: set allows for adding, removing, and checking for the

presence of an element with O(1) time complexity

Data Types : Sets

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 34

• Sorted set

§ Ordered collection of strings

§ The order is given by a score (floating number value) associated with each

element (from the smallest to the greatest score)

§ Members are unique. Scores are not

§ Ordering for items with the same score is alphabetic

§ Useful for leader boards or autocomplete

§ Maximum number of members in a Redis sorted set is 4,294,967,295

(2^32 - 1)

Data Types: Sorted Sets

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 35

• Hash

§ Associative map between string fields and string values

§ Ideal for storing objects

§ Field names have to be mutually distinct

§ Support operations like retrieving specific fields (HGET), multiple fields

(HMGET), or all fields (HGETALL)

Data Types: Sorted Sets and Hashes

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 36

String commands

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 37

Basic commands
• SET key value
 Inserts / replaces a given string
• GET key
 Gets a given string

Counter operations
• INCR key
• DECR key
 Increments/decrements a value by 1
• INCRBY key increment
• DECRBY key decrement
 Increments/decrements a value by a given amount

String operations

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 38

• STRLEN key
 Returns a string length

• APPEND key value
 Appends a value at the end of a string

• GETRANGE key star t end

 Returns a substring
§ Both boundaries are considered to be inclusive
§ Positions start at 0
§ Negative offsets for positions starting at the end

• SETRANGE key offset value

 Replaces a substring
§ Binary 0 is padded when the original string is not long enough

String examples

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 39

SET mykey somevalue
OK

GET mykey
"somevalue"

STRLEN mykey
(integer) 9

APPEND mykey 666
(integer) 12

GET mykey
"somevalue666"

INCR counter
(integer) 101

INCR counter
(integer) 102

INCRBY counter 50
(integer) 152

GETRANGE mykey 2 8
"mevalue"

SETRANGE mykey 5 xxxx
(integer) 12

GET mykey
"somevxxxx666"

Insertion of new elements
• LPUSH key value
• RPUSH key value

§ Adds a new element to the head / tail
• LINSERT key BEFORE|AFTER pivot value

§ Inserts an element before / after another one

• Retrieval of elements
• LPOP key
• RPOP key

§ Removes and returns the first / last element

Lists commands

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 40

LPUSH, RPUSH, LPOP, and RPOP are O(1) operations
LINSERT is O(N) where N is the number of elements to traverse before reaching the pivot

Retrieval of elements
• LINDEX key index – gets an element by its index

§ The first item is at position 0
§ Negative positions are allowed as well
§ LINDEX is O(N) where N is the number of elements to traverse

• LRANGE key star t stop – gets a range of elements
§ LRANGE is O(S+N) where S is the start offset and N is the number of elements

returned
Removal of elements

• LREM key count value
§ Removes a given number of matching elements from a list, O(N)

– Positive / negative = moving from head to tail / tail to head
– 0 = all the items are removed

• LTRIM key start stop
§ Trims an existing list so that it will contain only the specified range of elements

Other operations
• LLEN key – gets the length of a list, O(1)

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 41

Lists commands

RPUSH mylist Alpha Beta first
(integer) 3
LRANGE mylist 0 -1
1) "Alpha"
2) "Beta"
3) "first"
Retrieves all elements from "mylist" from the first (index 0) to the last (index -1) element.

RPUSH mylist 1 2 3 4 5 "foo bar"
(integer) 9
RPOP mylist
"foo bar "
This removed and returned "foo bar", leaving 8 elements.

LTRIM mylist 0 2
OK
This command trimmed the list to keep only the first three elements (indices 0, 1, and 2).

Lists examples

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 42

Basic operations
• SADD key value …

Adds an element / elements into a set
• SREM key value …

Removes an element / elements from a set

Data querying
• SISMEMBER key value

Determines whether a set contains a given element
• SMEMBERS key

Gets all the elements of a set

Other operations
• SCARD key

Gets the number of elements in a set

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 43

Sets commands

• SUNION key …

• SINTER key …

• SDIFF key …

§ Calculates and returns a set union / intersection /

difference of two or more sets (result is a new set)

SET OPERATIONS

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 44

Set example

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 45

SISMEMBER myset 3
(integer) 1

SISMEMBER myset 30
(integer) 0

SADD myset 1 2 3
(integer) 3

SMEMBERS myset
1) "1"
2) "2"
3) "3"

Create a set with elements 1, 2, 3

Test existence of 3 and 30 in the set

SADD set1 a b c d
(integer) 4

SADD set2 c
(integer) 1

SADD set3 a c e
(integer) 3

SUNION set1 set2 set3
1) "a"
2) "e"
3) "c"
4) "d"
5) "b"

SINTER set1 set2 set3
1) "c"

SDIFF set1 set2 set3
1) "b"
2) "d"

a

a

b c d

c

c e

a

a

b c d

c

c e

Basic operations
• ZADD key score value ……

§ Inserts one element / multiple elements into a sorted set
• ZREM key value …

§ Removes one element / multiple elements from a sorted set

Working with score
• ZSCORE key value

§ Gets the score associated with a given element
• ZINCRBY key increment value

§ Increments the score of a given element

20

Sorted Sets commands

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 46

Retrieval of elements
• ZRANGE key star t stop [WITHSCORES]

§ Returns all the elements within a given range based on positions
§ Optional WITHSCORES returns both elements and their scores

• ZRANGEBYSCORE key min max [WITHSCORES]
§ Returns all the elements within a given range based on scores

• ZREVRANGE and ZREVRANGEBYSCORE are reverse order variants

Other operations
• ZCARD key

Gets the overall number of all elements
• ZCOUNT key min max

Counts all the elements within a given range based on score

147

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 47

Sorted Sets commands

148

ZADD hackers 1940 "Alan Kay"

(integer) 1

ZADD hackers 1957 "Sophie Wilson" 1953 "Richard Stallman" 1949 "Anita Borg"

1965 "Yukihiro Matsumoto" 1914 "Hedy Lamarr"

1916 "Claude Shannon" 1969 "Linus Torvalds" 1912 "Alan Turing"

Sorted Sets example

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 48

ZRANGE hackers 0 3
1) "Alan Turing"
2) "Hedy Lamarr"
3) "Claude Shannon"
4) "Alan Kay"

149

ZRANGEBYSCORE hackers -inf 1950
1) "Alan Turing"
2) "Hedy Lamarr"
3) "Claude Shannon"
4) "Alan Kay"
5) "Anita Borg“

ZREMRANGEBYSCORE hackers 1940 1960
(integer) 4

Born before 1950:

Remove hackers born between 1940 and 1960:

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 49

Sorted Sets example

Find the number of hackers born before World War II (before 1939)

ZCOUNT hackers -inf 1939
(integer) 3

Hash operations

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 50

Basic operations
• HSET key f ie ld value

§ Sets the value of a hash field
• HGET key f ie ld

§ Gets the value of a hash field

Batch alternatives
• HMSET key f i e l d value … DEPRECATED

§ Sets values of multiple fields of a given hash

• HMGET key f ie ld …
§ Gets values of multiple fields of a given hash

Field retrieval operations
• HEXISTS key field – determines whether a field exists
• HGETALL key – gets all the fields and values

§ Individual fields and values are interleaved

• HKEYS key – gets all the fields in a given hash
• HVALS key – gets all the values in a given hash

Other operations
• HDEL key field [f ield . . .]

§ Removes a given field / fields from a hash
• HLEN key – returns the number of fields in a given hash

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 51

Hash operations

HSET user:1000 username antirez birthyear 1977 verified 1
(integer) 3
HGET user:1000 username
"antirez"
HGET user:1000 birthyear
"1977"
HGETALL user:1000
1) "username"
2) "antirez"
3) "birthyear"
4) "1977"
5) "verified"
6) "1"

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 52

Hash example

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 53

Hash example - Shopping Cart

carts
CartID User

1 matej
2 tomas
3 matej

cart_lines
Cart Product Qty

1 45 1
1 78 2
2 51 3
2 213 2
2 94 6

UPDATE cart_lines
SET Qty = Qty + 3
WHERE Cart = 1 AND Product = 45

Relational model Redis model

SADD carts_matej 1 3
(integer) 2

SADD carts_tomas 2
(integer) 1

HSET cart:1 user "matej" product:45 1 product:78 2
(integer) 3

HSET cart:2 user "tomas" product:51 3 product:213
2 product:94 6
(integer) 4

HINCRBY cart:1 product:45 3

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 54

Hash example - Shopping Cart

Querying data: what is in the carts of matej?
SMEMBERS carts_matej
1) "1"
2) "3"

HGETALL cart:1
1) "user"
2) "matej"
 3) "product:45”
 4) "4"
 5) "product:78”
 6) "2”

HGETALL cart:3
…

Redis supports Lua scripting, which allows you to execute a series of
commands atomically.

NoSQL principles
&

Redis Architectures

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 14. 10. 2024 55

Redis: NoSQL principles

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 56

• Scalability:
§ Redis supports horizontal scalability.

• Sharding:
§ Redis Cluster: Each node is responsible for a specific key range.

• Replication:
§ Primary-replica (master-slave) replication model.

• CAP Theorem:
§ CP system (Consistency and Partition tolerance).

ü Сertain configurations and use cases might lean towards AP (Availability
and Partition tolerance)

• Consistency:
§ Strong consistency within a single node.
§ Eventual consistency model in Redis Cluster.
§ ACID transactions at individual node level.

Hash Function configuration

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 57

• Hash Function is configured and managed by the Redis system itself
§ CRC16 (Cyclic Redundancy Check) algorithm.
§ Lookup table with pre-calculated CRC values for every possible byte value (256

entries)
• Hash Slot Configuration:

§ Data is distributed across 16384 hash slots (the number is fixed).
§ HASH_SLOT = CRC16(key) mod 16384.

• Automatic Distribution
• Cluster Setup:

§ An administrator defines the number of nodes and their roles.
§ Redis then automatically distributes hash slots among primary (master) nodes.

• Rebalancing:
§ Redis automatically redistributes hash slots when adding or removing.

• Lack of User Customization:
§ CRC16 is not changeable in standard Redis configuration.

• Consistent Hashing (with Redis specifics)

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 14. 10. 2024 58

Redis and the CAP Theorem
Availability:
• Redis uses a master-slave replication model to ensure high availability.

§ There is a single “master” node that accepts all writes and multiple “slave” nodes that
replicate data from the master in real time.

§ In the event the master node fails, one of the slave nodes can be promoted to become
the new master.

Consistency:
• Redis provides strong consistency guarantees for single-key operations.

§ If a value is written to a key, it will be immediately available for reads from any node in the
cluster.

§ However, Redis does not provide transactional consistency for multi-key operations,
meaning that some nodes may see a different view of the data than others.

Partitioning:
• Redis supports sharding, which allows the data set to be partitioned across multiple

nodes.
§ Redis uses a hash-based partitioning scheme, assigning each key to a specific node based

on its hash value.
§ Redis also provides a mechanism for redistributing data when nodes are added or

removed from the cluster.

Redis Architecture

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 14. 10. 2024 59
Source: https://architecturenotes.co/redis/

Redis Architecture

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 14. 10. 2024 60
Source: https://architecturenotes.co/redis/

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 14. 10. 2024 61

Redis Sentinel
Redis Sentinel is a distributed system. Its key functions:

§ Monitoring
ü Constantly checks the health of master and slave Redis nodes.
ü Tracks the connection between master and slave nodes.

§ Notification
ü Alerts administrators or other computer programs about issues in

the Redis cluster
§ Automatic failover

ü When a master node isn't available, and enough (quorum of) nodes
agree that it is, it selects the most suitable slave to promote to
master.

ü It informs other Sentinels about the master node change.
ü Reconfigures remaining slave nodes to work with the new master.

§ Client Configuration
ü Acts as a discovery service for clients, informing them about the

current master node.

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 14. 10. 2024 62

Consistency vs. Availability in Redis
Scenario: High Write Load
Example: Order processing system in an e-commerce store during a sale.

• Availability-focused setup:

§ Redis is configured with asynchronous replication. The master node
confirms writes immediately, without waiting for replica acknowledgment.

§ Advantage: High performance and availability.

§ Drawback: Risk of data loss if the master fails before replication completes.

• Consistency-focused setup:

§ Using the WAIT command for synchronous replication. Write confirmation
occurs only after replication to a certain number of nodes.

§ Advantage: Guaranteed data durability.

§ Drawback: Increased response time and reduced availability during
network issues.

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 14. 10. 2024 63

Consistency vs. Availability in Redis
Scenario: Geographically Distributed System
Example: Global user session caching system.

• Prioritizing availability:

§ Using an active-active configuration with multiple master nodes in
different regions.

§ Advantage: Low latency for users in different regions.

§ Drawback: Possible data conflicts when simultaneous updates occur in
different regions.

• Prioritizing consistency:

§ Using a single global master node with replicas in different regions.

§ Advantage: Guaranteed data consistency.

§ Drawback: Increased latency for remote regions, risk of unavailability if the
main node has issues.

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 14. 10. 2024 64

Consistency vs. Availability in Redis
Scenario: Processing Financial Transactions
Example: User balance management system in online banking.

• Strict consistency:

§ Using Redis in synchronous replication mode with confirmation from a
majority of nodes.

§ Advantage: Guaranteed integrity of financial data.

§ Drawback: Reduced performance and possible delays during network
issues.

• Relaxed consistency:

§ Asynchronous replication with periodic synchronization.

§ Advantage: High performance and availability.

§ Drawback: Risk of temporary balance discrepancies between different
nodes.

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 14. 10. 2024 65

Consistency vs. Availability in Redis

Scenario: Real-time Monitoring System
Example: Monitoring server performance metrics.

• Emphasis on availability:

§ Using local Redis instances on each server with asynchronous
replication to a central node.

§ Advantage: Continuous data collection even during network issues.

§ Drawback: Possible data inconsistency on the central node.

• Emphasis on consistency:

§ Direct writing of all metrics to a central Redis cluster.

§ Advantage: Consistent real-time data representation.

§ Drawback: Risk of data loss during network issues.

EXAMPLES

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 66

Redis as a primary data store

1. Rating Systems and Leaderboards
• Implementation details:

§ Uses Redis sorted sets.
§ Each player or participant is represented as a member of the set.
§ The player's score is used as the score in the sorted set.
§ The ZADD command adds or updates a player's score.
§ ZREVRANGE retrieves the top N players.
§ ZRANK determines a specific player's position in the ranking.

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 67

Adding players to the leaderboard
ZADD leaderboard 1000 "player1" 2000 "player2" 3000 "player3"
Getting the top 3 players with their scores
ZREVRANGE leaderboard 0 2 WITHSCORES
Getting the rank of a player (zero-based ranking)
ZRANK leaderboard "player1"
Incrementing a player's score by 500 points
ZINCRBY leaderboard 500 "player1"
Getting the count of players with scores between 2000 and 3000
ZCOUNT leaderboard 2000 3000

Redis as a primary data store

2. Session Management Systems

• Implementation details:
§ Each session is stored as a hash in Redis.
§ The key is a unique session identifier.
§ The hash stores various session attributes (user ID, last access time, etc.).
§ The EXPIRE command is used to automatically delete outdated sessions.

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 68

HSET session:abc123 user_id 1000 last_access 1631234567 is_logged_in 1
Session expires in one hour
EXPIRE session:abc123 3600
Get all session data
HGETALL session:abc123

Redis as a primary data store

3. Caching Systems

• Implementation details:
§ It uses simple string keys to store cached data.
§ Values can be serialized objects or JSON strings.
§ The SET command with EX parameter sets a value with a lifetime.

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 69

SET "user:profile:1000" "{\"name\":\"John\",\"email\":\"john@example.com\"}" EX 300

GET "user:profile:1000"

Redis as a primary data store

4. Real-time Counters and Statistics

• Implementation details:
§ Uses string keys for simple counters.
§ Hashes are used for more complex statistics.
§ The INCR command increases the counter value.
§ HINCRBY is used to increase values in a hash.

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 70

HSET stats:2023-09-10 pageviews 150 unique_visitors 75

INCR "visits:total"

HINCRBY "stats:2023-09-10" pageviews 1

HINCRBY "stats:2023-09-10" unique_visitors 1

Redis as a primary data store

5. Rate Limiting Systems

• Implementation details:
§ Uses keys that include a user identifier or IP address.
§ The key value is the number of requests.
§ INCR increases the request counter.
§ EXPIRE sets the key's lifetime.

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 71

INCR "rate:ip:192.168.1.1"
Limit resets after 60 seconds
EXPIRE "rate:ip:192.168.1.1" 60

Check the current number of requests
GET "rate:ip:192.168.1.1"

Redis as a primary data store

6. Simple Message Queue Systems

• Implementation details:
§ Uses Redis lists to implement queues.
§ LPUSH adds elements to the beginning of the queue.
§ RPOP extracts elements from the end of the queue.
§ For reliability, BRPOP can be used to block extraction.

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 72

Add a task to the queue

LPUSH "queue:tasks" "{"task": "send_email", "to": "user@example.com"}"
Get the length of the queue
LLEN "queue:tasks"
Limit the queue size to 1000 elements
LTRIM "queue:tasks" 0 999
Wait and extract a task

BRPOP "queue:tasks" 0

Redis as a primary data store

7. Application Configuration Storage

• Implementation details:
§ Uses hashes to store settings.
§ Each configuration section can be a separate hash.
§ HSET sets or updates settings.
§ HGETALL retrieves all settings of a section.

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 73

HSET "config:app" debug_mode "true"

HSET "config:app" max_connections "1000"

HGETALL "config:app"

Output:
1) "debug_mode"
2) "true"
3) "max_connections"
4) "1000"

We want to place banners on the page at a specific position and rotate
them evenly; after each page reloads, they change.

Redis example - Banners

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 74

Add a banner to the rotation
ZADD banners 0 {banner}
Return a banner with fewer views
ZRANGE banners 1
#Increase banner’s views
ZINCRBY banners 1 {banner}
Remove an outdated or irrelevant banner from rotation
ZREM banners {banner}
Get the total number of banners in rotation
ZCARD banners
Get up to 10 banners with view counts between 0 and 100
ZRANGEBYSCORE banners 0 100 LIMIT 0 10

Purchasing and payment

Redis example - Payment

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 75

Top up balance
ZINCRBY balance 500 user:1234

Withdraw the sum
ZINCRBY balance -500 user:1234
Add information to a log
ZADD purchases 1634567890 "product:1234:quantity:2:price:100"

Redis as cash

B4M36DS2 - Database Systems 2 | Lecture 5 - Key-value stores | 23. 10. 2023 76
Source: https://backendless.com

Redis as cache

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 77

def get_tourists():
 # Check the cache first
 key = "tourists"
 tourists = redis.get(key)
 if tourists:

 # The tourists are in the cache, return them
 return tourists.decode('utf-8’)

The tourists are not in the cache, query the database
 cursor = pool.cursor()
 cursor.execute("SELECT * FROM tourists")
 tourists = cursor.fetchall()

 # Save the tourists to the cache
 redis.set(key, str(tourists))

 return tourists

tourists1 = get_tourists()
print('Tourists from DB:', tourists1, '\n')

Will be retrieved faster because of caching
tourists2 = get_tourists()
print('Tourists from CACHE:', tourists1)

Publish / Subscribe

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 78
https://hevodata.com

• The first user subscribes to certain channel , "news"

• Another user sends messages to the same channel , "news"

• Subscribed clients receive the message:
1) "message"
2) "news"
3) "hello"

• Learn more at http://redis.io/commands#pubsub

SUBSCRIBE news

PUBLISH news "hello"

Publish / Subscribe

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 79

For notifications and allerts
Redis is also a message broker that supports typical pub/sub operations.

Subscribers can listen to
multiple channels, and
publishers can send to multiple
channels.

http://redis.io/commands

Redis Streams

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 80

Redis Streams

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 81

• A data structure for stream processing
• Designed to store multiple records ordered by insertion time

Main Characteristics:
• Append-only logs
• Unique IDs for each entry (timestamp + sequence number)
• Consumer Groups support
• Built-in persistence

Applications:
• Event logging
• Message processing
• Real-time analytics
• Event sourcing
• Messaging systems

Read more: https://redis.io/docs/latest/develop/data-types/streams/

https://redis.io/docs/latest/develop/data-types/streams/
https://redis.io/docs/latest/develop/data-types/streams/
https://redis.io/docs/latest/develop/data-types/streams/

Redis Streams: Basic commands

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 82

XADD mystream [ID] field1 value1 [field2 value2 ...]
Add new entry

XREAD [COUNT count] [BLOCK milliseconds] STREAMS key [key ...] ID [ID ...]
Read stream entries

XRANGE key start end [COUNT count]
Read stream entries in a specific range

XLEN key
Get stream length

XGROUP CREATE key groupname id [MKSTREAM]
Creating and Managing Groups

XREADGROUP GROUP group consumer [COUNT count] STREAMS key [key ...] ID [ID ...]
Reading as Consumer Group

XACK key group ID [ID ...]
Message Acknowledgment

Redis Streams: Examples

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 83

XADD race:france * rider Castilla speed 30.2 position 1 location_id 1 "1692632086370-0"
Add a stream entry for each racer that includes the racer's name, speed, position, and location
ID

XREAD COUNT 100 BLOCK 300 STREAMS race:france $
Read up to 100 new stream entries, starting at the end of the stream, and block for up to 300
ms if no entries are being written .

XRANGE race:france 1692632086370-0 + COUNT 2
Read two stream entries starting at ID 1692632086370-0

XLEN race:france
Get the number of items inside a Stream

XGROUP CREATE race:france france_riders $
Create a consumer group

XREADGROUP GROUP italy_riders Alice COUNT 1 STREAMS race:italy >
Add riders to the race:italy stream and try reading something using the consumer group

XACK race:italy italy_riders 1692632639151-0
Acknowledges processing of message ID 1692632639151-0

Redis Bitfields

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 84

Redis Bitfields

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 85

• Space-efficient data structure for storing multiple counters/integers
• Allows manipulation of integer values at the bit level
• Introduced to handle binary data and numeric arrays efficiently

Key Features:
• Multiple integers packed into a single Redis key
• Support for different integer sizes (1-63 bits)
• Atomic operations guaranteed
• Signed and unsigned integers support
• Memory efficient storage

Use Cases :
• Rate limiting
• User presence tracking
• Performance metrics
• Feature flags
Read more: https://redis.io/docs/latest/develop/data-types/bitfields/

https://redis.io/docs/latest/develop/data-types/bitfields/
https://redis.io/docs/latest/develop/data-types/bitfields/
https://redis.io/docs/latest/develop/data-types/bitfields/

Redis Bitfields : Basic command structure

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 86

BITFIELD key [GET type offset] [SET type offset value] [INCRBY type offset
increment]

Type Specification:
• i[bits] – signed integer (i8, i16, i32)
• u[bits] – unsigned integer (u8, u16, u32)

Overflow Handling:
• WRAP: wrap around values (default)
• SAT: saturate at min/max
• FAIL: return null on overflow

Command Options:
• GET: retrieve integer values
• SET: set integer values
• INCRBY: increment values
• OVERFLOW: set overflow behavior

Redis Bitfields : Examples

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 87

BITFIELD mykey SET u8 0 42
Sets an 8-bit unsigned integer at offset 0 to value 42

BITFIELD mykey SET u8 0 42 SET u8 8 24
Sets two 8-bit integers: 42 at offset 0 and 24 at offset 8

BITFIELD mykey OVERFLOW SAT INCRBY u8 0 100
Increments value by 100, saturating at maximum value (255 for u8)

BITFIELD mykey GET u8 0 GET u8 8
Retrieves two 8-bit integers from offsets 0 and 8

BITFIELD mykey OVERFLOW WRAP
SET i8 0 100
INCRBY u16 8 1
GET i8 0

Sets 8-bit signed integer to 100, increments 16-bit unsigned integer at offset 8, retrieves the
first value, uses WRAP overflow behavior.

GEOSPATIAL

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 88
Source: https://uwescience.github.io/SQL-geospatial-tutorial/04-geospatialQueries/ Source: https://carpentries-incubator.github.io/r-geospatial-urban/08-intro-to-geospatial-concepts.html

Redis geospatial indexes let you store coordinates and search for them. This data
structure is useful for finding nearby points within a given radius or bounding box.

Redis geospatial

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 89

GEOADD
 adds a location to a given geospatial index
 (note that longitude comes before latitude with this command).
GEOPOS

Returns the position of one or more members in a geospatial index.
GEOSEARCH
 Returns locations with a given radius or a bounding box.
GEODIST

Returns the distance between two members in the geospatial index
represented by the sorted set.

GEORADIUS
Queries a sorted set representing a geospatial index to fetch members within a
given distance.

Redis example – Data format

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 90

For Redis geospatial commands, the correct format is longitude followed by

latitude. Examples:

 12.4964 41.9028

 12.4964, 41.9028

The first number is the longitude, and the second is the latitude.

An option like

 longitude 2.2945 latitude 48.8584

is not in the correct format for Redis geospatial commands.

Valid ranges:
Longitude: -180 to 180
Latitude: -85.05112878 to 85.05112878

Redis uses geohashing internally for efficient storage and querying of coordinates.
Coordinate precision in Redis is limited to 5-6 decimal places.

Redis example – Filter by location

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 91

GEOADD Addresses 43.361389 18.115556 "Addr1"
 25.087269 37.502669 "Addr2"

GEODIST Addresses Addr1 Addr2 km
 Distance between two addresses

GEOSEARCH Addresses FROMLONLAT 15 37 BYRADIUS 15 km ASC
 Everything within a 15-kilometer radius of the point

Read more about geospatial: https://redis.io/docs/data-types/geospatial/

https://redis.io/docs/data-types/geospatial/
https://redis.io/docs/data-types/geospatial/
https://redis.io/docs/data-types/geospatial/

Transactions

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 92

Transaction

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 93

• All commands are serialized and executed sequentially
• Either all commands or no commands are processed
• Keys must be explicitly specified in Redis transactions
• Redis does not support transactions between multiple shards.

• Redis commands for transactions:
ü WATCH

§ Marks the given keys to be watched for conditional execution of a transaction.
ü MULTI

§ Marks the start of a transaction block. Subsequent commands will be queued for
atomic execution using EXEC.

ü DISCARD
§ Flushes all previously queued commands in a transaction

ü EXEC
§ Executes all previously queued commands in a transaction
§ If a watched key has been modified, the transaction will fail, no command will be

executed
ü UNWATCH

§ Forgets about all watched keys

Transaction - Example

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 94

We update the player's score,
their position on the leaderboard,
and set a TTL for the player's data
MULTI
OK
HINCRBY user:1234 score 50
QUEUED
ZINCRBY leaderboard 50 "player1234"
QUEUED
EXPIRE user:1234 86400
QUEUED
EXEC
1) (integer) 250 # New player score
2) (float) 1430.5 # New leaderboard position
3) (integer) 1 # Successfully set key expiration

We attempt to update the player’s
inventory and decrease their gold,
but the transaction is discarded
MULTI
OK
SADD inventory:5678 "health_potion"
QUEUED
SREM inventory:5678 "empty_bottle"
QUEUED
HINCRBY user:5678 gold -10
QUEUED
DISCARD
OK

Transaction – Example (all or nothing)

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 95

MULTI
SET key1 "value1"
INCR key2
SADD set1 "member1"
INCR nonexistent_key
SET key3 "value3"
EXEC
1) OK
2) (integer) 1
3) (integer) 1
4) (integer) 1
5) OK

MULTI
MULTI
SET key1 "value1"
INCR key2
SADD set1 "member1"
INCRBY key4 # Error: missing second argument
SET key3 "value3"
EXEC

MULTI
+ OK
SET key1 "value1"
+ QUEUED
INCRBY key2 # Syntax error: missing second argument
- ERR wrong number of arguments for 'incrby' command
SET key3 "value3"
+ QUEUED
EXEC
- EXECABORT Transaction discarded because of previous errors.

Transaction – Example

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 96

SET nonexistent_string "abc"
OK
MULTI
OK
SET key1 "value1"
QUEUED
INCR key2
QUEUED
HSET hash1 field1 "value"
QUEUED
LPUSH list1 "item1"
QUEUED
SADD set1 "member1"
QUEUED
INCR nonexistent_string
QUEUED
EXEC

1) OK
2) (integer) 1
3) (integer) 1
4) (integer) 1
5) (integer) 1
6) (error) ERR value is not an integer or out of range

Transaction - Errors inside a transaction

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 97

ü Before EXEC is called

§ The command may be syntactically wrong (wrong number of arguments,
wrong command name, ...),

§ There may be some critical conditions like an out-of-memory condition.

ü After EXEC is called

§ If we operated against a key with the wrong value (like calling a list
operation against a string value).

q Redis does not support rollbacks of transactions.

q DISCARD can be used to abort a transaction. In this case, no commands are
executed, and the state of the connection is restored to normal.

PERSISTENCE

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 98

Persistance

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 99

Source: https://architecturenotes.co/redis/

Datasets can be saved to disk
Persistence refers to the writing of data to durable storage, such as a solid-state
disk (SSD).

Persistence

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 100

Redis provides a range of persistence options. These include:

• RDB (Redis Database): RDB persistence performs point-in-time
snapshots of your dataset at specified intervals.

• AOF (Append Only File): AOF persistence logs every write operation the
server receives. These operations can then be replayed at server startup,
reconstructing the original dataset.

• No persistence: You can disable persistence completely. This is
sometimes used when caching.

• RDB + AOF: You can combine AOF and RDB in the same instance.

RDB Example

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 101

Example 1: RDB Persistence with Custom Save Points

In redis.conf, set the following options

save 900 1

 # Save the DB if at least 1 key changed in 900 seconds

save 300 10

 # Save the DB if at least 10 keys changed in 300 seconds

save 60 10000

 # Save the DB if at least 10000 keys changed in 60 seconds

AOF Example

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 102

Example 2: AOF Persistence with Every Second fsync

In redis.conf, set the following options

appendonly yes

 # Enable AOF persistence

appendfsync everysec

 # fsync every second

aof-use-rdb-preamble yes

Optimize AOF loading in Redis 7.0+

RDB and AOF Example

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 103

Example: RDB + AOF Persistence with No fsync

In redis.conf, set the following options

save 3600 1

 # Save the DB if at least 1 key changed in 3600 seconds

appendonly yes

 # Enable AOF persistence

appendfsync no

 # Do not fsync, leave it to the OS

RDB advantages and disadvantages

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 104

ü RDB is a very compact single file for backups and disaster recovery.

ü RDB maximizes Redis's performance since the only work Redis's parent
process needs to do to persist is forking a child who will do all the rest. The
parent process will never perform disk I/O or similar work.

ü RDB allows faster restarts with big datasets than AOF.

§ Data Loss: RDB snapshots are taken periodically, which means that in case
of a system crash, you could lose data that has not yet been included in the
most recent snapshot.

§ Forking Overhead: The Redis process needs to fork a child process to
create the RDB snapshot, which can be resource-intensive for large
datasets.

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 105

ü Better Durability: AOF provides better data durability, as it logs every
write operation, reducing the risk of data loss.

ü Human-Readable Format: AOF files store the commands in plain text,
making them easy to inspect and understand.

ü Flexible Configuration: You can configure the AOF fsync policy to balance
durability and performance based on your requirements.

AOF advantages and disadvantages

Disadvantages of AOF
§ Larger File Size: AOF files can be significantly larger than RDB files, as they

store every write operation.

§ Slower Recovery: The recovery process for AOF can be slower than that of
RDBs, as Redis needs to replay all the logged commands to reconstruct
the dataset.

Persistence: RDB vs AOF

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 106

Source: https://www.slideshare.net/MaartenSmeets1/introduction-redis-93365594

RDB (Redis Database File) AOF (Append Only File)

Provides point in time snapshots Logs every write

Creates complete snapshot at
specified interval

Replays at server startup.
If log gets big, optimization takes
place

File is in binary format File is easily readable

On crash minutes of data can be lost Minimal chance of data loss

Small files, fast (mostly) Big files, 'slow'

RDB related commands

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 107

BGSAVE

Save the DB in the background. Redis forks, the parent continues serving

the clients, and the child saves the dataset on disk and exits.

SAVE

Perform a synchronous save of the dataset. Other clients are blocked –

never use in production!

LASTSAVE

Return the Unix time of the last successful DB save.

AOF related commands

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 108

BGREWRITEAOF

Instruct Redis to start an AOF rewrite process. The rewrite will create a small

optimized version of the current AOF log.

If BGREWRITEAOF fails, no data gets lost, as the old AOF will be untouched

Read more about persistence:
https://redis.io/docs/latest/operate/oss_and_stack/management/persistence/

https://redis.io/docs/latest/operate/oss_and_stack/management/persistence/

What persistence is used for?

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 109

ü Backups

ü Disaster Recovery

ü Performance Maximization

ü Faster Restarts with Big Datasets

ü Replicas

Summary. Why Redis?

B4M36DS2 - Database Systems 2 | Lecture 6 - Key-value stores | 27. 10. 2025 110

ü Redis is an ultra-fast in-memory data store

Ø Not a database, used along with databases

ü Supports strings, numbers, lists, hashes, sets, sorted sets, publish /

subscribe messaging

ü Used for caching / simple apps, publish/subscribe

